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Abstract

The eigenvalue problem arising in the one-dimensional normal mode ana-
lysis of fixed boundary magnetohydrodynamic stability is solved by a
finite element method. Piecewise constant, discontinuous basis functions
are used for two components of the displacement vector because this per-
mits an accurate representation of the nearly divergence-free property
of the modes being treated. In spite of the simple basis functions, the
accuracy is greatly improved compared to that obtained with plecewise
linear, continuous basis functions. Important features of the spectrum,
such as infinitely degenerated eigenvalues, accumulation points and
continua are well represented by the method. The method used should

equally well be applicable to the free boundary stability problem.

Lausanne



INTRODUCTION

The finite element method was recently proposed by Ohta et al.[l] as a tool for
the analysis of magnetohydrodynamic stability of a current-carrying plasma.Since
then several authors [?, 3, 4} have applied the method to infinitely long, axi-
symmetric plasmas. The problem to be solved in this case is a onedimensional ,
linear, selfadjoint eigenvalue problem of second order for a displacement vector
E with three componentsgr ,59 ,_§2 . It can be shown analytically that the
full spectrum of eigenvalues may contain continuous parts ES, §] , accumulation
points [%] or distinct infinitely degenerate eigenvalues E&] . So it is not
astonishing that the standard choices of basis functions [1 - q , e.g. plecewise
linear or cubic functions for all components of g? , may not be the best. In
fact, the choice of linear basis functions destroys the degeneracy.of the Alfven-
oscillations in a homogeneous currentless plasma cylinder [L] . The corresponding
numerical results have a Bessel-function-like shape, which is attributable to the
discretization and not to physics. The same discretization errors make it impos-
sible to find the correct shape of the unstable modes in a fixed boundary Tokomak,

although the eigenvalue of the most unstable mode can be obtained [?] .

We shall show that all these defects of the method disappear if a more appro-
priate choice of the basis functions is made. Since the variational form of the
eigenvalue problem contains only first derivatives of gV'[}J , discontinuous
basis functions are admissible for the components geand 52 . Our choice then 1is
determined by a physical argument. Because unstable modes are nearly incompres-
sible, the displacement should be approximated within a function class where
incompressibility can well be represented. So we are led to a special combination
of piecewise linear and piecewise constant basis functions. It is noteworthy that

despite the use of simpler functions, the convergence properties are improved.



THE PHYSICAL PROBLEM

-

Consider a small, time and space dependent displacement g of a perfectly con-
-

ducting fluid in magnetohydrostatic equilibrium. The e
is given Ey [7]
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where @ ':VX(EXﬁ) . Here 3 (l‘) , P(F) and B(r) denote equilibrium quan-

tities, the mass density, the pressure and the magnetic field respectively.)y

is the adiabaticity index. The equilibrium quantities satisfy the following

relation
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A current way to attack the stability problem in an axisymmetric infinitely

long plasma is to look for normal mode solutions

5 (wtimBO +k
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of equation (1), constrained by the boundary conditions

->

E (o) finice, E (R) =0 (4)

where R is the radius of a bounding impenetrable wall. Er s EO , gl‘ are the
—-,

components of g in cylindrical coordinates. Under these assumptions the equa-

tion of motion (1) may be brought to the variational form of Newcomb [8] , l.e.

the stationary point formulation [9] of the eigenvalue problem

o6 (3 1€ rdr = A(Er; %)*Yp ’Qfl _d.(rEr) )21' ﬂ"lg -(o(trv%r-)[l rdr

rdr rt
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§ denotes the variation of a functional.

In (5) Er , LEB , lgz can be taken real without loss of generality [8] . Note
that the left and the right hand sides of (5) are proportional to the kinetic
and the potential gnergy of the plasma respectively. From (5) it is self-evident
that the operator ‘:(E) (1) is selfadjoint at least in the one-dimensional case
(3), and is shown for the general case by Greene and Johnson (10] . Hence the
eigenfrequencies Of'are real. The plasma is unstable when negative eigenvalues

L\)" exist. Note further that (5) contains only derivatives on g!’ .

The energy principle (5) was the starting point of many analytical papers on
MHD-stability in the last 15 years. In most cases the problem was significantly
simplified by determining only the minimum of the potential energy rather than
the full solution of the stationary point problem (5). This method (so called
SVU - method) will give the correct answer for marginal stability (w =0 ),

but cannot give correct growth rates as can be seen by the following considerations.



