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ABSTRACT

When two beams of electromagnetic radiation having finite diameter inter-
sect within a plasma they generate in the interaction volume a second
order charge density which is proportional to the amplitudes of both beams.
Provided that a resonance condition is satisfied this charge density acts
as directional antenna emitting longitudinal waves. In this process power
is transferred from the beam of higher frequency to the beam of lower
frequency with the excess going into the longitudinal waves. The power
emitted is P =/P4 /Pz /’P“ where fP‘ are the powers of the electromag-
nectic beams. {F)' is computed for both Langmuir and sound waves. In the
first case this process can probably be used as a means to measure the

plasma density locally.






I. INTRODUCTION AND RESULTS

We consider two beams of electromagnetic radiation which intersect within

a plasma. The beams have finite diameters so that the interaction volume is
of finite extent. They propagate at right angles, their electric vector are
parallel, and their frequencies are above the plasma frequency to ensure
transmission. Two fluid equations are used to describe the plasma which is
uniform, field free and hot. From the electric field of the two beams the
second order charge density in space-time is calculated using the second
order susceptibility. We consider that Fourier component of the charge which
oscillates at the difference frequency, uqo;:a%:—u%. The spatial dependence
of this density is characterized by the difference of the propagation vec-—
tors of the beams % = Q_ - ?34’ but its amplitude is substantially different
from zero only in a ?initze volume. At resonance, that is if (A)o and gO
satisfy the dispersion equation of a longitudinal wave this charge density
acts as a highly directive antenna for such a wave. In this paper we consi-
der Langmuir and sound waves. The emitted of longitudinal field is computed
by means of the Green's function which gives the electric potential of the
wave due to a point source. We assume that the energy radiated out of the
interaction region is far greater than the energy absorbed within this
region by collisions or Landau damping. This is usually the case. The total
power radiated can be computed by integrating the energy flow over all

angles in the far field approximation. We find that the emitted power is

proportional to both incident powers
P-7 flz /P @

and does not involve the fields of the beams themselves. {F)*.depends on

whether we consider Langmuir or sound wave emission. At resonance
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Written in the international system of units these formulae have the form
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3'108 m/sec, ET)= 8.86'10—12 As/Vm, K = 1.38'10__23 Joule/degK.
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where C

The result suggests that different beam profiles would lead to the same

formulae for P except for a numerical factor.

The calculation is not self consistent, since the field strengths of the
incident beams are held constant. However, as long as'?% << ﬁ) one can

1 .
obtain the changes of the power in each beam from the Manley-Rowe ) relations:
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The quantity ¢D* gives a measure of the power required in the incident

beams to obtain a measurable out-put. If we choose ﬁa =P and require



an out-put P which is a fraction 9@ of the power of one incident beam
»
then we must have de = 2P~

In principle this process can be used as the basis of a local plasma dia-
gnostic method. To implement the method one of the two beams should be
frequency modulated over a range that includes the perfect match. The power
of the second beam and of the generated longitudinal waves will then be
amplitude modulated and can therefore be synchroneously detected. Peak power
in the emitted wave occurs for the perfect match,&(&z—g4,a)'-(0)=0_ From this
equation one can then determine 3 Ti+ Te in the case of sound emission or

w pe in the case of Langmuir wave emission. Due to the large value of
ﬁ)* however the former measurement seems difficult. Here one should exploit
the large ratio U')Z /CDO and attempt to measure the modulation of one of
the injected beams AB :((Dz/(l)a)/‘)rather than the acoustic wave of power P.

The measurement of plasma density, however, is probably feasible.

IT. PREVIOUS WORK

The interaction of crossed beams has been considered previously by a number
of authors. One of the first appears to be H. Dreicerz) who worked out the
Compton scattering of a beam of photons, enhanced due to the presence of a
second beam. He neglects collective effects since he uses the Thomson cross-—
section. Without giving results he also mentions the possibility of enhanced
scattering off phonons and plasmons. He describes these processes by a

transition probability o -
dn /dt = o [“z<"4”) (n,+4) ~ (nrt)n, 1,

where Ny (a)r) is the density in phase space of the boson of type j.
If n4 >>4,“277/' and nO«n'l’ nZ , then dno/di’ :0’1\4 ﬂz . This

»
leads directly to a relation of the form (1). To find the coefficient 73 ,

however, it would be necessary to integrate the Boltzman equation for the



plasmons, interpreting d,/dk as 9/9[' +V 9/0\' . We have not followed
this proceedure which seems equivalent to ours. In this formulation the
Manley-Rowe relations (4) are obvious, since the destruction of one photon
in the first beam produces one photon in the second beam and one longitudi-
nal boson.

