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ABSTRACT

Green's function for the emission of radiation from an oscillating point
source within a plasma is examined in the limit of large distances from
the source. The plasma is characterized by its susceptibility tensor 2&
leading to the dispersion relation D(@) , k) = 0. Asymptotic formulae

are derived which state that only those points in k-space contribute to
the far field which satisfy the dispersion relation and for which the
group velocity points towards the observer. The intensity of the emission
is inversely proportional to the Gaussian curvature of the surface
D(W, k) = 0 at that point. The result is generalized for the case in

which this curvature vanishes.



INTRODUCTION

The plasma as a carrier of waves shall be described by its linear suscepti-
bility tensor'z . The electric field shall be designated by E the polari-
zation by P. The Fourier transforms in space and time of A is written as

A. In frequency and wave number space Maxwell's equations take the form

A
*P
E E = = W e )
where Esource designates any externally imposed polarization, while the

operator H stands for
g
B (Q+X)w*- 4 & + €. 8
= = =
We designate the determinant of H by D

D(w,£) = Dek(})

Thus the inverse of the operator H can be written as
-l
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where h stands for the transposed matrix of the minors of H. Thus the

solution of (1) can be given formally as
A A
E--w&P/D
If the source is oscillating in time at a fixed real frequency

P (r,6) = Per)enp (-iwt)

then the electric field in space time becomes

E(f.l’\ - %P(-u’wl‘) Sg(u, r-r')?(!l) o(?r



where the matrix

~ (& . 3
_g;Cw,r) = '(%)3 —])i- orp(itr) & (2)

is Green's function. The integrations extend over the entire space of real
k vectors. They are difficult or impossible to do analytically in most
cases. But, as we shall see, they can be carried out in the far field

limit by means of the methods of the stationary phase and of the residues.

We shall assume that the plasma is only slightly dissipative so that for real

arguments the imaginary part of D is small and negligible except near D = 0.
D=0+

The small imaginary part, F', is essential since it defines the singular

integral (2) such that causality is respected.

Asymptotic expressions for Green's function have been obtained fifteen years
ago by M.J, Lighthilll). The only excuse for this report -preparedin igno-
rance of Lighthill's work- is that the present version is some what more

general and more concise, specially in the treatment of the radiation (or

causality) condition.

More recently these results have been applied to the emission of waves from

. . 2-5 . . . .
antennas 1n magnetized plasmas ) with particular attention to the emission

in the directions of resonance (resonance cones).

ANALYSIS

The integrations implied in (2) shall be carried out in two steps of which
the first is an integration over surfaces of constant A and the second an
integration over & . It is necessary, therefore, to introduce new variables
in k space one of which must be the determinant & 3 the other two may be

chosen at will but may be thought of as specifying the direction of k



t- €4, 4, , D) (3)

This transformation, which may be multivalued, defines a family of surfaces

Zb on which A is constant. In these coordinates the integral (2) assumes

the form
Wl 28 178 explivg) da da
=- 2 122 (T4 exp(icg) 4,
i @ Jaxir ) ° ) *)
where

dg€ o | 4
J- 7y xM‘ v >0 (5)

is the Jacobian of the transformation.

For what follows it is necessary to introduce the metric tensor on the

surfaces Zb

of o
Vup = 34, 4 “[F=nt (6)

and its determinant

%, = ’DJT (%.{') (7)
We shall also need the vector normal to the surface ZA

ok el
n-= % 3/5 24 (&)

and the curvature pseudo tensor

>4
= — N
k‘P - aA‘ )AP (9)

Expressing the increment of A as



La - LA.(?_@ Lo + 28 gx o+ 2 4

we see that

20 o8

D.g QA = 1 (11)
and

?—é . _)_g « 0 d=1,2
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Therefore the vector normal n can also be expressed as

-
n= 28 |28 (13)

- 2% | ot

Since r is large by hypothesis the integral over the variables 81 and s, is

determined by the contributions from those points on which lie in the im-

mediate vicinity of the points on which the phase of the exponential is

stationary

53:(‘3&) =0 (14)

