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MATHEMATICAL PROBLEM

Stability problems in physics or engineering such as those solved in [ﬁ,Z,%]
. -» . .

lead to eigenvalue problems of the type Ax'=<) Bg, where B 1s positive

definite and A can either be real symmetric or hermitian. Both matrices have

a band structure.

PROGRAM DESCRIPTION

HYMNIA is a band matrix package which solves the above-mentioned eigenvalue
problem by the method of simultaneous inverse vector iteration [ﬁ]. Only
the eigenvalues with lowest absolute value are obtained directly, but with

an eigenvalue shift ‘Ao it is possible to get any of them.

The advantage of HYMNIA, which is also the name of the CDC main program

that tests the two main subprograms*A:SIVIt> and LCSIVI>» , is that all
operations are performed within the half band width m of the one-dimensionally
stored matrices A and B of order n. By decomposing the matrices (ﬂvn-m2 oper—
ations) before the iteration, only a number of point operations proportional
to n-m has to be performed for the iteration part. The NEG facility gives

the number of negative eigenvalues for the shifted problem and thus enables

us to know which eigenvalue has been calculated.

£ SIVIY not only solves the eigenvalue problem, but can also be used simply
to decompose A and/or B (Section 2.2). The cases of singular A and non
positive B are detected and diagnosed. Convergence information is given by

the parameters NCONV and CONV. Typical running times are given in Table 4.

*
References to subprogram names are in angular brackets & > . Those with
prefix '"C'" refer to the hermitian case and use complex arithmetic.



UNUSUAL FEATURES

The test program HYMNIA reads input data using NAMELIST, which is not
STANDARD FORTRAN but is available on most computers.

Another non-standard utility is the CDC random generator RANF called by
the subprograms £ SIVI > , £ CSIVI > , L ORNOS> and £ CORNOS 2.

REFERENCES

[1] r. Takeda, Y. Shimomura, M. Ohta, M. Yoshikawa
Phys,Fluids 15, 2193 (1972)

[2] K. Appert, D. Berger, R. Gruber, J. Rappaz, LRP 83/74
EPF-Lausanne, CRPP, submitted to J.Comp.Phy,

[}] K. Appert, D. Berger, R. Gruber, K.V. Roberts

Computer Phys.Comm. (previous paper of this issue)

[é] J.B. Wilkinson, The Algebric Eigenvalue Problem,
Clarendon Press, Oxford, 1965



1. INTRODUCTION

LHYMNIA 2> is a main program which tests a band matrix package. The

package solves the eigenvalue problem
-3 -
Ax = A Bx (1)

by the method of simultaneous inverse vector iteration [},2,3,%] CSIVL > .
The matrix B has to be positive definite and real, and A must be either

real symmetric & SIVI }» or hermitian & CSIVI D> . An inverse vector-iteration
converges to the lowest eigenvalue 2.in absolute value and its corresponding
elgenvector . In order to obtain r eigenvalues lying near )% and their

corresponding eigenvectors, we perform an eigenvalue shift of problem (1)

~

AR = A BX (2)

where & = A - )% B and ?i =A- 7\0. When the eigenvalues are found by

doing such shifts sequentially one speaks of a Sturm sequence Oor a bisection
method. Such a method has been used in [ﬁ] but takes too much computing time.
A better method is to solve (2) by an inverse vector iteration which takes
into account the Sturm sequence [%] by the parameter NEG, i.e. the number

of eigenvalues less than Xo' The different ways of using &SIVI 3> are

given in Table 1.

HYMNTA has been designed as an eigenvalue problem-solving package for MHD
stability problems. The one-dimensional MHD stability code THALIA which
calls £SIVI2> is described in the previous paper [ﬁ], while the two-
dimensional case which uses &CSIVI>» is under construction. HYMNIA will
later be extended to include non-symmetric eigenvalue problems, e.g. for

studying resistive instabilities in a plasma.

