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ABSTRACT

A finite element method is presented for the numerical treatment of two-
dimensional quasilinear equations. The method is applied to the electron-
beam-plasma interaction. Strong influence of the initial fluctuation level

on the evolution of the turbulence has been found.



1. INTRODUCTION

15 years after the first pioneering work in plasma turbulence |1| most
essential problems still remain unsolved. The reason for this bad situa-
tion lies in the nonlinearities inherent to the turbulent phenomena. The
interactions in a real physical system are most often so strong as to
inhibit a perturbative treatment as is done in the so-called weak turbu-
lence theory (WTT). And since a consistent non-perturbative strong turbu-
lence theory does not yet exist, numerical experiments using particle

pushing methods seem to be the only resort.

However, in the past few years it has become clear that the finitness of
computational budgets imposes severe limitations on the physical content
in particle simulations. It is for example, unimaginable that microscopic
physics modelled by standard particle simulation could be build into an
MHD transport or laser-fusion code. On the other hand heuristic transport
coefficients may be too coarse a picture of the turbulent phenomena. What
is felt now is the lack of simple and numerically cheap models able to

describe at least the most important nonlinear physics correctly.

Regarded from this point of view, WIT appears in a new light. It appears
as an important reservoir of rather simple models. In fact the domain of
applicability of certain equations may be larger than their theoretical
derivation. This is, for example, the case of the one-dimensional quasi-

linear theory for the electron-beam—plasma interaction problem |2

For this reason we make an effort |3] to find an efficient general method
to solve equations occuring in the weak turbulence theory. In the litera-
ture various types of interactions have already been treated successfully
by numerical means. As early as in 1962 Drummond and Pines |4| treated the
Langmuir-wave-particle interaction in a 1-D system numerically. In the
last few years three-wave and wave-wave-particle interactions have been
numerically studied as initial value problems in 1-D and 2-D systems e.g.

in |5-8

- In all of these papers the wave-particle interaction has not



been treated consistently. In this paper we present a numerical approxi-
mation for the Langmuir wave-particle interaction in a 2-D plasma. Sub-

sequently we apply the method to an open problem 19

: the evolution of

electron-beam excited Langmuir turbulence in a multi-dimensional system.

2. QUASILINEAR THEORY

The velocity distribution of charged particles in a collisionless plasma
may evolve due to interactions with waves in the plasma. There are
basically two types of interactions: resonant and non-resonant. Particles
interacting resonantly with waves have a velocity which equals the waves
phase velocity whereas the non-resonant particles just act as the wave
supporting medium. Kaufman |10| has given a very transparent formulation
of the quasilinear theory, where the temporal evolution of the lowest
order distribution function is determined by merely resonant interactions.
The non-resonant term in his case is decoupled from the equation but is

needed to ensure conservation of energy and momentum.

We give Kaufman's equations generalized to more dimensions (V - D,v=1,
2 or 3) and normalized according to

k—k/r;

V— Vv
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Here k denotes the wave number, r. is the Debye radius, v the electron

d th

thermal velocity,cdp the plasma frequency, n and T are the electron
density and temperature, respectively, and £k is the spectral demsity
of the electric field. The kinetic equation for the particle disbribution

reads then

2 o %)
b—zf(_ﬂ,f)=r‘2‘3§ft,b), (2)



An easy way to ensure similar treatment of both S—functions is to eval-
uate both of them under a velocity-integral. Having this in mind, we use
the weak form |11] of the diffusion equation, i.e. we multiply Eq.(2) by

an arbitrary test function, g(v), and integrate over a velocity space
domain{2 :

fg”af(-. Py j?“’) Q)of‘ £) d'% . 8

This is to hold for each g(y_) in some test space G and for each t » 0. By

partial integration of the right hand side we obtain

f(a?—p %-Q.%‘;‘_)d"u fsdo‘ D , YgweG. o

Here d Q" denotes the dlrected surface element of the V —-dimensional
domain. Apart from some mathematical subtleties, Eq.(9) is equivalent to

the original differential equation (2)

. The equation (9) is the
starting point for the discretization. Conveniently the solution of the

problem is sought in the space G. The most popular linear space to imbed

this problem is the Sobolev space Hl(ﬂ).

