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ABSTRACT

Eigen structures and growth rates are obtained for the ion cyclotron beam—
whistler plasma instability near the leading edge of a shock wave propa-

gating along the magnetic field.
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The ion cyclotron beam-whistler plasma instability has.been proposed by
- Golden et al [1,2] as a mechanism for generating turbulence in collision-
less shock waves propagating along the magnetic fieid. In this Letter, we
present theoretical results on the eigen structures and growth rates of
this instability valid near the leaaing edge of the shock layer. This has

relevance with respect to laboratory experiments [3] that measured

stationary magnetic field fluctuations there.

We adopt, as in Refs. [1,2], the'Mott~Smith representation for the ion
~velocity distribution function fi’ which supposes that the shock layer
consists of interpenetrating unshocked (upstream (u)) and shocked (down—
stream (d)) ion flows. Followiang the assumption of Ref. [11, we treat
these ion flows as cold monoenergefic beams so that in the rest frame of

the shock front,

,

f.(z,v) =n, (5)5(}{—1/“@,!)-54’74(£)5(L’-‘{1é\z)

éz being the direction of the static magnetic field and z the distance
, *

into the shock layer . The electrons, on the other hand, are treated as
a single warm fluid moving with an average drift velocity ve(z)'éz such

that there is no net current, viz.

Va(2) = [1= 7]V, + 12)y , @

Note that the upstream jon density nu(z) decreases from its upstream
value Do at the leading edge (;aken to be at z=0) to zero at the
trailing edge, while nd(z) has the opposite dependence on z. The Rankine-
»Hugoniot shock relations enable one to express the mean velocity \7] of
the downstream ions in terms of v



where 7(2) = nd(z)/ne(z) and ne(z) = nu(z) + nd(z).

We assume the following WKB form for the perturbed quantities b(z,t):
N ’
bz t) = b(z)exp[i(kz-wt)] (3)

Here () =G+ i, [ ¥ |<<|W,| and k15> 15" () [/[B(2) | 5> 172, 1 being
the typical scale length of the shock. The local analysis of Ref. [1]
.points to the existence of stationary whistler unstable modes near the
leading edge of the shock; they are driven unstable by their interaction

with the downstream ion cyclotron drift mode

W, - k, v +; = 0. W

These zero group velocity whistlers are of particular interest to us
since they are the ones which have ample time to grow to sufficiently
large amplitude to irreversibly scatter the incoming upstream ionms.
Consistent with Ref. [1], we therefore assume that (&) ,ko) satisfy both

the dispersion relation at z=0

Eo(ﬁ)o, Lo): E,_(CUO,LO,ﬁ.ﬁO)::

s - @ p ke, ko O L ©
ﬂ; ‘(2’. 'O'i ‘ wo - /co Vu+'-Q/'
‘ Z=0

(where CA is the Alfvén speed and.(zi the ion cyclotron frequency), and
the zero group velocity condition equivalent to Cé;éb /d kb %D = 0.
(-]

Upon combining Maxwell's equations with the linearized equations of

continuity and momentum, one obtains the following equation for the



~ -
envelope b(z): |
-2 (* -~ | ‘
(K ..4:.2-6;)13(2'5)=o; | (6)
dz |
where

K""',___ i QZEO) — Cil(Z=0) _ vu_z -
-z ak;zz.o . -Q:'Z (a)o._kota-;-ﬂ;)-*

O,

2

€ = f%[?(&’)'—%]; (8)

_and

-2

~_2 -

Q7%= QF - (w-kv+Q;) 0.

We note that the ion cyclotron drift mode condition (4) is incorporated

into the first r.h.s. term of Eq.(8). In deriving Eq.(6), we have adopted
. '/

the ordering scheme ,7(z)l<<1, | )“/a)ol N’O(’l 27<<I and have retained

2 :
all terms to ordgr z [1].

In order to solve Eq.(6), 7( z) must be prescribed. Near the leading edge

?(z) fod nd(z)/nuap, and we assume its profile to be

O, £#£%£0
(10)

(B = 0 z/Lf, 220 and Izl<< L.

Equation (6) can then be solved for the positive —and negative- z regions
and by matching the solutions at z=0. If one makes the ansatz, -

- [T/
) < ..;_.r ) : (11)

arg (Zf"/zc



one then has for z -« 0,

,E_ :: A__ eXP ( K_ Z ) 2 .- (12)

where
(/2,22 \1/2
/0°)"
(13)

K_ = (Kzﬂ,-'b"e

The other solution is discarded due to its divergence at z = - @@. For
z > 0, Eq.(6) can be reduced to the standard equation for parabolic

.cylinder functions I_-l;],
2 ~5
2
[I(LEZ—('Z/L'E*a)]b*-:O' av
Here g - E/OC ’

z Yt i/
(J‘L ) e_l ° (15)

% ¢ K0, ’

Hl

and

(/4

a = - (1%0) " (KL/2%)e -

The solution, well behaved at z =@, is then

E;_-.—. A, U(a,5). 17

: ~s ~ o~ L
From the matching conditions that b= b_ and db+/dz = db_/dz at z = 0,
one obtains the following conditions for the eigenvalues:

-2 =1l

3 2 Ny -l -
¥y o= ’7LCL,,_Q L2; (kL) e 3 = 0,1,... (18)



and a is the n_, root of the following equation:

th 2
[ (34 + alz)
- = : (19)
(i + alz) | -

In general, Eq.(19) must be solved numerically. However, it can be shown

that a_ must be a negative real number and solutions can be obtained in

some limiting cases. Let a = - |a_|. For a | << 1, we have |a | o 0.1.
n n n 0

For ]an, >> 1, solutions only occur near the poles of the r.h.s. of Eq.

(19), i.e., ancﬁ - (2n + 3/2), where n is a large positive integer. The

' ~

- eigenvalue }1n of the unstable mode (Re btn > 0), which we label 311, is

- then given by
~ L -2'/3 i/

~ ~
We note that Z‘n satisfies the ansatz Eq.(ll). Moreover, since v‘n is

complex, the unstable mode experiences a real frequency shift. Since 'an,,

increase with

l(K;)nJ, IO(hlz and the turning point 'ztnf = |4 ano(i
5;;, our results indicate that modes with higher growth rates are peaked
deeper inside the shock front and extend further into the shock. This is
physically expected because the instability is driven by finite ? and Z
increases with z. We also note that the validity of the approximations
made here requires 'k.0'>>,(K—)nl’ ldn,_.l >» L -1 anci Iztn’ << L ,

~
thereby giving upper and lower bounds to the acceptable values of Iﬁ{

 Finally, we remark that Ref. [2] considers the case where the shocked ion
cyclotron drift mode is more realistically treated as a hot Maxwellian
beam in the local approximation; our above eigenmode analysis can be

readily extended to this more general case [5].
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