In section 2 we describe the mathematical method for solving (1), in sec-



tion 3 the numerical solution with tests and timing information, while
section 4 contains some useful instructions for the user. The appendix

gives a list of subprograms and the input/output parameters of L SIVI>.

Note that in the mathematical descriptions we only treat the hermitian
case, which of course includes the real one. Cross-references to the
real subprograms are given; the corresponding subprogram for the complex

case contains a C preceding the subprogram name.

Table 1: Cases for which &SIVID> can be used

Case NTYPE

Solve eigenvalue problem (A -AB);(. =0

1 0

H T
2 1 Decompose A = L DL and B = RR
3 2 Decompose A = L DLH
4 3 Decompose B = RTR

2. MATHEMATICAL PROBLEM

2.1 Shift of the eigenvalue problem

To find all the eigenvalues a shift of problem (1) has to be performed
&L SHIFT ). We then solve (2) by an inverse vector iteration [1,2,3,4].
The choise of shift 20 has to be done carefully, as follows from a

simple convergence consideration:

Let Al and 12 be the two eigenvalues nearest to %o with \%1- ')\0)4112-x0].



Then the convergence rate is given by w=lA1- 'Ao ‘/}%2- Aol [7] )o

has to be chosen by the user a priori in such a way that W becomes small.

2.2 Decomposition of A and B

2.2.1 Decomposition of A

Let A be a regular hermitian band matrix. Whenever all principal sub-

matrices of A are regular, a unique decomposition

A*LDLH (3)

can be performed into a left hand side triangular band matrix L and its
. H .. .. .
transpose and conjugate L containing unities on the diagonal, together

with a diagonal matrix D.

This is rapidly checked by counting the independent matrix elements on
each side. An example of such a decomposition is given in section 3.2.1.
2.2.2 Decomposition of B

Let B a real symmetric and definite positive band matrix. A unique, so-

called Cholewski-decomposition

B-= RTR (4)

can be performed into a right hand side triangular band matrix R and its

T . .
transpose R . Note that (4) is a special case of the more general decompo-
sition (3).

2.2.3 Rounding errors

It is well known [b] that elimination processes such as (3) and (4) give



rise to accuracy destruction which is proportional to the number of point
operations in the elimination. In the band matrix case the losses of
numerical accuracy in a decomposition are proportional to n-mz, where n

is the matrix length and m the band width. The proportionality factor can

be very high if the pivot for the elimination is badly chosen, but in

order to preserve the band structure of our matrices there is no possibility
of choosing the pivot. This disadvantage is not too severe here, however,
because in most of the physical problems to be studied the matrices are

diagonal dominant.

Whenever decomposition errors are too high it is always possible to intro-

duce in the code a backward analysis of the Wilkinson type [7,8].

2.2.4 Discussion

In order to solve (1) one solves another eigenvalue problem

LDL"? =2RTRX . 6)

For a simultaneous iteration it is necessary to know which vectors have

to be orthogonal, that is one has to construct an eigenvalue problem

A X =2A1x% 7
S

where I is the identity and the u's are orthogonal for a hermitian matrix

A .
s

Let us construct (7) by starting from (l). Using the decomposition (4),

(1) can be written as
> Tp2
3 = AR R (8)

Introducing a new eigenvector

- 5
u = qk X 9)



and multiplying (8) with (R—ljrfrom the left one obtains just (7) with
A= (R AR”
= ‘ 10
s (10)

The new problem (7) has a big disadvantage: A is a full hermitian matrix,
. . . . -1 .

coming from the fact that the triangular inverted matrix R 1s also full.

Nevertheless we have learned something. We know now that we have to ortho-

. > -3
gonalize the vectors u = RX.

2.3 Number of negative eigenvalues

After the decomposition (3) we know how many eigenvalues are less then

the shift )o' This follows from Theorem 1:
Theorem 1: The number of negative eigenvalues of the problem (1) is equal
to the number of negative terms of the diagonal matrix D in the

decomposition (3).