In the SV- method the second and the third term in the potential energy integral
in (5) can be minimized to zero because the first term does not depend on 56 and
El - Hence minimum potential energy implies incompressibility (second term :
div E =0 ) of the unstable modes. Since the aci,iabaticity index influences the
motion (1), (5) only in the combination Y div E » 8rowth rates calculated with
the SV— method do not depend on Y . On the other hand it is known [2, 11] that
growth rates may strongly depend on Y . Therefore the SW— method is not appro-
priate when exact knowledge of the growth rates is required. Already Bernstein

et al. [ 12] were awdare of this fact when originally formulating their energy

principle in 1958,

However, the $W - method gives us a hint how to choose our basis functions when
attacking the full stationary point problem (5~)’ with the method of finite elements.
A weakly unstable displacement has small div g and small S-—SO(S) - (9), since
these two quantities are exactly zero in the marginal case (W =0 ). Therefore,

it should be possible to represent div E=O and §-§O 20 within the function
class chosen. However, by comparison of numerical and analytic results, we did

not find an indication that the latter condition should be satisfied whereas the
first one is indispensable. To see why, we reexamine the spectrum of a plasma
cylinder of constant density in a homogeneous longitudinal magnetic field Bl [4 ]

The equation of motion specialized to this case reads:

LhXP §7'§

- w3k,
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Here | denotes vectors perpendicular to the magnetic field. Q) ,P ’Bl' are
ously, O =0, (&' B! - W2Q)§ - .
constant. Obviously, V'E 30) El =Y k ) %) §L= 8] yields solutions
. . . L ..
of (8), the so-called Alfven-oscillations. The eigenvalue W =R. B%/% 1s infi-
nitely degetlsrate, since every Er satisfying the boundary condition (4) deter-

mines with Y* =0 a non-trivial EQ .

Imagine now a plasma with an additional small Be (e.g. Tokamak). It can be



shovm[Z, 13, 14] that, for special values of Be , the Alfven-oscillations go
unstable. For a good discrete approximation of these instabilities we require
the degenerate eigenvalue of the solution without‘Bg to be exactly represented
by the finite element method. With the method described in [47] we found one
third of the eigensolutions to be bad Alfven-modes. An exact representation of
the Alfven-modes can therefore be expected, if the discrete description of (8)

allows to one third of the linearly independent solutions to exactly satisfy

-—’
div§=0 and §l=0

DISCRETIZATION

Let us carry out the variation (5)
5 3 ' 23
CL(SE,E) - w"b(gg,g) =0. (9)

Then the problem to be solved may be formulated as follows: find a scalar (02
and a "sufficiently regular' vector E satisfying the Egundary conditions (4),
for which (9) holds whatever "sufficiently regular" SE satisfying (4) is

taken.

In order to get rid of the apparent singularities induced in (5) by the cylin-

drical geometry we define a new displacement vector [16]

| 3

re i > ro.

E = ég_ = U.'E = (§r+‘m§9)/r (10)
0 5,

LY

All components of E are real, because Er, igg ,ig} may be real. With (10) we
exclude the case m = O from our further considerations. This case could be treated

with the transformation used in [4] . Let us further define

&(ng)-a(u“s?.u"?) and i;(ss,z) b (W LGE W .t,)



Then the problem to be solved is given by (9), if everywhere the hat is inser-
ted. We will use the obvious notation (5). The essential structure of the bi-
linear fa;ms a and 3 is the same: they only contain first derivati¥gs Clld;on
gr, and Ei respectively. Hence "sufficiently regular' means that g belongs to
H = Hl(o,%) X Lz(o,R) X Lz(o,R), i.e., Ei belongs to the Sobolev space Hl(o,R)

A
and that El and EB are square integrable.

For the numerical treatment of (9) we need a fin%{e—dimensional (dimension-Af)
subspace.\f of "sufficiently regular" functions E with the property explained
in the preceding section: Vv should contain N/3 linearly independent functions
b

al

E satisfying

55 o R dg N2
V-E=V-UW'E=—Lt4k +§ =0
A - 0 (11)

ar
3

in every point of the interval Q& Vv < R

More accurately \f can be defined in the following way.

