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Using the Kubo sum rule theorem ]:1], conductivity sum rules are derived
for the relativistic tcp (two component plasma) in a constant external
magnetic field. This is a generalization of the relativistic ocp rules

derived in 1969 by Golden and Kalman [21 .

Consider a plasma of Ne= N electrons (each having mass m, and charge
e= - e) and Ni= N/Z ions (each having mass m, and charge ei= Ze)

confined in the large but bounded volume V at the temperature P—1= HT.

Let

L = cxp(—/@H)/[fdfcxp(-/BH)] (1)

be the macrocanonical distribution of the equilibrium system; aft s
an element of hypervolume in the r phase space spanned by the co-
ordinates and momenta of the plasma particles and transverse radiation

field oscillators. The Hamiltonian H for this system is

Na e,, s
H= 2 Z r mct k) S
A=e,lon (=) A,B=e,Lon (¢ I 25 l 2)
+ (1/¢wV) X [(r/z)g ;,; + (112) g°c* A}
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_ V‘A 2/ 2
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v = [P/ @/V)Z Agerp (ig-51)- 64, (x1)] fm,

{7+(m c) [P -(e, /V)Z A c;(p(/;, X. }’eaﬁo(i‘, )J }l/z %




A A . . .
where‘§i, pi are the canonical coordinate and momentum of the ith
~

. . A, .
particle member of type A plasma particles, v. is its velocity, and

~

éq"gq are the canonical coordinate and momentum of the qth mode radia-
~s

~ ~

. . . A . . .
tion field oscillator; AO (xi) is the vector potential (acting at the
~ o~

coordinate point x?) due to the constant external magnetic fieldﬂ?o
Lad

(=v4

Y. x'éo) pervading the plasma.

We turn now to the derivation of the frequency moment sum rules for the

A A
dissipative part of the external conductivity temsor @~ , the propor-
o~

o~

tionality coefficient in the Ohms law relating the average induced
current density response of type A plasma particles to a weak external
electric field excitation. We note that for the symmetric elements of

A A
CT'A (denoted byG(‘A ), dissipation is reflected by the real part,

= o) A g
whereas for the antisymmetric elements (denoted by OEPuP’ it is reflec-

ted by the imaginary part. The aim of this paper can now be precisely

stated: we wish to determine the constants C D for the
wv) ° TLprv]
%
lowest order frequency moment rules

® A
fjw fre 3'(;»)(5“) = Com ’_-{od“’wl—’" Ol';y] (kw) = Drppy

The basic equation for the derivations is the fluctuation-dissipation

theorem (valid for the relativistic tcp in an external magnetic field)

*
Without loss of generality, our final expressions will be valid in

either the Eo- system[h = (kX,O,kz), Eo= (O,O,BO)] or the ll\ci—system
[& = (0,0,k), §0= (BOX,O,BOZ)]. In either system, the 11,22,33,13,31
elements are the symmetric ones and the 12,21,23,32 elements are the

antisymmetric ones.
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A A
connecting Q" to equilibrium correlations
P4

~

AB = At)18(0) =
@y (k) = (7/V)<7:/59( )Z!‘/U (6)
of microscopic current densities, -

} (o) = CBZ (é o)exp[ ik 4, [(t=0)] . )

1-1
For the evaluation of C(PV) and D[pVJ » one begins by taking Cl)a
1
and @) frequency moments of Eq.(5). This gives
o A A /‘ @ AA (A 'é-'?O)
[ dw Re G, (kw ) = T8 @y, (&, , (8)
-
k. t=0
fdwa)Im [VJ(/(OJ) ﬂ—ﬁ@[ V] "’ /- (9)

The r.h.s. of Eqs.(8) and (9) were obtained by use of the parity rules

[2]

Q(p»)( t)= @(:f:u(ért); @L’,m)]//‘ ¢)=- @[,,,,J//r t) (102,0)

s AB
(wv) 0 QL,WJ

B#A these amount to odd velocity averages which must vanish in view of

and by observing that Q (}S’t=0) (k t=0) = 0, since for

the isotropy of the velocity distributions.