Proof ¢ To prove Theorem 1 we use Sylvester's inertia theorem EPJ:

"The number of negative eigenvalues of a Hermitian matrix A

. . H .
1s unchanged after any transformation TAT » where T is regular'.

Theorem 1 follows at once. With (3) and (10) A, D and AS have
the same number of negative eigenvalues. It is now evident that

D contains the same number of negative eigenvalues as problem (1).

The possibility of knowing the number of negative eigenvalues allows us never
to miss one. Whenever, for example, the number NEG of negative eigenvalues is
0 we know that the given converged eigenvalue is really the smallest one.
With this NEG facility we could use £SIVIS to find the eigenvalues by a
bisection method, i.e. by choosing e.g. two different shifts 11 and ‘kz

one knows how many eigenvalues lie in between (INEGZ - NEGI'). By cutting

the eigenvalue-intervals into two consecutively, one could isolate one eigen—



value after the other (Sturm sequence). This method is however not recom-
mended because it is time consuming: The number of time steps is propor-
tional to the number of interval-cuts, to the matrix length and to the

square of the band width.

2.4 Starting vectors

The iteration process
H - Tq2
LDL x,,, =R Rxg (1)

> _ 9 .
where the r vectors uk= ka (9) are orthonormalized by & ORNOS 2» , must
... -» ...
be started from a set of initial vectors Xo' These 1initial vectors have
to be linearly independent, and in £ SIVID> we create them using a random-

number generator.

2.5 Iteration for Eigenvectors

2.5.1 Iterative process

To describe the iteration we define some new vectors:

- -
Uy = (ka (12)
- T

= R'u
Yk R K (13)

Ho

-
Yaa = DL X4 (16)

K+4 (15)



The iteration process (11) is then performed in the following way:

- >
1. Multiply u,K =KRXK (16)
~>
2. Orthonormalize llk (17)
- T-
3. Multiply VK = (K UK (18)
.Y -
4. Solve Lka =V (19)
= =
5. Solve Dwyyq = yxu (20)
-
6. Solve LH?K'P‘ =Wk.(,4 (21)

2.5.2 Iteration stop criterion

The iteration stop criterion is applied to all components i of the ortho-
. > .
normalized vectors u (9). Iteration stops when

«) @) Vi

K-H_Giuk < € =4...,¥n P (22)

where "= sign (A- RO). In LSIVI> , we do not know a priori if k—)\o
is positive or negative. We find.c’by working out the sign of the biggest

component of;? In the code C,is denoted by EPSCON.

k+1°

2.6 Eigenvalues

The iteration process (16-21) furnishes the r elgenvectors g. To find the
eigenvalues one multiplies (1) by a general test vector?H and divides:
- 2l
T @
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(23) is well known as the generalized Rayleigh Quotient [1]. The best

. > . . - . >H 9 . L.
choice for z is the eigenvector x itself: x Bx 1s then always positive.

Sometimes (when the eigenvectors did not converge) it is convenient to
choose ? = 2}, i.e. unit vectors for all components. The r "eigenvalue
vectors" which are obtained then contain a lot of information about the
location of the eigenvalues, because a non-converged eigenvector consists

of a mixture of neighbouring modes.

2.7 Timing
2.7.1 Timing for decompositions

Decompositions (3) and (4) need a number of point operations proportional
to n-mz. Let t1 be the time to perform a point operation for (3) and (4)

together. The total computing time T, for both decompositions is then

1

1
T4 =n-m-t, (24)

t will be found empirically in section 3.5.