N.M. Kroll, A. Ron and N. Rostoker3) compute the second order charge den-
sity produced by the interaction of two plane transverse wave fields whose
frequencies lie far above the plasma frequency. The interaction produces

a second order charge density Sg 2 of constant amplitude throughout space

and time, driving plasma oscillations according to the equation
29, - 3, = 3%
Fo) 0

where ¢O and SO are related by the linear susceptibility'X:

8. =-K%X ¢,

Hence at resonance the total charge density

3,=8.+3”- s(14%)

depends critically on the damping and diverges when there 1s none. The
power delivered to the plasma oscillations is absorbed uniformly throughout
space since the energy flow, which is everywhere constant cannot carry away
any energy. This calculation therefore applies to the situation in which
the absorption length is much smaller that the diameter of the interaction
region. If we were to consider a finite cubic interactlon volume of size
L3 we would obtain for the power of the beams f,P N’L E while the power

3 3
transferred to and dissipated in the excited waves would become @“-’L EO‘VL
E E This then leads to a relation of the form @c\) 4(‘?2/1_ involving

the d1mens1on of the interaction volume and differing from (1).

4 . ..
The same remarks apply to the work of G. Weyl ) who applied a similar

approach to the case of a magnetized plasma.



Both papers 4), 5) discuss the possibility of using the beam interaction
as a diagnostic tool. They propose to measure the charge density ngbk

by means of scattering of a third beam. Therefore they give as end result
the total induced charge density (4) but not the power transferred to the

oscillation.

L. Kuhn, R.F. Leheny, R.C. Marshalls) examine theoretically and experimental-
ly the mixing of two waves within a bounded magnetized plasma. In this situa-
tion, the interaction volume is quite a bit smaller than the cube of the

wave lengths so that wave vector matching is not necessary. The resonance
therefore is broad and the efficiency of power transfer low. They find theo-
retically and verify experimentally a relation of the type (1) for the

incident and emitted power.

In the analysis we use a natural system of units in which all coefficients
in Maxwell's and Newton's equations are equal to unity. The final result is
also presented in MKS units. The necessary transformation has been reported

6)

previously .

ITI. ANALYSIS

1. The Charge Density due to the Interaction

The two beams are propagating along the x- and y-axis respectively, each
beam having its electric vector parallel to the z-axis. For later con-

venience we assume the following form for the two beams:

Ea =€, a(r-wb ¥, (y?)

2
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where ki’ (.).)-L satisfy the dispersion relation (N =(.UP 1 Q and
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The quantities &4, QZ’ W . (Dl and (DZ-Q)A are all positive. These

fields are valid solutions of the linear wave equation provided that the

2
width of the beams is much larger than their wave lengths gl & >7 4 .
[
In the region of interaction the dependence of w— on the first variable
t

-which describes the spreading of the beam- can be neglected, so that

22

3 X
Yoy D= e - oo - 43

Although each beam is a superposition of plane waves of different k vectors

the amplitude distribution

BTaE, fﬂf(‘i{* &;-u’;)

is so narrow that it will suffice to consider the single wave vectors
&4': (&4, O, O) and 22’-(0‘ Qz , O) for each beam respectively. The

total power transmitted by each beam is

ke
KPL- =17 zﬂ-d ELL' E. (5)

The charge density produced by the interaction of the two beams can be

obtained from the second order susceptibility, given in the Appendix (A 13).

S(Z)G‘t): 3(1)(Y) ewPGmgkh cC

with 3 9
(2) _ qJ. ho Bo _ -r_z- .
S (r)= E4 EZ Z_e'i ? m’; %mz(%z_qa;) QxP( 2d ‘HE!O'[) 6)
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and

2
th'Y;LTJi/mol (9)

The adiabatic exponent a:l is 1 or 3 depending on whether Ctlg /U)
much greater or smaller than unity for the mode considered. The spherical-
ly symmetric amplitude distribution is of course a result of the particular

choice of the beam profiles. The ion contribution in (6) can always be

. . . 2 /n2
neglected, even for an ion acoustic wave with Q)o /&O = (_];.‘.3’\;)/4"(.

2. The Green's Function for Longitudinal Wave Emission

We describe longitudinal waves by their electrostatic potential Qb which

in Fourier space satisfies the equation

2
HEd =S e

In this equation § is the linear dielectric function

2 CL? .
C' '4 + “i]i}““‘ '+ Eﬁ—igxt——;

The source emitting the longitudinal waves is .3(1)g1ven in the previous

. (11)

section. To calculate q& it is advantageous to make use of the Green's
function which obeys (10) with a point source oscillating at the fixed

frequency CDO .



g’Sowce =27 § ((D-(D")

The expression for the Green's function

| dodk 7 S@-w)
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can be integrated explicitely

(. _eqplinb) axp iyt + 1)
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k'
where ?( are the two roots of 6@)0 ,Q‘)-.- O . The first term isaa capa-
citive near field term giving an electric field proportional to Y  and
no energy radiation. We note in passing that for (.%t o, J: =4 the
capacitive term disappears, while the other two terms combine to give the
shielded Coulomb-Debye field. The other two terms represent the emission
of Langmuir and sound waves. Of course, in reality the two waves will never
be excited simultaneously even for(l)o > W e> since Landau damping, not
included in this model, prevents the excitation of the sound waves at such

high frequencies.