Let‘\q be a finite-dimensional subspace of Hl(o,R) of type "finite element"
constrained by the boundary conditions (4). Let \é and \6 be two finite—dimen—

sional subspaces of szo,R) and having th;eproperties\: For all §i € \q there
A
6\{; such that d +E'L+EB =0 . V is then de-

a
exists E‘L e‘v;_ and E3 d.(‘
fined by V:\/i"v‘l :\é "

Let us first examine the subspaces of "sufficiently regular" functions used in
[1 - 4] . Assume the interval 0 $.T'$.11 to be divided in n subintervals. A
piecewise linear (i.e. linear in every subinterval), continuous function is
determined by 3n + 1 nodal values: n + 1 nodal values for each component of g
minus the two determined by the boundary conditionm (4). Hence the dimension of
the space is N = 3n + 1. The number of constraints given by (11) is also 3n + 1,
since the n + 1 noda£ values of gxand the n pieces of the piecewise linear
function 424/(1f+ El have t9 be identically zero. Consequently no piecewise
linear, continuous function g‘ satisfying (11) exists. Almost the same is true
for piecewise cubic, continuous functions with continuous first derivatives. In
this case, the dimension is N = 6n + 4 and the number of constraints is 6n + 2.

At most two linearly independent functions may satisfy (11).



From all possible subspaces V, which contain N/3 linearly independent functions
satisfying (1l1) we choose the simplest one: continuous piecewise linear El and
piecewise constant §2 and Eg . In this space of dimension 3n - 1 the condition
(11) yields 2n constraints. Hence n - 1 'good" Alfven-modes may exist. The basis

of V is given by

e 0 0
(o) \-'~0 i n; Ciany |y 0 )LZD; i,"')n’_l (12)

° 0 CH I

where e, are triangular functions as defined in (4] and

Lo reran,

C: (r) o0&t <n-4 (13)

tt'h

"

O elsewhere

Here a mesh 0
A

LIPS <ri ("h =W is assumed. The approximation of a dis-
placement E in the spacev reads

. % wily 3 (14)
1:0 o Civly J

R Y 4
where the nodal parameters Xi s xi h, xt; le

of E and E at Y‘:" vl —[r ?"”.,) /?. The insertion of (14) for g and
(12) for8 in (9) yields together with (4) an algebraic eigenvalue problem of

are the values of El at r:ri and
~

dimension 3n - 1. The integrals (5) necessary to be carried out to this end may

be performed by using a Simpson-routine.



APPLICATIONS

The homogeneous currentless plasma cylinder

First we apply our method to the simple situation described by equation (8)
With a mesh of n intervals, we find the eigenvalue C\)"= B: hz/% to be

(n - 1) - fold degenerate in contrast to [ 4] . Because of the degeneracy, no
spurious physical structure of the associated eigenvectors as in (4] was ob-
served. These two results were our principle goal when introducing the space

V (12).

There was a second class of badly described eigensolutions in our previous work,

the slow waves, whose eigenvalues are analytically given by:

1 B R2RE 4y 2 ,_)[1./4~ yst  ppz
“4 * 3R ( 1t)("f\."‘)(p's (1+s1? RR2yy2 o (13)
!/

where S":b}P/B% and Ym‘ is the (XH‘ zero of dJm(x)/dx. With increasing &/ ,
i.e. increasing X}“'“ 1 u%% decreases and tends towards the accumulation
point ooi = XP hz/o)(i-}s’-) . The frequency band occupied by this class of
solutions may be very narrow relative to the value of the accumulation point,
which is, in addition, the lowest frequency of the whole spectrum. Fig. 1 shows
the numerical solution to (15) as a function of the number n of intervals. The

parameters used arem = 1, k = 0.5 and 52 = 1/12 (plasma with{l = 0.1 and 8"= 5/3).