2.7.2 Timing for iteration

The matrix multiplications (16) and (18), the orthonormalization (17) and
the backward substitutions (19), (20) and (21) all take an amount of comput-
er time proportional to n * m * NKV %x NIT, where NKV = r is the number of
iterations used to find them. Let £, be the time used to perform one point
operation for each step. The total computing time T, for the iteration is

2
then given by

Tzz n-m.NKV‘N\T' t’z_ (25)

t, also will be found empirically in section 3.5.
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2.7.3 Discussion

The total computing time T is given by

. 0 4
T=Ty+Ty = nom: (m-toe NKVNIT 2 (26)

We shall see in sectiom 3.5 that ty is about 4 times bigger than ty When
the band width m is not too high the second term in (26) is mostly bigger
than the first one. In this case it is not convenient to iterate on more
than one eigenvalue at once, because one increases the number of itera-
tions NIT by increasing NKV. Simultaneous iterations on several eigenvectors
have to be done for degenerate cases where one has to construct a subspace

for the eigenvectors.

3. NUMERICAL SOLUTION

3.1 Notation

Fig. 1 shows on the left-hand side the usual notation for an element
a(i,j) of a full hermitian matrix A. In the middle a twice subscripted
half band matrix is presented. Similar elements in the twice subscripted
matrix and in the full hermitian matrix have the correspondence
Lt) =L
. N (27)

I e

where b denotes band.

In LSIVI> the half band matrix is one-dimensionally subscripted by k as
shown in the right hand side of Fig 1. The matrix is stored row by row. The

correspondences to the full and the twice subscripted matrix are
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k= (-4)- (m-4)+y -
Qi = (ik;'4) ‘M *‘(JE) .

One-dimensional notation saves time in general because it is usually
possible to replace the address calculation (multiplication + addition
for a twice subscripted array) by a simple addition. Some notational
problems rise when we have to handle a whole row or a whole column of a
full hermitian matrix in a half band. Fig. 2 shows how a row of a full
matrix (upper left) is represented in a band matrix (upper right). The
left hand side part (always relative to the diagonal) is stored as its
complex conjugate ascending from the diagonal, whereas the right hand

side part follows (28).
Similar problems have to solved when we want to treat a column. The

upper full matrix part corresponds to the ascending elements and the

lower part to the complex conjugate of the row (Fig. 2).

3.2 Decompositions

3.2.1 Decomposition of A

. .. T
We explain the decomposition (3) of a real A = LDL by means of an example.
Let us choose a 4 x 4 matrix A. The problem is to calculate the 1ij's and

d.'s of the matrices L and D respectively.

a7 3, 233 O
12 %22 %23 4
A = a a a a (29)

13 723 33 34

24 34 T44



—
(oW

1271
LDL =
13d1

A (29) and LDLT

+
2372
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23

24

0o o
0o 0

1 o

1, 1

0o 0

0o 0

d; o0

0 q,

L34
112113‘11*123‘12
113d1+123d2+d
Lyslyzdy*tly,d,

1

1

1

24d2

2312492%13,

2
249"

1

2
Ly,dq7

presented in Table 2 (only the upper symmetric part is treated).

d

3

4

(30)

(31)

(32) now have to be identified. The rule of calculation is

(32)
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Table 2: Decomposition of A

Variable definition Stored in Loop Index
1.4, =ay a k=1
2. 1 = ajglay ap £-2,3
3.3y, T Ay T 315 11
bedy3 T 359 7 31331,3)
5. a = a - a 2 a

337 %337 %13 %11
6. d2 = 322 322 k =2
R T VAT, 1) X
8. a = a - a 2 a

33~ %33 7 %23 %22
PeA3, T A3, 7 35,3),3),
10.a,, =3, " azi %22
1. dy = a,, ay, k=3
12. lyp = agp/ay, a3p L-.
13- a, =3, - 332 433
14. d4 = 344 a44 k = 4

This algorithm assumes that A admits a Gauss elimination. Whenever this is
not the case, i.e. when a pivot becomes O, an automatic shift of the eigen-
value spectrum as described by (2) is performed. Not that all calculations

are performed within the storage area of the band matrix A itself (Fig. 3).