*
The correlation braces «....>> denote averaging over the equilib-

rium ensemble, viz: «...> = fall‘_(?_ (oov )



From LEqs.(6), (7), and (1),

AA 2 A A . A
@(,uu) (k,t=0) = (e, /V)?_(V/}u Vi C*P['.‘S'(ﬁf"fg )] > =

(11)
= (/%) 2 AT (3vg/obg Jexp [ik- (501,

and from Eq.(4),
Bviforfy = (1/0'm)&5[ 8 - (Vi hwlc*)], (1

so that

@y [k, t=0) = [&/(pm, V)] Z, JdrQ[§,,,- il /e (6.
= [wﬁi/{‘fﬁ/@):,< 7{1-’[" /3c* )= ,'W),(B)

2 .

where @) A= 4 ﬂ'nAAeA/mA is the plasma frequency of type A particles.
p

It is convenient to express the relativistic correction in terms of

so-called G functions defined in Ref. [2] as

2 fmCz)[a%fn(fz_l)l/zeXP /_/ngZy)
e K, (pmc*)

, (8

2 . ‘s . .
Kz(/e'mc ) being the modified Bessel function of order two. One obtains

- y;"’(/_ W/3c*) = = (2 /3)60 OemAcz)+ (15)
+ (1/3) 6, //s’mncz)

for the relativistic correction.



The calculation of Q%éungk’t = 0) is somewhat more involved:

Il

. A A
Qi (kit=0)= (1/V) = (dME)3 (411017

(16)

= (e, /V) Z { ,-;,‘ (o) V}: (0) exp [ I ke (5,f'(o)-§jé(o))_]>

..//< = () 19(0) 44 f0)exp[ik-(5'0)-2 {°))J>}

The second r.h.s. correlation of microscopic velocities vanishes because
of its odd velocity parity. The first r.h.s. correlation can be calculated

by use of the microscopic equation of motion (in the Coulomb gauge)
/4
< e/ mll L - (5 e ) (E skl 11
B (’/V)Z Af' exp (i 't MJ) i (17)

+ (1/V) (Y ”/c:)xZ /,ZX exﬁffﬁ /..‘;’A/C)x..Bo})
L

where E is the electrostatic field component. Adopting for the moment

e

L]
the notion of kinetic (x,v,A,A) rather than canonical (x,p,A,E) co-
ordinates, we see by inspection of Egs.(16) and (17) that only the last

r.h.s. term in (17) contributes to QAZ}UM] (k,t = 0), 1i.e.,

Q‘[“)jx{] (é:t=°)= (eAz/V) euﬁr éor’z- - ()‘ )-l[ 5‘)«‘( y/.x /Cl)J
7 ° 7/3 /;u EXP[IA-{!,'-Z_";)J>=

p (18)

2 A - A
= (& /v)a,, eﬂﬁrbo,.;z - (#*) Vg ¥

where a)cA= e, B /m,c is the cyclotron frequency, is the unit

A 0o A 6)),67‘

permutation pseudo tensor component, and bo is the unit vector in the

direction ofgo. Returning to canonical formalism and taking account of



Eq.(1), Eq.(18) becomes

..IA

[,,J(/v t20) = (& (aV) Uy €yaybor Z [ATR@RAIET Vi T, o,

which, in virtue of Eq.(4), is

A -2 2z 2)—,
= (1/477 ) W e €p ppiucbon=< N (1-24737 )=

Here we note that the relativistic correction, expressed in terms of

the G functions, is

= V(1= 217 /3C%) == (1/3) G, (amyC”) + z (20)
+ (2/3) G5 //5m,c /

From Egs. (8),(9),(13),(15),(19), and (20), the desired conductivity sum

rules can now be stated. They are:

(PV) = (1/‘/)&);,4 [(2/3)50 @m,c)+///3)62'63ﬂ7,c 71 (wv) 7 (21)

o1 = (114)Wia Wea[(115)G. fomc) + (2/5)G. (ma )€, B,

(22)

When Bo= 0, the conductivity tensor is diagonal; its longitudinal pro-~
~

jection is given by

A 040(549)
(kh,/k*)Re G, (ho) = (w/p) Tim

E(kw) @Y

It is at once apparent that the so—-called f-sum rules [21 for the

relativistic tcp must be

jdw wIm % (/“") = T Wy, [(2/3)G, (BmyC™) + (24)
-® E?(~ + (7/3)6;53 ngxb Jt



Finally, it is interesting to note that, starting from the correlation

functions for the non-relativistic tcp in an external magnetic field,

AA .
Y44 /HTT8) Wy U,y € i (26)
@EIJVJ /é,f:o) = (1 Y1T3) Wpa Len Crypio Lot »

one could partially reconstruct their relativistic counterparts simply

. 2 } ~ 2 2
by replacing &)pA and QQA in (25) and (26) by deAf 4 ﬂ'nA eAﬁﬁ ,
~
GJCA= ey Bo/cﬁg, where $;= 72 m, . What would be, of course, lacking in

2, 2 2, 2
this naive approach are the [ﬁ - (VA/3C )}, E.— (2 VA/Bc )J factors

appearing in the correct expressions Eqs.(13) and (19).
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