3. The Potential of the Emitted Wave

The potential of the emitted longitudinal wave field is

§e- 1800 G, Cor 0

E'1 E, e (‘D;Q Wo ebcp(. wa’t’)
T Me wAu{(wj—cze%‘)&’(aél?&')

N o 2 i er]] s ec
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(12)
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The wave number & is one or the other positive solution of 8((‘00,&)‘0'

To compute the emitted power we only need the far field approximation for

¢ , valid for Y/r) >> 4 and Rr > 4 . To obtain it, we define first the

vector

R =ky/

The expression ?; lr --!‘_, ] appearing as argument of the exponential in
(12) can now be approximated as g!_'(_Y_ - t’ ) , while in the denominator
it suffices to replace l\:-——r'l by Y. With these simplifications the

integration can be carried out explicitely and yields:

QMP . (r’)Q /‘20L + (go‘t'+(&(r-r') 43y

- (‘zﬂ’d)% ap k- 22 (h-t,)

Hence

(P(r)l_) i 2_5/1_ Tr"/z 3/2 E4 Ez (e/me) o

Whe B apfinf + e -14(-, )] )
O, - W)W Gejaw)r ¢ C©

, L
Remembering that & is parallel to Yy and that o{ & )74 we see that the

emission is peaked in the direction of g . The emission is strongest for

0
h: & , that is if the frequency W, and the wave number &o satisfy the
o

dispersion relation e(mo , %o): 0O-
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4. The Energy Flow

The energy density carried in a monochromatic longitudinal wave is

W= (D(’é&/a(o)<-’§’_- Et> where the brackets < > indicate time

averaging. The energy flow S is obtained by multiplying W by the group

2wk = - (9€/2k) /(2€ fow)

Hence

S = - wh (e/ow) CE'Y "

When calculating the total power passing through a sphere of radius y
by dv d
P - \SI oA Y Yy ¥ (15)

the far field approximation only is necessary since the terms decreasing
faster than Y give a vanishing contribution as ¥ goes to infinity.

Therefore when computing E= —V¢ it suffices to differentiate the

factors 9°°P ((9@") and QOCP(-LQY) . Thus one finds
€'Y - (T16) EX € (e/m,) -

wpe R4 exp[d(@-1,) ]
W @ @-c k) B Gehr)

S =-(Ta2/46) EI E (ehn,)

w;e wo &Z& @X&O['d(h.'go)t]
S wf @- ¢} B VK Gefokd)r?
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Carrying out the integration indicated in (15) we obtain the total power

radiated
2
P (1) E, € M)

wl, W, R (16)
2
Wh W k-t %) W ee/ar’)

where

M= o a0 ) | - expl- a(h 0)]

The second term of the last expression is negligible since d ﬁ. -7 4
At resonance, ﬁ(wo, & ) O, that is for ﬁ ?{ we have M 4.

Expressing the field amplitudes of the beam in terms of the beam powers

"

(Eq. 5), we obtain finally

. 3
o (Upe w, &o 17
PR i

5. The Resonance Condition

Using the dispersion relations for Langmuir and sound waves
2 2 2 42
mzw\oe-*ce@l

and
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with
2
Cy = (?’TL*Te)/mi

we find from (1D

Co 'S
2 9E CUZ Langmuir
AR pe
£y )
T; :
(’f + 3 %—;‘) -‘:—5)%- sound

The emitted power is maximized by setting &: go in equation (17). Sub-

stituting the above expression into (17) one obtains in the two cases

2 G
f"_) = € QJPC &0 3 /l) fP
L umTe w, W, k&, h, w, 4 2 15
2 2 2
Pt e R
s 8m(+3T) Z w, @, & R, 4t (19)

The condition 8°=Qmeans that the dispersion equation must be satisfied
for W, =C02-UJ4 and %o = gz- %4 . This implies a relation between
the two frequencies of the incident beams. We consider UJ4 as given and
calculate (ﬂz . We find in the case of Langmuir waves

2

L (W Lre
A
W=, +w +C ( +W, - (20)
2 A e \W, 4

R 2
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and in the case of sound waves

SR
W, = Wyt Ve G (w, DLpe (21)

Using the dispersion relation for the incident beams and the results (20)

and (21) we write the radiated power in the final form

(P -.-/\34@2/@*

PLr B )

v 1,
rP* _ Um, \m(’ (’T;+3'ﬂ-) ¢ 2
s o2 v

and

-

L)) o L e

%

For practical purposes it is convenient to write these equations in the

6) .

international system of units, using a transformation given previously

P2 & g K = T W)

$3¥ b CF ﬂ( VneVﬂ?A ﬂé A
< €0 Ky 7—*—('};»(3'[}) V

These are the formulae given in the introduction.