When A is singular, at most one of the pivots vanishes. The subprograms

< ALDLT > and &CALDLT > consider a pivot as zero when in its further
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treatment by the rectangular rule, for example at operations 3,8 or 13,
the absolute value of the diagonal element is destroyed relatively to

EPSMAC * N * Mz, the relative machine accuracy which for a CDC 6500 in
[p] was set to 10—10

singular the variable NSING is put to -1 (NSING = 0 for regular A), and

When a principle submatrix of A is found to be

execution returns to &< SIVI > or & CSIVI > where the two diagnostic

messages

**% PRINCIPAL SUBMATRIX OF A IS SINGULAR #*#%

(33)
*%% AN AUTOMATIC SHIFT HAS BEEN PERFORMED #*#%*

are printed out. An additional automatic shift of 7\) = IOO*EPSMAC*N*M2 is
then performed and problem (2) is subsequently solved. NSING is reset to

Zero.

3.2.2 Decomposition of B

The so-called Cholewski-decomposition of B is performed in a similar way
to the decomposition of A (example in Table 2). All operations in & BRT>
(there does not exist a complex version) are done in the array itself. As
discussed in 2.2.2. B has to be real symmetric and definite positive. B

not positive gives a message
*%% MATRIX B NOT POSITIVE *#% (34)

and the eigenvalue problem is not solved.

3.3 Iteration subprograms

The iteration (16) - (21) is performed by the subprograms in Table 3.
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Table 3:
Operation Real subprogram Complex subprogram
- -
. = URX CURX
1 uk R xk
2. ON <a’k) ORNOS CORNOS
3. 3 = 2 VRTU CVRTU
k k
4. LY. .=V LYV CLYV
k+1 k
-5 -
= WY CDWY
2o DT Yin D
- -»
. = LTXW CLTXW
6. L X417 Ve

3.3.1 Orthonormalization

The orthogonalizing process uses Schmidt's orthogonalization method [2].
The second vector is orthogonalized relative to the first one, the third

relative to the first and the second one and so on.

For a degenerate case it is necessary to construct a vector subspace in
which the vectors are orthogonal. Whenever vectors are linearly dependent
we choose another one at random and orthonormalize it afterwards. Testing

for dependency is done in a similar way to the test for singular A.

3.3.2 Beckward substitution

Operations (4. - 6.) in Table 3 are simple backward substitutions. In 4.

we start the resolution at the top of the vector'??+l and go downwards.

The number of characteristic operations is proportional to n*m. In 5. the
resolution is trivial. Only n operations have to be done. The last backward

. . +
subsitution 6. starts at the end of vector x and solves up to the top

k+1
of the vector.
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3.4 Tests

The main program HYMNIA is a test program for the band matrix package.

HYMNIA contains 4 tests:

Test 1 / Test 2 The eigenvalue problem
3 6 0 1 0 0
6 10 -2 2 =) o 1 o | * (35)
0 =2 -2 0 0 1
is solved, whose exact solution is
A [7;‘ (’14"\/265 ))O)% (’M_VZGS >] 36
Tiay 6X, _ ¥y
XM= |- = 1 T ;! a7
with
2 2
2 @2+2) (3-%)
X = and ”)? ”: /1 .

2 U6-408A+29 -2 A3 +72Y

For the case k = 0, (37) becomes

§T= (*2\/—-2—-‘ ,J:Z: ;‘J:Zj) . (38)

TEST 1 does an eigenvalue shift with )o = 10 in order to obtain the

largest eigenvalue ‘A3 = 13.6394,

TEST 2 is given as TEST RUN OUTPUT. The shift value is chosen to be
7\0 = 0 and matrix A becomes singular. An automatic shift with 100-EPSMAC*

n*mZ*B is performed afterwards and the shifted problem (2) is solved. The
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two simultaneously iterated eigenvalues, lowest in absolute value, A1= 0

and 7\2= - 2.63941 are obtained.