4. NUMERICAL APPROXIMATION

4.1 Finite Velocity Domain

Let us use the Ritz-Galerkin method |11| for the discretization of the
weak form, Eq.(9). The method searches for solutions of Eq.(9) for g and
f lying in a finite dimensional subspace SN of Hl(.(l). First we need to
specify £2 . We might get rid of the boundary term in Eq.(9) by specifing
{1 to be the whole velocity space (| Ul& o0 ) together with the physical-
ly reasonable assumption that f and J{-/J_v- vanish at infinity. However,

having finite element subspaces of H ({1) in mind, we need a finite domain



where the diffusion tensor is given by

d% kk -k.v). 3
Dut) = w[ak KE € S(w-ku) ®
The waves evolve according to the "linear" law,

08, / Ok = 24 &, (4)

with a slowly varying increment

-’

L o
% = k* o€/dw f-k 3:,?- J(w'k'y) o' (5)
Where

0€/dw = 2 + 3k? (6)

and

w= 1+ 3/2 k2. (7)

3. THE WEAK FORM OF THE DIFFUSION EQUATION

The equations (2) and (4) show a certain similarity due to the fact that
the only interaction considered is the wave-particle-interaction. The
wave-particle operator is represented by <£(a)-k-¥) on the right hand sides
of both equations. A consistent numerical approximation can be expected,

if these d- functions are treated in the same way in both equations. By

consistent we mean that the system conserves well energy and momentum.
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As a first approximation step we neglect the boundary term in Eq.(9).
This can be interpreted in two different ways. We understand it either

as the application of a natural boundary condition,
v . -
"!",Q /o =o | (10)

everywhere on reel » or as the application of an essential boundary

condition,
flo, ) = o, (11)

on 411 . Equation (11) is called an essential condition, since it has
to be imposed on the functional space, whereas Eq.(10) is automatically
satisfied by just neglecting the right hand side of Eq.(9). Comparative
applications of Eqs.(10) and (11) will give us a measure for the error

comnitted by using a finite {1 instead of the infinite velocity space.

For ease of reference we will use the notation Hl(fl) and Hé(!l), the

subscript E standing for "essential boundary condition'.

4.2 Discrete Velocities

The velocity space is discretized by the introduction of a finite dimen-

sional subspace SN of Hl(ll)

S¥ = span { ¥, 4¥, wV. VY, 12)

The test function g and the approximate solution fN of Eq.(9) are assumed

. N .
to lie in §°, 1i.e.



gor= &, [= b, (13)
N

fot) =2 Lo e . (18)
J=

As in the case of Hé((l) we use the subscript E on Sg to indicate restric-
tion by the essential boundary condition, Eq.(11). The discrete approxima-

tion of Eq.(9) reads then:

N ¢ df. . -
Zi%l%%d’vffjj%.g.%édw} = 0
2

I=1 (15)

t=4 ... N.

3 2>

Here we have made use of Eq.(10) if \kj is understood to belong to SN,

or we have made use of Eq.(11), if \fg belongs to SN. Equation (15) is

E
a system of N ordinary differential equations of first order for the

expansion coefficients fj(t). The system may conveniently be written in

matrix form

A- of/ot =B-f, (16)

where
Ajj = j % . d"v, (17)
¥,
Bij = - %‘_& D g—f-_i'ol"v' (18)
£
and

f&) = (f4, s fiy) . (19)



Note that é and B are symmetric, since the diffusion tensor, Eq.(3), is
symmetric.‘é and -B are positive definite. They can be made sparse, if

N . .
spaces S of type "finite-element'" are chosen.

We use piecewise linear, continuous basis functions y? , i.e. roof func-
tions in the 1-D case, and pyramids in the 2-D case, respectively. The
1-D velocity mesh is denoted by Viserrs Vi The supports of the pyramids
are constructed according to Fig. 1. The rectangular (vx, vy) -mesh is
non-equidistant. The 2-D basis function is given by the pyramid which
takes the value 1 in point G and is zero on the whole contour ABCDEFA.

We numerate the mesh-points according to Fig. 2.

4.3 Finite Wave Vector Domain

The wave vector domain, E: klk £k &k , k £k 4k }is chosen
=t %2 X Xxu’  y& y yu
such, that every important part of the spectrum, Ek‘t)’ lies within the
~— -4
domain during the whole evolution. & should, on the other hand, be as
small as possible to allow for high k-resolution. A good choice for =
can usually be made only after several tentative solutions of the whole

problem.