APPENDIX: The Second Order Susceptibility in the Two Fluid Model

The second order susceptibility is well known in the cold plasma approxi-

mation. M.V. Goldman7)

has given the susceptibility for a hot unmagnetized
plasma in the special case in which one may assume an isothermal equation

of state.

We take the opportunity to present here the general form of the second
order susceptibility in the two fluid model of a magnetized plasma

having finite temperatures.

We start from the equations of motion and continuity for one species

on
CY Y (hy)= © (A1)

AV
Sp t(vy)v+ §f= Z [wa%] (a2)

Pressure and density shall be related by the adiabatic equation of state

p=An’

so that
!E. = -—-b-y—A.__ V Y‘-' 4
mn ()’-4)m A

We now replace YW by no* N, B by 8048 , where Y\o and BO are
the equilibrium values and W and Eﬁ'are the perturbations.

poA

We expand (ﬂ04-n) in powers of N . This leads to

1 y A
vp S P2 v () ot
mn N, YNt nr Yn o+ Z,( ) —5- we.
0 0 -




- 16 -

where

o= ¥TyIm

We now insert the above expression for VP/MY\ into (Al) and Fourier
transform both (Al) and (A2). The non-linear terms give rise to convolu-

tion integrals. Putting @ '-'-'{%"(D}and
de, = QTT}“ de, de, S(z-2 -2
1t 1 2 1"
we write the transform of AB as
faGe) Ate) dz,,
or simply
SA4 B, d= 1

With this notation (Al,A2) become

n- Y\o (%:'Y)/w = N

(A3)
V4 \.Q, X _\_/_/(D ~ (C‘:/ho) &n/(l) = Y (A4)
where
e B
n a{ 2 5 (A5)
N = (R /w)'SclaEn Nt
(A6)

Vo=t («ﬂmw) E+ (4lw) fdin (v, k) v,
+U(g/ma) {d'ﬁz [k, (vE,)- E,Z(V,,'iz)]/wz )
+4 (¥2) (cﬁ/n:) (h /o) gobeﬂ n,n, 4.
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Using (A3) we eliminate Y1 from (A4):

; -Q— 2 v&@l!) c?' Ql
VL5 XV = G —= =V 4 + © N (48)

We introduce the operator u,by the definitaion

-A
0 2 & (ky)
u_\{_=¥+t:®'X\_{—Co—-—(D—i— (A9)

so that we can write (A3) and (A8) in the form

. b
¥=U(Y+Er‘5 N) (A10)
N + = 91 u (V+ —=- & N) (A11)

The right hand sides of these two equations (Al0, 11) do not contain any

. .. A -
linear term except the driving term V() = uyg/mw. These two equations

can there fore be solved for ¥V and 1n by iteration in ascending orders

of E

Omitting the rather tedious algebra we give the polarisation to second order
@) [ -
( (Z (4
,P 0 6 0{ Ny V + Y\ )

in the form:
"3

(2) l? “O 2 -
P = - Mo d}ﬁ“ (wA wz) (&4u4§4)(uzgt)

—

+ (w u)ij4 (R U, E,)UW E
to ww) € UE) WY,
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-@ao,w)" (RUE) UE,

+4 () Ci ((0 W (D:y‘ @4(1.4 EA) Q‘-z W, Ez)u&

(A12)

o) ULE) <&u2£z>u&}

From this expression one can easily extract -after symmetrizing it- the

second order susceptibility.

In the special case of a plasma without a magnetic field, IESO =0 , that

is .Q = (O one has

-4 Ci _ Ccz) B
U”/"TUT%:"% u4+(Oz-C;912 ?,L A

Where CLC>B' is our notation for a dyadic. This form of U allows the
contraction of the second, third and fourth term of (A12) into one. Thus

we find

) g d
PW. AN gwi:fwz {%({;UMIEZ)U&

+—@u5m£+—@umue

R
(A13)

p B0 (& WE) (&, ULE) UL

(UOJ(D

.CCI)%- [C%: <§4u154)(v&4u2 Ez)+ !(IT; @lqu'z) @2u4 E'l):)u &



This expression which is already symmetrized agrees with the result
obtained by M.V. Goldman for the special case of Xv=4. Some algebra,

however, is required to prove it.
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