TEST 3: Matrix B is not positive in this test.

TEST 4: The complex part of HYMNIA £CSIVI 2> which treats a hermitian

matrix A is tested by the problem

-8 -4-121 ~12+41 0 8 2 -1 0
-4+121 -5 1-121 6+31i - 2 12 4 -2
R =A T 39)
~12-41 1+121 12 ~5+111 -1 4 11 1
0 6-31 -5-111 7 0o -2 1 6
The eigenvalue near ‘%b = -3 and its corresponding eigenvector are
A= - 2.57752
;T = (.473-.6251,-.442+.0081,.4-.0671,.091+.1291) . (40)
3.5 Timing
Separate timing procedures (26) have been carried out for real and for
hermitian A. For real A the timing has been performed with matrices n = 303

and m = 6 (FIN(OPT=1)-Compiler). For hermitian A the matrix dimensions

were n = 195 and m = 22 (RUN-Compiler). Table 4 gives the measured computing

times for NKV = 1.

Table 4: Timing

Dimension Type of Decomposition . NIT Iteration

of A, B A time 1 time t2

n =303, m=26 real 0.44 s 40/US 12 3.45 s 160)”8
n =195, m = 22 jhermitian 4.6 s SO/us 40 1 40.7 s 240)45
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For a CDC Cyber 7326 the timing formula (26) becomes for real A

T = n*m*(40%m + 160*NKV*NIT) Ms (41)
whereas for hermitian A (26) is given by

T = namx (50*m + 240%NKVANIT) )us (42)

We see that in both cases the iteration time is in general bigger than

. . 2 . ..
the "mathematically important" part n.m coming from the decompositions.

4. INSTRUCTIONS FOR THE USER

4.1 Choise of EPSCON and EPSMAC

The iteration stop parameter EPSCON should not be chosen too small. In our

application [6] we put as default parameter EPSCON = 10—4.
EPSMAC is a computer-dependent parameter. For a 60 bit word machine, for

example, the last significant bit has a relative error of about 10—13. In

(6] EPSMAC has been chosen to be 10”10,

4.2 Choice of 7\0

The choice of the shift 20 has to be done carefully. For example in

order to find the lowest eigenvalue, (in [6,1Q] the lowest negative eigen-
value denotes the most unstable mode), one has to know approximately to
look for it. If nothing is known about the position of the eigenvalues it

is preferable first to try with 20= 0 and only to look at the number of
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negative eigenvalues NEG. A negative ‘ko will then decrease NEG, and the
best choice of xo to find the lowest eigenvalue is that which just makes
NEG = 0. This method of varying ‘AO is well known as a Sturm sequence,

. . . . 2
for which the number of operations is proportional to nxm *NIT*NKV.

4.3 Choice of NKV

In most problems it is convenient to choose the number of simultaneous
eigenvalues NKV = 1, This follows from the considerations in 2.7.3 and
in 3.5, where the timing was discussed. However for a degenerate problem,
where a subspace of eigenvectors has to be constructed, a simultaneous

iteration over all degenerate modes has to be performed.
If one does wish to iterate on several eigenvalues for a non-degenerate

case, the convergence properties become better when one iterates over

more eigenvalues than are really required [4].

4.4 Choice of NITMAX

NITMAX, the maximum number of iterations, should not be too high. Increasing
NITMAX might make it necessary to increase the DIMENSION declaration of the
array CONV (appendix), which shows how the vector displacement converge
during the iteration process. More precisly CONV(k) contains the sum of the

euclidean norms of the NKV vectors

NKV S 2
CONV (k)= 2 ”dkﬂ“ w * agn A=) (43)
Y=

where k is the iteration counter. NCONV, another output parameter from
& SIVI> , contains the number of converged vector-components which will
by identical to the total number of components when NIT (= number of re-

quired iterations) is less than NITMAX.
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4.5 Unusual features of the program

The test program HYMNIA reads the data in by the NAMELIST facility, which

is available on most computers. If NAMELIST cannot be used the statement
READ (NIN,TEST) (44)

should by replaced by an ordinary FORTRAN READ statement which includes

all variables listed in namelist TEST.