The modes corresponding to this spectrum are well described; once more in con-
trast to[ 4] . As an example, we compare in Fig. 2 the numerical solutions for
the modes corresponding to UJ; and 00; wth the analytic solutions ji(X]ﬁ‘F/R)
and 3‘(8:,8 FIR) respectively. In [4] the mode associated with w: was badly
described, whereas the higher modes could even not be ldentified. Note that these
results can only be obtained in the space V as specified by (12), whereas the
Alfven-class would be degenerate even with linear, continuous EE , Since Ez(")zo

for this class.
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The inhomogeneous currentless plasma cylinder (continuous spectra)

This is a simple plasma model which exhibits singular eigenmodes of the two

kinds { 6] possible in a general screw-pinch. The model is characterized by

B, = omt, B=0, preonst and =3, [i-¢ (7R%)],
where 0 € <

(16)

Equation (8) still holds for this plasma. Let us eliminate Eeand E} from (8).
We then find [11])

d bA(r) bs(") i
dr Ny r

2 (rgr) i lDf\(rnr: © (17)

where

by (1) = 3 o* -k B}

b () = ()t (¥ +Ry) -2 83 Xp )
N = F()wt- (R* + %ZE) be (v)

Equation (17) has solutions with logarithmic singularities at points r, and roo
if somewhere in the interval 0 { r { R bA(rA) = 0 or bs(rs) = 0 . The equa-
tion is of Fuchs' type in the neighborhood of such a point. On the other hand,

it can be shown [6:]that N(r) = O does not give rise to singular solutions. Note
that bA(r) = 0 yields the dispersion relation for the Alfven-class in the limiting
case of constant density ( € = 0). Similarly, b (r) = 0, € = 0 yields the accu-
mulation point CD of the slow waves. Further, by expre351ng,gg and g} (8) in
terms of E.,. , 1t can be shown, that Ee exhibits a singularity (r -r ) -Q, lr - rA'
at the points b (r ) = 0 and Ezln turn a singularity (r - r ) {n ‘r - rsl at

the points b (r ) =
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At first glance, one might be puzzled by the existence of singular normal modes.
But remember that we are calculating Fourier transforms (3) of physical quanti-
ties and that a Fourier transform of a well-behaved function may be a distri-
bution, e.g. S (x - W) is the-gransform of exp(ixt). In fact, these singular
normal modes with divergent I ‘E l! rdr are not meaningless, if they are asso-
ciated with a continuous spectrum, which allows well-behaved square-integrable
wave-packets to form. Such continua do exist, since every point, where bA(r) =0
or bs(r) = 0, gives rise to a singular solution, which satisfies the boundary

condition [17, 18] . The two continua are given by

) 1 nl T al
strven  Min R By s wrg max k&, (19)
O<r<R 3(r) o<r<® %(r)

2 (2

min  — P o
S re R S (s) o<r< @ 3r) (145t 20

So, the inhomogeneous density distribution spreads the degenerate eigenvalues

of the Alfven-waves and the accumulation point of the slow waves to form continua.
Having been successful in the numerical approximation of these two special points
in the spectrum of the plasma with homogeneous density, we wondered, how continua
and singular modes would be approximated by the finite element method. A reason
why we are looking at these singular modes is the fact that localized regular
unstable Suydam-modes, as they appear in a diffuse pinch with current flow, be-
have quite similarly, Naturally, the maximum number of modes associated with a
"continuum" is given by the number of mesh-points, where "singularities" may
arise. In our model, we find n - 1 Alfven-modes and n - n, - 1 slow modes, where
ng denotes the number of slow modes associated with discrete eigenvalues. First
we show in Fig. 3 how the "singularity" of an Al fven-mode grows, when the number
n of intervals is increased. The density parameter € (16) is chosen to be 0.1.

The modes are normalized
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L
5] rdr = 4 -
0

numerlcally The components 51 Er and E Lgl being much smaller than the
component gt_ (g +im Ee Y/r, Fig. 3 shows only the component Ez . The
1/(r - rA) behaviour of the mode can clearly be seen. Its maximum amplitude
increases (0C VL) and its half-width decreases (o€ 1/n) with increasing n

since no norm for the analytic solution exists:

R R

3 Im |r-tp] 2 _ (22)
|§9I rdr [ 17 rr = o

d o
Satisfied by our diverging modes, we were sure that this phenomenon takes place
at the right point. Fig. 4 shows for € = 0.1 the frequencies (normalized with
Q)%Ehl Bz-b /QDO ) of all Alfven-modes possible with n intervals in function
of the radius Ly where their "singularity'" is situated. To every point of loca-
lization of the numerically determined eigenfunction, we have added an error bar
with the length of two intervals of the mesh used. The solid line represents the

. . . 2 2 2
analytic solution bA(rA) =0, i.e. W /UJO =1/ (1L - ¢ T, )

From Figs. 3 and 4, we conclude that a numerical spectrum may be regarded as

continuous in a certain frequency band, if

1 the associated normalized modes have 'singularities' in distinct points r, s
2 the number of such modes increases in a fixed interval with increasing num-

ber of mesh points ;

3 the polygon defined by the location r, and the associated frequency @)

A
the modes converges to a smooth curve.