The solutions /),? of these equations define the points of stationary phase
<

'ﬁv‘ 'ﬁ(’s.? N T A) (15)

Obviously r an n are parallel so that we can write

r= "\ -B)Té = 9"7“-(7\) nr (16)

Following the method of the stationary phase we expand _1_{_(81, 51 & ) about

the stationary point in powers of A*-A‘? and write the argument of the

exponential in (4) as

. . )4
igr - n[«S?-r +1r ai 7, (Ar4,)(8 42) o



Remembering (9) and (16) we may write (17) as

¥3 . . o 4
iy = id,r +i wpaO) ¢ Xy G4 A4 1 (18)
so that the inner integral of (4) can be approximated as

(19)

Y- er(hr) | T8 enp [t %y tiandtaog 1] g

Without restricting the generality of the method we now assume that the
coordinates ) and s, are locally cartesian at the stationary point and
that the axies are aligned with the principal directions. In this coordina-
te system the curvature tensor is diagonal and its eigenvalues are the

——

principal curvatures, k; :

- S = K No (uw ' (20)
It will be convenient later to define a new set of curvatures K* which

differ from the old ones only by the sign of N :

K = Sh:yvu(ﬁk) ii‘ (21)

od

This convention uniquely defines the curvatures at the stationary point.

kl is positif if it is convex towards the point r.

The asymptotic value of the integral (19) is according to the method of the

stationary phase

~y
Y-2u{2 T Kk exclitir)/r} -
where
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The expression (22) is to be evaluated at the stationary point.

Fortunately it is not necessary to actually carry out the transformation
onto principal axies. In any coordinate system the principal curvatures

are the solutions of
Dek (K.qs‘ K %AP) =0 (24)
The product of the principle curvatures -which is the Gaussian curvature

Dt (2up)
Det-(4. p)

In Jacobian J also can be brought into a form which is independent of the

squared- in simply

K, K,

(25)

choice of the coordinates /&‘:

-
I- w. 2% _ |22 (26)
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Therefore
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The integral over /A can be carried out by again taking advantage of the
large value or r. The main contribution clearly comes from a small interval

around D=0 . We therefore expand the argument of the exponential

fp.x: {‘.-\: + (g—f)d..ra (28)

where Ej is a stationary point for the phase k+r on the surface 2:; .

Such a point shall be called a conjugate point with respect to r. Thus

Ca’(w.ﬂ =- & 5 zp exe(fy) (29)
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where

i d 7\‘~>o , l} co
. : (30)
0 “e \& ‘:‘ o0

- "f >\i<o , l; >0

S = %K»QXG A) da
A-til;

Since Sj depends on the signs of A& and [, we must determine the condi-

4

tions under which the various combinations of signs may occur.,

Let &)o s Eo be a real solution of the approximate dispersion relation
O=0 . Taking dissipation into account and keeping _1_<_o real and fixed we
find

W= G, ~ ir/(aA/aw) (31)

Since the plasma is slightly dissipative, TIm@ < O, we must necessarily

have

oA
r S 2 ° (32)

On the other hand according to (16)

pYa) ] aa /‘LA

rY R Py

This relation together with the equation for the group velocity

\_/7= - (aA /ag)/(auau) (34)

(33)

provides a link of the sign of V g with those of A and . Indeed

v/ BB e



so that
Wym(4r) = Fpn (A 24) = qopn (AT) 36)
Therefore
i op-(R) 2 d  Yer >o
i) | (37)
{ Yyr<o

When this result is substituted into (29) the following groups of factors

appear

S (V) l (38)

=

12a/28r  (2a/38)r

and

- K, %0 , K> o

—td o= d= U Kk, <o 39
Ki<o K <o

Thus Green's function can be written in the form

(w,x) = 2 7'}, 9 oxelfe) (s0)
8; T 2,: KK |*(2a/2)-r }

where the summation extends over the points kj for which y‘o-r 0.