The subprograms & SIVI > and {ORNOS > call a system routine RANF(N), where
N is a dummy argument. RANF is the CDC random number generator. If such a
routine of the name is not available the user should introduce a correspon-

ding version of his own.
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APPENDIX

HYMNIA : Subprogram Names and UPDATE identifiers

NAME UPDATE Number of TITLE
identifier arguments

SIVI MRO1 10 Solve A%x = A %BAR

SHIFT MRO2 4 Shift by A_

ALDLT MRO3 5 Decompose A = L*D*LT

BRTR MRO4 4 Decompose B = R*RT

URX MRO5 6 Multiply 3= R&x

ORNOS MRO6 4 Orthonormalize &

VRTU MRO7 6 Multiply ¥ = R %g

LYV MROS8 5 Solve LAy = ¥

DWY MR0O9 5 Solve Daw = ?

LTXW MR10 5 Solve Li¥% = w

UBX MR11 6 Multiply U = B¥w

NORM MR12 3 Normalize %

CSIVI MCO1 10 Solve AxX = A xB¥x

CSHIFT MCO2 4 Shift by 3\0

CALDLT MCO3 5 Decompose A = L"'&'D*LH

CURX MCO5 6 Multiply T = R&¥

CORNOS MCO06 4 Orthonormalize fig

CVRTU MCO7 6 Multiply ¥ = Roa

CLYV MCO8 5 Solve Liy = ¥

CDWY MC09 5 Solve Diw = 3

CLTXW MC10 5 Solve LH*;: =

CUBX MC11 6 Multiply @ = Baw

CNORM MC12 3 Normalize R



SIVI : Argument list

Argument

v+ ]
Oy« v]
[vkv * x]
(kv * ]
[xxv * x]

[oer]
AL (1)

CONV [NrTMAx]
EPSCON

?<CI><U$CF'

EPSMAC
NPIN (7]
NPIN (1) = O
NPIN (1) = 1
NPIN (1) = 2
NPIN (1) = 3
NPIN (2) = N
NPIN (3) = M
NPIN (4) = NKV
NPIN (5) = NITMAX
NPIN (6) = NSAVE

NPIN (7) = NOUT

NPIN (5]
NPOUT (1) = NEG
NPOUT (2) = NIT

NPOUT (3) = NCONV
NPOUT (4) = NPOS=0
NPOUT (4) = NPOS=-1
NPOUT (5) = NSING=0
NPOUT (5) = NSING=-1

[Pimensioé]
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TYPE

PP EREPEEEEREEER

Lo B D T e T e T T o TR o B o |

IA

=

-

Input (I)
or output (0)

1/0
1/0
0
0

H oM =2 A H O H O H O H O O

o O O o H

o o o o

Title

Matrix

Matrix

A of problem (1)
B of problem (1)

NKV eigenvectors

"Eigenvalue" vector

Storage area

NKV eigenvectors

Shift A_

Convergence properties

>
Convergence rate for x

Computer accuracy

Input quantities:

Vector

iteration

Decomposition with shift

Decomposition of A

Decomposition of B

Matrix length

Half band width

Number

of iterated modes

Max. number of iterations

Channel number of saving

matrix
Output

Output

channel number

quantities:

Number
Number

Number

of ;\‘:)b

of iterations

of converged components

components

B is positive

B is not positive

A is regular

A is singular
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FIGURE CAPTIONS

Fig. 1: Matrix notations
Fig. 2: Storage problems (H denotes the transposed and complex conjugate)

Fig. 3: Decompositions of A and B are performed within their storage areas.
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