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is shown that a large amplitude ordinary wave is subject to a decay insta-
bility as well as a modulational instability. The latter corresponds to a
modulation of the pump amplitude, and the excitation of a long wave length
hybrid wave. Characteristic quantities, such as the threshold intensity and
the maximum growth rate, are calculated for various cases. In the limit of
a vanishing magnetic field, the results for stimulated Raman and Brillouin
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1. Introduction

The development of high power lasers has spurred a great deal of interest in
the parametric instabilities of a plasma subject to intense electromagnetic
radiation. Many authors have explored the possibility of plasma heating by
means of powerful laser beams and have tried to explained various observed
phenomena, such as anomalous reflection and enhanced absorption of laser
light in a plasma (see, for example, DuBOIS 1972). Most of these investiga-
tions, however, were limited to the case of an unmagnetized plasma. It is
only recently that some attention has been devoted to the more interesting

case of a plasma immersed in an ambient magnetic field.

Among the great variety of resonant modes in such a plasma, those propagating
perpendicular to the external magnetic field have received a special interest.
For instance, STENFLO (1971) has considered the coupling between ordinary
waves in a drifting plasma while CANO et al. (1969) have examined the
interaction between extraordinary and ordinary waves. In addition,

several authors have investigated the interaction between extraordinary waves
(DAS 1971, PORKOLAB 1971, TZOAR 1969), and recently KINDEL et al. (1972) have
shown that effective heating of both ions and electrons can be achiéved by

pumping the plasma with a lower hybrid wave.

In this paper, we study the coupling between ordinary and hybrid waves, con-
sidering the latter as quasi-electrostatic. Within the well-known parametric
approximation, it will be shown that a large amplitude ordinary wave can
simultaneously excite another ordinary wave and either an upper or a lower
hybrid wave. Besides this decay instability, we also observe a new type

of instability, namely a 'modulational” instability, which results in a
modulation of the pump amplitude and the excitation of a long wave length
hybrid wave. Characteristic quantities, such as the threshold pump intensity

and the maximum growth rate of the excited waves, are calculated for various

cases.



The plan of the paper is as follows. In Section 2, we derive the general
coupled equations for ordinary and hybrid waves. In Section 3, the so-
called parametric approximation is used to obtain a linearized system
for the waves under consideration. Sections 4 and 5 describe the excita-
tion of upper and lower hybrid waves, respectively. Effects of collisions
are considered in Section 6, and finally, the results are discussed in

Section 7.

2. The Coupled Equations

Let us consider a homogeneous, unbounded plasma immersed in a static mag-
netic field'go = Bo.gz (E; is the unit vector along the z-axis). The
steady state of the plasma is characterized by a particle number density
n_, an electron thermal velocity V;, an ion thermal velocity Vi, and a
zero drift velocity. Within the fluid description, the waves under consi-

deration, i.e. the ordinary and hybrid waves, are governed by the follo-

wing equations

(1a) . R v A € Y = 0
at
- — — - - - -
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where qj, mj, n. and Vj stand for the charge, mass, perturbed number den-
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sity and velocity of the Jth specles, respectively. i and B are the electric

-
and magnetic fields of the ordinary waves and € is the electric field of

the hybrid waves. 6’ is a numerical factor.



Examination of the non-linear terms of Eq.(l), reveals that there are two
types of non-linearity: the first (e.g. V} xig, nj'vj) corresponds to the
coupling between hybrid and ordinary waves while the second (e.g.iZ(nj Vj),
nj ¥ n.) is due to the self-coupling of the hybrid waves. Since our purpose
is to study the interaction between hybrid and ordinary waves, non-1linear

terms of the second type will be neglected.

For waves propagating along the x-axis, Eq.(l) then reduces to

(2a) N+ T d Ve = 0
It 2x

@ e - 4 (E.VB) . y¥m = - 4B
ot » N, 9x ™

(2¢) Y, 4+ 4 VB = o
ot ™

(2d) V, . 4 E = V. (4B _ 2V ) ,
2t ™ e / x

where we have omitted the subscript j, referring to either the ions (i) or

the electrons (e).