4.4 Discrete Waves

The simplest way to discretize the waves is the classical one, i.e. one

assumes that the system is closed to a V -dimensional box of volume

v, = Ll"'Lv' The discrete k's are then given by
2T 27 = -+ 20
(Fa ), g
y

They are equidistant in each direction. Here k and Vv may be understood

to be dimensionless (Vv—ﬁ> Vv rg ). The diffusion tensor, Eq.(3), takes



then the form

k k
D) = Tl'kZ L IK f(w-kv) , (21)

with

L=& /Yy (22)

)

Ik being essentially the wave energy per discrete mode (see paragraph
571). The equation (4) holds also for Ik:

dI, [t = 2 )2‘( 1;( . (23)

This simple discretization works well in the 2-D case. In 1-D however,
the approximation was essentially improved by taking non-equidistant
k-values. The point is that equidistant k's result in non-equidistant

phase velocities,

;: =w/k = 1/k + 3/2 k . (24)

For a reasonable numerical approximation of the wave-particle interaction
it is necessary that a velocity cell is influenced by at least one wave.
This means in the one~dimensional case, that there is for each interval
(Vi, Vi+1) at least one % such that v, £ ﬂ V4 Vi
With an equidistant k-mesh this can only be ensured by a high number of
waves. Some v-intervals will then comprise e.g. 10 waves and others
merely one, which is certainly a bad repartition of the numerical degrees
of freedom and hence a bad approximation. Because of the one-to-one cor-
respondance between one-dimensional k and v, it is desirable to fix the
ﬂ;_- values according to the v-mesh. One chooses conveniently one wave

r . . . . ]
per velocity interval [vl, Vil

¥ = (Y%, +¥%) /2. (25)
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Consistently with Eq.(7) one defines the frequency and the wave vector,

k =k(p) = (p/3)[1- (7~ 6/;»1)"‘«']‘”}0 : 26)

One also defines the length of a k-interval by

} N:) - k(u;')) (27)

using the definition for k(v) given by Eq.(26). We may then approximate
the diffusion coefficient, Eq.(3), by

Diwt) = Z Lit)dteo-kv) . 28

Thereby understanding that

I =2, & /ar. (29)

It is possible to imagine more sophisticated ways to discretize the waves
than those described. One could use e.g. a finite element approximation

for the continuous éE s

&) = Z e (¢) y, (k) , (30)

=y

where 7(i(§) are piecewise constant functions.

If in 1-D the support of )(i is chosen to be (ki’ ki+-ki), this method

is equivalent to the method used for Eq.(28), if the additional approxi-

mation
k) + A;
[1/k de = X /k; (31)
k()

is used.
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Thus this ansatz brings nothing essentially new in the 1-D case. However,
it can be shown that it improves but also complicates the method in the
2-D case. The increased programming effort might only be worthwhile for

special applications.

4,5 Wave-Particle Interaction

One—-dimensional case

Since the basis functions V? are piecewise linear it is straightforward

to give the explicit form of the matrix Bij’ Eq.(18)a

1 ¢ -
B,.J- =—21r;+;*‘ Y;'(g) bRl (32)

The prime '

stands for d/dv. The sum z+ extends only over kae> 0; there-

fore a factor 2 has been inserted in front of the T . Only the elements

B. . .= B, . and B,. are non-zero. One wave only out of the sum contri-
ii-1 i-1 1 11

butes to an element Bi i-1° whereas two waves contribute to Bii’ viz.

2 y
-t ¢ (u;...u‘-._,) ¢

B, =-—% ¢+ 2 <7

T T Wt ke Tl R

It is equally easy to get the expression for the increment, Eq.(5),

¥ o= fc‘-u - 'Fi [ L } (36)
[} v - v; kz Q& /oW k=ki

&+

Two-dimensional case

Here the matrix B takes the form
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B.. =-zrr;+ -k{k- ds (%g)(gg{ﬁ) . (35)
] G

The sum 2% is restricted on kX > 0. The quantity ds is a line element

in the velocity space and the straight line C, is defined by

k

={v/kv-w < o}. (36)

Commonly we call Cr the interaction line of the wave k because all

particles which interact with the wave k lie on C . Since the integral

=

is piecewise constant, we may write Eq.(35) as

e A T .

where the second sum extends over all triangles A which are cut by the
interaction line Ck' The quantity S‘A(k) denotes the length of C within

the triangle A , and k is the unit vector in k-direction.

Practically the matrix B is constructed in the following way. We separate

time dependent and time independent parts
-
B':,_ (t) = KZ B'J‘S I.'S. (&) s (38)
where the definition of the constant matrices B:.ij is clear from compa~
rison with Eq.(37). They can be calculated once forever together with

matrix A, Eq.(17).

The band-width of the matrices A and B is 2 ny+ 3. If their symmetry is

used, ny+ 2 elements per row have to be calculated.