In other words Ej must satisfy the conditions

0 (w, ‘56' )=0 (41)
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and
3
28 - - ? _DA r (42)
28 dw ~
with
? >0 (43)

The asymptotic formulae (40) fails when at the conjugate point Ej the
curvature K1 K2 vanishes or even when Kler2 is small.
Let 50 be such a point. We assume K2 # 0 and we develop k in powers of

8; and Sy about ko and for A=0 . This development has the form

€=£°+{& AL 4 LT (44)
Since at Eo, K1= 0 we must retain the cubic term in Sy The normal vector
is

1 —
h o= %L«s‘) KA ) 1} (45)

The vector r shall be nearly parallel to the normal n,

rewemie, ¥ a}r 0

where ¢ and 7)“ are small angles. The conjugate point is given by

/S'a.'ai‘\/—g X

*

(47)

)<

Thus there are either two conjugate points or none depending on the sign

of (Fig. 1). Assuming L% }O the curvatures at the conjugate points
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E‘ =t z(Lq)/" (48)

while the value of k, *r becomes

(49)

where the upper sign applies to the point in which K1= 9\‘0{»\(\) R\

is positive.

Instead of (19) the integral Y has now the form

Y - explidor) (34), S“‘v[i w9 (- L dA o

x SM{:[I'?CY“ (N ('3.41. -1 sz:)Y‘] AA"- (51)

The integral over s, can be expressed in terms of an Airy function A(x)

defined by

A = S exyp (tx~ é"/’s) Akt (52)

<V +Y,
with the integration going from i ©0 toi "00 ., It can also be defined

by the equation A'- xA = 0 with the initial conditions

A= 3% (-%)! A(o) == (9 ?/‘( )l (53)

3
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For large arguements the following asymptotic expressions are valid

~ Y Vif(f o 2%

= =Y Y
A(x) = T x 'W\"[" %"l] ) X2 (55

The integration over s, as well as all further steps of the analysis

can be carried out exactly as in the case K1 # 0 and lead to the result

% _ i 2' rv‘ A(" Vs 1/3 )%Y’[ _or-ﬂi]
=o (l‘n)"’l P = lLllh th \'h. ()A/ag), r (56)

(/]

where
i R 4 K, >0
P i“’/z ‘4 K1 <0 (57)

The cube root in the argument of the Airy function must be interpreted

as

\ /3

L® - %‘lyu(l-) |Ll‘/3

(58)

The subscript O indicates that the expression must be evaluated at the

point in which K2= 0 and not at the conjugate points.

The emission of waves now depends very strongly on ‘the angle (f .If L >o
is positive, the field oscillates as a function of q . This is due to the

interference of the emission from the two conjugate points lying in the
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vicinity of Eo' If LY is negative there are no conjugate points and the

field decays exponentially as a function of ¢ .

For large values of r with LY fixed and positive the asymptotic expres-
sion (54) for the Airy function can be used. The two terms of the asympto-
tic expansion represent the contribution from the two stationary points.

The exponential factors coming from the Airy function
<! 3
r Y 't}
exp (i $LY V‘) (59)

combine with the exponential of (56) to give

. h ) .2 % - )
. — I - = €-°r
mp(x§°r+ale exy a3L %" r wr(ua_ (60)
according to equation (49). Making use .of (48) asymptotic form (40) can be
recovered.
RESULTS

Green's function is an integral over all of k-space. At very large distances
from the source, however, only a few isolated points and their immediate
vicinity contribute to the emission. These are those points Eﬁ which satisfy
the dispersion relation [&(haj'ﬁd)=1)and for which the group velocity points
in the same direction as the vector r and which we call conjugate points

with respect to r.

The intensity of the emitted radiation is inversely proportional to the

total curvature of the surface A=0 at the conjugate point.

If a conjugate point lies near a point of zero curvature a more accurate
asymptotic form must be used involving an Airy function. In this case the

emission varies rapidly with angle showing a behaviour which is similar
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to the diffraction of light on an edge: there exists a plane which sepa-
rates two domains in one of which the intensity oscillates as a function

of angle while in the other it decays exponentially. The field strengths

-5/6

decrease as r with distance from the source.
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Fig. 1: Stationary points _1_<_+; k_ in the vicinity of

a point k of zero curvature Kl = 0.