After some algebra, the above system can be expressed as

(3a) My - Y VEXme e w4 (mi-me) = (M )z"‘s.?_(vz?_vz}
by tg DLJ. "y I )x

(3b) e~ VeV, Py o+ wi,Te + W (Me-mi)z m, 2 (Y ALY,
at* sx* Ix o=

G PV - Ve (Wt W)V 2 - Whe Yy (rer e )
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where 1UP~ and w_. are the plasma and cyclotron frequencies.



By taking the Fourier transform in space and time of Eq.(3), and neglecting

terms of order mo/mi compared to 1, we finally obtain

(4a) 9(«»,@) NnNwW,k) = _ v, & V(w', k') V(w.w', k-k') do’ dk’
Ltv;‘

(4b) D (w, ®) Viw k) = Whe / Vw k') n(ww' k-k) de’ di’
n,

where we have introduced the notation

(4c) Dw,R) = 1+X; + X,
Ke (1+Xd)
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and where the quantities n(w,k) and V(w,k) are the Fourier transforms of
the electron density (induced by the hybrid waves) and the electron trans-

verse velocity (induced by the ordinary waves), respectively.

One notes,unfortunately, that the above system as such is still untractable.
However, in certain cases, it is possible to reduce the convolution inte-
grals of (4) to finite sums, and to obtain a coupled system in the so-called

parametric approximation.

3. The Parametric Approximation

Here, we consider a plasma subject to a large amplitude ordinary wave. We
assume that this wave is externally-driven and acts as a pump of constant

power feeding energy into small disturbances inside the plasma. We then



determine the conditions under which these disturbances will grow in the

form of an ordinary and a hybrid wave.

-y
Let V; and ¥ be the velocities induced by the pump and by the perturbed

fields, respectively, we now assume that

A

- — -
(5) V = Vo + v with v &

For a monochromatic pump wave,

—

- - .
(6a) E, = 2E, 8 sim(wt-kx) ,
the Fourier transform of the total velocity is

(6b) V (w, k) V, [ §(w-w,)d(k ko) + S(wrw,)o(k+k)] + v(w k),

I

with

Vo = e E’
me W

(6c)

On substituting (6a) into (4a-b) and keeping only terms of first order in

Vo, we readily obtain the following linear system:

(7a) Blw,k) n(wk) = - v, V, k? [v(w- w,,kR-k) + V(W W, e+ k.)]
w';‘

(7b) D(w,k) vV (w, k) w‘;,,V. [‘w(w-w.,k-k.)+ n(w+w, R+ k.)] )

1]

Mo

This equation shows the typical properties of the parametric coupling process:
each component n(w,k) is coupled to v(w % c,, kt+tk, ), which in turn couple
with n(w,k) and n(wtaw,,K k + 2k, ). One thus has an infinite set of linear
equations coupling various Fourier components at beat frequencies w t b‘ﬂ%

and wave numbers k + Nk, (N =1, 2, 3,...). However, if n(w,k) is a reso-~



nant response of the plasma, n(w# Nw, K kX Nk, ) will usually be off reso-
nance and the corresponding amplitudes will remain negligibly small com—
pared to those of n(w,k). Within this approximation, Eq.(7) can be reduced

to a closed system for n(w,k), V(w-w,  k-K, ) and v(wswy, ktky):

(8a) Dw,k) n(w k) = - 7Vl [ v(w-w, k-k)sV(wiw, kek)]
4»;¢
(8b) Dlwtw, ktk)v(witw, ktk) = wWheV m(wk)
n

From Eq.(8) we deduce the following dispersion relation

(9a) B(w, k) = -V (A, 1),
pt D~

where we have introduced the notation

(9b) D= D(wztw ktk)

In the following sections, Eq.(9a) will be solved separately for the exci-

tation of upper and lower hybrid waves.

4, Parametric Excitation of the Upper Hybrid Wave

For the simultaneous excitation of an ordinary wave and an upper hybrid

wave, the dispersion relation (9a) becomes

(10a) w? _ w'z_‘ = w;,_kz\/,z ( Dl* + ;_ )

where w, is the well-known upper hybrid frequency, i.e.