A formula rather similar to Eq.(38) can be obtained for the increment t,
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Eq.(5),
G = 2§ (39)

Here

™ A1
M = k? de/ow Z Salk) k- 3 (40)

AnCsaéo

4.6 Discrete Time

The system of ordinary differential equations to be solved in time is

given by Eqs.(16) and (23):

A-3/3 =B,
= 2

dL, / dlk % () T, . “

One notes that the time dependence of B(t) is given by I (t), (Eq.(38)),
and the time dependence of ‘r (t) is given by £(t), (Eq. (39)) This par-
ticular form of the system, (Eq.(41)), suggests a four level scheme for

the discretization in time. In fact a fully time centered scheme can be

obtained on an equidistant time mesh. Let tl, tz, t3, t, be four equally

4
spaced consecutive times. The discrete approximation of Eq.(41) then

looks like

4 [1(63)- §(0]/ (b5 1)) = Blea)-[f(145(62] /2

(42)

[T (k) -Tp (42)]/ (£4-ke) = Wy (83)[ Bl v Ty () ]

Knowing f at time ty and I& at time t2 one can solve the first equation

for £ at time t, by a Gauss elimination. Then I at t, can be obtained

from the second equation.
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Equation (41) describes a diffusion-like process. In such a process the
time derivatives decrease in the course of time. The time step should
therefore be adjusted. We used an automatic time step control allowing
—_ —_ —_ < .
(t,~ t)/(t,~ £)-1|< 1/10

Due to this constraint the time centering of Eq.(42) stays almost un-

the step to change not more than 10%, i.e.

damaged.

5. DIAGNOSTICS

5.1 The Conserved Quantities

Let us define in dimensionless form the total particle density,
N = f(ut)dy (43)

the particle momentum density,

B Jefaedr o

the wave momentum density,

d'%k
< n = 2 f (2"),

the particle energy density,
v
-zijv-’-]fal » (46)

and the wave energy density,

% o€
f(zvr)" 5‘ % ° (47)

X~
gli

(45)
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From the diffusion equation, Eq.(2), it is easy to derive the conserva-

tion of the total particle density

d¥ /dt = o, (48)
and it has been shown by Kaufman |10| that the total momentum density,

P=TP()+R (¥ (49)
and the total energy density

W= W (8 +h, ) (50)
are conserved.

The energy conservation law may serve as a diagnostic of our numerical
method, the total energy being sensitive to errors in both the distribu-
tion function and the spectral density. For natural boundary condition,
Eq.(10) the total particle density is exactly conserved by our method

as can be seen by noting that

17 =2 ¢ (51)

and
dafdt = [1§dv= Z AL 52
Use of Eqs.(16) and (18) leads then to
- 25u).d. %% 4 -
da/et = Z 5 [(524) D F & =o. 53

With a similar argument it can be shown that from the exact relation
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r= Z (v); }&, (54)

it follows that Ep is exactly treated by our numerical method.

5.2 H-Theorem

Let us define
H = 21 f{:zd”v (55)

with the use of Eq.(2) one can show that l12|

di /dt = -f%_f Q-gd”u‘ £ 0. (56)

This monotony is preserved by the numerical method,

L ]

d#/dt—:,f-ﬁ-{.-:f-gof o, (57)

as can be seen from Eqs.(14), (16), (17), and (18).

5.3 Spectral Moments

In order to describe the evolution of the spectrum, we introduce a few

moments. Using the wave energy density per k-interval,

W, = g- EK w € /ow, (58)

we define the location of the spectrum in k-space,

k> = (2% W /W
2= ‘6;6;; K% [V (59)
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and the mean width of the spectrum

1/2.

sk, Ucrm" a—(’ca))z%/Ww],aﬂ,y. (60)

6. APPLICATION TO ELECTRON BEAM EXCITED LANGMUIR TURBULENCE

6.1 Physical Initial Conditions

We model the initial beam-plasma-system by two Maxwellian functions,

)QQ)"‘°) = (272')”: 1+ §) {BXP(‘%Q")-*f@tr(-%(Q"‘!)z)} . (61)

The ratio of the beam density to the plasma density is denoted by § .
The beam has a velocity u. Equal thermal spread of the plasma and the

beam are assumed.

6.2 One-Dimensional Case

The evolution of electron beam excited Langmuir turbulence in a strongly
magnetized plasma may be modelled by the 1-D quasilinear equations. A

numerical solution to these equations has been given one and a half

decades ago l4 « If we solve the same equations here, we do it as an

apprentice's work.

We have solved the case of a high velocity beam (u = 15) with very small

density. It has very small density ( f = 10—5) to ensure the applicability
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of the quasilinear theory. Fig. 3 shows the particle distribution and

the spectral function for five subsequent times to— t4. In this calcula-
tion we used 90 equidistant mesh-points. The "shock'-phenomenon, anti-
cipated by Ivanov and Rudakov |13|, is nicely seen. The energy is conserved
up to less than 10—4 of the wave energy. The steepness of the "shock-front"
which one might suspect to be dependent on the discretization, does not

change if 180 mesh-points are used.

As a result one can say that the one-dimensional case does not pose any
problem. Storage space and available computation time on a small machine
such as ours (CDC Cyber) are largely sufficient to treat 1-D cases to any
reasonable accuracy. This heavenly situation is unfortunately not preserved

in 2-D calculations, whose features have therefore to be studied in detail.

6.3 Two—Dimensional Case

Most of the physical results of our 2-D calculations have already been

published |14

. In this paper the numerical aspects of our work and the

influence of spontaneous emission will be discussed.

Boundary condition

The introduction of a finite velocity space (see paragraph 4.1) does not
create any trouble in 1-D but does in 2-D. In 1-D the velocity domain
has simply to be chosen such that, at the boundary, no wave ever grows
(I(vb)ﬁs 0). From Eq.(28) follows then that D(vb):3 0 and hence from
Eq.(2) f(vb) = const. In 2-D the wave-interaction lines always cut the
boundary somewhere. And as long as not all wave-intensities are zero,
diffusion takes place at the boundary. In Fig. 4, we show the influence
of the boundary on the time evolution by using the natural boundary
condition, Eq.(10), and the essential boundary condition, Eq.(11). Apart

from the restriction, Eq.(11), the finite element spaces SN and SN are

E
equivalent. We show the total wave energy Ww, Eq.(46), as a function of



- 19 -

time. The number of points was N = 304, and the number of waves M = 285.

The velocity domain 41 was given by
R =(U|384 04108 -4S4y £ 4.6)
and the wave vector domain by

= =(k|orek, o215 -005¢ by« 0.09).

The physical initial conditions were u = (9,0) and § = 10_5. One observes
no appreciable influence of the boundary up to the saturation time tsat'
During the 2-D diffusion phase (t » tsat)’ however, the influence is
remarkable. This coincides with the observation made on the particle
distribution function across the beam, which is shown for tS and a final
time tge For t = t_ there is a 107 difference of the distribution function
obtained from S and from SN. The value of the wave energy at t = t_ dif-

E F
fers by 26% of Ww(tS ). It can be concluded that qualitatively the physi-

at
cal phenomenon does not change due to the influence of the boundary. Ac—
curate values for Ww’ however, would need an extended velocity space

and hence more points.

Initial fluctuations

Initially we assign to all wave intensities, Eq.(22), the same value IO.

I0 is determined by the input parameter

p=W, (o)/[WP(o) (kxa-kxe)(kya ~kye)] (62)

which is the ratio of the initial wave energy to the initial particle
energy normalized to a k-domain of area 1. For an equilibrium plasma n
is just the plasma parameter. In a beam-plasma system however, q depends
not only on the density and temperature of the plasma but also on the
history as how the beam has been introduced into the plasma. Moreover a
more complete theory, including spontaneous emission, would have to be

used. q stays therefore a free parameter.
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We use IO not only as the initial value for Ik(t = 0) but also as a lower
bound Ik(t) > IO. This brings something as '"'spontaneous emission" into

our model. In a real system a wave will never completely damp out but will
stay on some finite level due to spontaneous emission. To avoid the introduc-

tion of another free parameter we took I. for this finite level. Imposing

0

the lower bound IO on Ik is equivalent to replacing Eq.(23) by

all'g/dﬁ = 132 (1;_5 -Z.) (63)

for damped waves having an amplitude near IO. This means that energy is

pumped to the mode k at a rate 2|¥|T, v 9€/dco to prevent it to be

damped below IO.

We are now able to discuss the useful range of N - In thermal equilibrium
f may range from 10_10 in an interplanetary plasma up to 10_3 in a low
temperature high density laboratory plasma. For the applicability of our
model we have, however, to ensure that the "spontaneous emission”, Eq.(63),
does not directly influence the evolution of the particle distribution
function although the energy conservation might be strongly influenced.