1

(‘L&J";,c + W, + Y k'R ) &

(10b) w, e



Examination of (l0a) shows that the coupling process is most effective

under the resonant condition

(11a) £’y = 'wH + 0 ,

where {1 is the frequency of the ordinary wave at the shifted wave

number k. k,

Taking account of the linear dispersion of the waves under consideration,

this condition is fulfilled by two hybrid waves with

kK = k, * k,[t- (2w, w —wﬁ)]yz

<*k?

(11b)

In the neighborhood of these values, it is easily seen that, in general ,

1/D+ is negligibly small compared to 1/.-, and Eq.(10a) can be transformed

to
2

(12a) (w- w,)" - §(w-wy) + K = o
where we have introduced the notation
(12b) S = w- w, - L

T 2
(12¢) K = Wpe k¥ Vo

4 w, L
From the solutions of (12a), i.e.

+ 2 K %

(13) w = wH+_é-2L(6-4)

2

we see that if &° > 4 K , there exist two undamped modes near the upper

hybrid frequency: one of these modes is the well-known upper hybrid wave



with a frequency shifted by %(5- V§i- 4K ), due to the pump effect, and
the other is a new mode which essentially arises from the beating of the
pump wave with an ordinary wave. While the first mode will be damped,
the second mode will start to grow when the pump intensity exceeds the

threshold value

(14a) Km = iz_
4

or

(14b) Vo = S'w, 0
w), k?

Above this threshold value, the growth rate of the excited waves attains

its maximum value

(l4c) PM = V—E = Wye k Vo

il

under the matching conditions (11).

In obtaining these results, we have assumed that the pump can effectively
couple only two waves, due to the fact that 1/D+ is negligibly small com—
pared to 1/D— . While this is well justified for hybrid wave numbers of
the order of k., it definitely fails if k & ko. The latter condition
applies to the forward scattering process where the hybrid wave number

becomes, for « »w, ,

(15a) k = k- ke Vt-(zw.wH - wp )/t = W Wy Wy
c?k, <
and
(16a) Dlwtw, , kek) = % 2(ww- <ckk) 4 wh- <*k?
~ Iz(ww_kk) .
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Thus, both DY and D~ must be taken into account in the dispersion relation

(9a), which now becomes

(17a) @- & = 2w K v, [ wh. <kt ]
(wh k)t - HWew- ko k)*

For <k = w,+ & , with & « w, Eq.(17a) can be approximated by

H
(17b) w- wy X - w"E A
2wt (w-ck)
or
(17¢) (w-wy ) = S(w-wy) + K = 0
with
(174) K = @V - @ V! (w,+8)°

2w 2wict
The threshold value for the pump intensity then is

2 ]
(18a) V, = bdwlcl

2w;,_(wn+f)z

above which the growth rate attains its maximum value

(18b) My = VK = e W A

Vz w, <

when &= 0.

In summary, we have shown that a pump wave with a frequency well above the
hybrid frequency can resonantly excite three forward waves, i.e. one upper
hybrid and two ordinary waves, with frequencies w, 5 Wt W, , and wave
numbers Wy , K, * Wu , respectively.

< <
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Now, assuming that these two ordinary waves have the same initial amplitude

El’ the total transverse electric field inside the plasma can be written as

- Fat
(19 E = 2B sin(wt-kx) s I Ee™ sim[(wtu)t _(kt w)x]
+ - <

— .t
= Z(E, + E e™ ,co.st('t-.;E)J sim (wt- kex) |,
which just represents a pump wave with a modulated amplitude.
Thus, this three-wave coupling process can be considered as a modulational

instability, in contrast to the scattering instability which is due to a

two-wave coupling process.

5. Parametric Excitation of the Lower Hybrid Wave

Well below the electron plasma frequency, electrostatic waves can propagate

in the lower hybrid mode according to the linear dispersion relation

(20a) wt = ‘UJ’E'; + w:‘: + Yo h:\_/::z = 10:
I+ A
with
*
(20b) A= Wy

2 —
wa + 7. hl V‘z

When coupled to an ordinary wave, these lower hybrid waves follow the dis-

persion law

2
(21) w® - w: = _A (_w"+ X,;le:'.; w; + W) k*V, (;+ +

I+ A

3

» eyt 1 1
wHkVa (D++ D')

vy

!