A rough estimate for this criterion can be made by saying that the dif-

fusion coefficient, Eq.(21), made up by waves of intensity I, should not

0
influence the function f having a characteristic gradient length of AW
during the observation time t :

obs

(4‘!)"/4;55 » D = 9 W, () X (K, - ke)/1v] . (64)

In Fig. 5 the influence of 7 on the wave energy evolution is shown. The
7

saturation level does not depend on 7 for values lower than about 3:10
The behaviour during the diffusion phase (t 2 2'105) seems also to be
quite insensitive on n for n £ 3-10'_7. The criterion, Eq.(64), with

Wp(O)z 1, AVy ® 2.5 and v 6 in the diffusion phase yields

§ « 60 /oy . (65)
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At t = 10-7 the result for Q = 3'10—6 should still not be influenced
very much by "spontaneous emission" during the calculation. The result,

however, depends remarkably on the initial conditions.

We can conclude that there is no unique physical solution to the two-
dimensional quasilinear equation for a beam-plasma system. The solution
depends on the initial fluctuation level. The general features of the

solution, however, do not depend on the initial conditions.

Conservation properties

In all rums we checked the deviations Ajﬂ 52 and 8W of the conserved
quantities A, P and W, Eqs.(43), (49), and (50), from their initial
values. As discussed in Eq.(53) SN must be given by the machine truncation
errors. In fact on our machine 5]VZWP0¢10_16. The relative error in the two
momentum components was always smaller than &W/W. Therefore we show merely
the evolution of the energy non-conservation &W in Fig. 6. It can be seen

that the error dW decreases linearly with decreasing mesh-sizes in v and k.

s s e e e e s e et s S s v e S v e e

Extensive convergence studies are costy and unnecessary. Enough confidence
into the method can be won by merely comparing the results of two runs
with rather different mesh sizes. We have evaluated the spectral moments
Ww, (kx) ,Akx andAky, Eqs.(47), (59), and (60) respectively, for the 2

runs describes in Fig. 6. The relative differences,

r(m) = ( m, (t)- "7600(*))/”‘600(*) ) (66)

have been plotted versus time in Fig. 7. In Eq.(66) m stands for any of
the quantities Ww’ <k§? s Akx or Aky. The indices 300 and 600 refer

to the two cases N = M = 300 and N = M = 600, respectively. It can be seen
that the difference is 4 times smaller for the zero and the first order
spectral moment, Wx and (kx) » than for the second order moments Akx and

A ky’ a result which is easily acceptable.
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Mesh orientation

Since in our code we did not make use of the symmetry across the x-axis
(Fig. 1) it was possible to turn the beam with respect to the mesh. In
table 1 the saturation values wsat for 3 different angles & between u
and the x-axis are shown. The case N = M = 300, u = 9, §-= 1072, p = 3.1070
is demonstrated. From the small deviation of 3% we got further confidence

into the method.

7. CONCLUSION

We have presented a finite element method for the solution of two-dimensional
quasilinear equations. Conservation and convergence properties are excellent.
A draw-back of the method is the fact that it uses a finite velocity space
which has to be larger the longer the calculation time is. With non-equi-
distant meshes, however, the errors introduced by the boundary can always

be controlled.

The application of the method to the 2-D beam—plasma-problem has yielded
the very important result that the solution depends sensitively on the

initial fluctuations in contrast to the 1-D case.
The results suggest that our method might successfully be applicable to

more complicated problems in weak turbulence theory. An ion-acoustic code

is in progress.
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FIGURE CAPTIONS

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Table 1 :

The support of a 2-D basis function.
Example of a velocity mesh with N = 20 mesh-points.
One-dimensional quasilinear evolution of a beam-plasma system.

Influence of the finite velocity boundary on the evolution of
the wave energy density Ww(t) and the distribution f(vX= 6.6,
vy, t) across the beam. The finite element spaces SN(——-) and

Sg(———) have been used.

Influence of the initial fluctuations on the evolution of the

wave energy density ww(t). The case u = 9, f = 10_5 is shown.

The numerical error dW in the energy conservation versus time.
The case u = 9, f = 10_5, n= 3-10-8 is shown. Two different
meshes have been used: —— (N = M = 300) and -——— (N = M = 600).

Temporal evolution of the relative differences in the spectral

moments between the N = M = 300 and the N = M = 600 case.

Wave energy saturation value wsat for three different angles «

between the kx-axis and the beam.
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d W
sat

- 13° 6.89
0 6.70

+ 13° 6.68

Table 1
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