1
D—

)
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Note that resonant interaction between the lower hybrid and ordinary waves

occurs at

"
&
I+

%
(22) k ke [ - (2w, w - wi )J *

<kt

Performing the same calculations as were done in the previous section for

the scattering instability, Eq.(21) is reduced to

2
(23a) (w- w )" - $(w- w ) + K = o0
where & is the frequency mismatch, and

(23b) K = (A wh kW
I+ A 4_wL_ﬂ_

The threshold value for the pump intensity is then given by

2 2
Vgi, = S 1»L.12 (l+'A7
3 A
(243) wP‘ kl
= 8w L (wWhos wh, s L RTE)T

4 1 2

above which the growth rate assumes its maximum value

(24b) [

1}

VFET = 10h¢k.vs ( ‘U;i )
2V N w

L

k2 3 Mg
f"+ wu + )'¢_k vf_

with k given by Eq.(22).
An analogous derivation for the modulational instability, corresponding to

the excitation of one lower hybrid and two ordinary waves, with frequencies

w, and w * w , yields the dispersion equation
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(25a) (w-w )" _ S(w-w.) + K = o
with

A \2 AV A
(25b) K = ( > wh k' Vo

I+ A 2w,*

Here, the threshold intensity and the maximum growth rate are

2 2 k3 2 1
(26a) Vo = L ( HA) § wlc
2 A 2 L
wh (‘UJ,_-fé)
and
(26b) r‘M - ( A > wpe W, YV,
I+ A Vi w, <

Note that these results are obtained for k =~ 10_,__ and w, >> sze
<

6. Collisional Effects

For the sake of simplicity, collisional damping of the waves under consi-
deration has been neglected in the foregoing analysis. For weakly damped
waves, this can be included by formally replacing w? by w4 zéf7¢n and
w"... lir;w , respectively, in the expressions of ﬁ(w,k) and D(w,k). Here,
[ and’l represent the linear damping rates of the hybrid and ordinary
waves. If this is done, one finds the following values for the threshold

intensity and the maximum growth rate:

(27a) K» = r:pl[l.,.__é_l__]
(M+Ny)*

and

(27b) FM = i—[“(ﬂ*rz,) + V(r‘;"r‘l)zf +K] ’



where K has been defined previously.
As is clear from these expressions, collisions reduce the growth rate of

the interacting waves while imposing a minimum value for the threshold

intensity of the pump.

7. Conclusion

Within the fluid model and the parametric approximation, it has been shown
that an ordinary wave can simultaneously excite another ordinary wave and
either an upper or a lower hybrid wave. Moreover, there exists a new type
of instability, namely the modulational instability, which corresponds to
the excitation of a long wave length (upper or lower) hybrid wave, and a
modulation of the pump amplitude. An examination of the characteristic pro-

perties of these instabilities shows that

i) in a weak magnetic field, the excitation of lower hybrid waves 1is easier
than the excitation of upper hybrid waves, whereas in a strong magnetic

field, the latter are definitely favoured;

ii) the presence of a static magnetic field has a two-fold effect: on the

one hand, it prevents the waves from being Landau damped and thus facilitates
their excitation; on the other hand, it increases the frequencies of the in-
teracting waves and consequently increases the threshold intensity while de-

creasing the maximum growth rate;

iii) in the limiting case of a zero magnetic field, the upper and lower
hybrid waves become the Langmuir and ion acoustic waves, respectively. Thus,
by letting a,; = W, = 0 in the foregoing expressions, we recover the
results for stimulated Raman and Brillouin scattering in an unmagnetized

plasma.



Finally, it should be noted that, in the present analysis, the hybrid waves
were considered as longitudinal waves. As far as the interaction between
ordinary and hybrid waves is concerned, inclusion of a transverse component
of the hybrid wave would not change our results in any essential way. A
natural extension of this work would be the study of the parametric coupling

between ordinary and Bernstein waves, using a kinetic description.
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