As a further demonstration (Fig. 5), we calculate the spectrum of the slow waves.

With increasing inhomogeneity, i.e., increasing € (16), the accumulation point
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opens to a continuum which eventually covers the discrete eigenvalues. The solid

line represents the analytic upper limit (20) of the continuum.

A simple screw-pinch model

Finally we apply our method to an imcompressible plasma (¥ =0 ) of constant
density"% lying in a constant longitudinal field BZ and carrying a longitudinal,
constant current. The pressure p satisfies the pressure balance (2). The stabi-
lity theory of such a plasma was given by Shafranov [19] for m » 1 . Takeda et
al. [ 2] tested their finite element method with this model and found that there
might be an error inherent in the numerical formulation. Yet, taking a large
number of mesh-points they were successful in calculating the growth rates of
the most unstable modes. We shall show that the discrete space V (12) should be
chosen rather than the space chosen by Takeda et al. [ 2], if good accuracy is
desired. Further we shall show that the unstable modes are well approximated
within a low-dimensional space V, whereas it is almost impossible to approximate

them within the space chosen by Takeda et al.[2].

First we quote Shafranov's result for the component €1 of an unstable mode

g = onst. —T‘(P*')Jm(b-“\/)z)“h‘//m]m-t(hr@) (23)

Here }A. :Q_b.q' t/C'(hit'z—-(ﬂ‘l%/s;): C =4~h\’6‘ and § = b RBE / BG(Q) . The
boundary condition (4) is satisfied for values)io, which determine the growth

rates of the modes

- B%hi 1T o2

=TT Kot

(24)
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Fig. 6 now shows the results for the growth rates (m = 2, k = - 0.2) obtained
by Takeda's and by our method. In both cases, we used an equidistant mesh of

20 intervals. With all linear and continuous basis functions a single unstable
mode can be found, whereas in space V there are more than 10. The growth rates
of the 6 most unstable modes (strictly speaking mode-pairs) are drawn. They
correspond to the following 6 pairs of}J.b - values: - 25.19, 26.19; - 41.60,
42.59; - 73.49, 74.48; - 89.31, 90.30; - 105.09, 106.09; - 120.86, 121.85. The
solid lines represent the analytic solution (24). In Fig. 7, then, the analytic
and the numerical solutions to the mode-form are compared. Once more, our ele-
ments and 20 intervals have been used. Figs. 6 and 7 demonstrate the good accur-
acy obtained with the finite element method satisfying conditions (11). From
Fig. 6 one concludes that the error inherent in the numerical formulation of

Takeda et al.[ 2] is caused by the violation of these conditions.

CONCLUSTIONS

We have proposed a new class of very simple basis functions for the finite ele-
ment approximation of the one-dimensional normal mode MHD-equations. It has been
shown that within this function class certain important features of the fixed
‘boundary MHD-problem are exactly or at least intelligibly described by the dis-
crete system. The proposed basis functions are appropriate for extremely local
instabilities [15] in complicated equilibrium conditions. They allow to calculate
singular eigenmodes having a continuous spectrum (section IV) and they even des-
cribe correctly the eigenvalues and eigenfunctions of the slow waves (section IV),
i.e. a class of solutions of (8) with discrete eigenvalues in an extremely narrow
frequency band, which are descending towards an accumulation point (4 ]. Finally,
we showed that the instabilities of a screw-pinch with fixed boundary can be cal-

culated with high accuracy even using few mesh-points.

Originally, the choice of the new basis functions was motivated by our desire to
describe the instabilities of a screw-pinch more accurately. Afterwards, we found
them to be much more universal. So we believe that they could be useful in free

boundary MHD and in other branches of physics and engineering as well. We do not
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intend to give criteria for their applicability, but we would like to give the
following hint: If the variational form of your finite element problem at hand

admits a discontinuous basis, try it.

ACKNOWLEDGEMENTS

We are indebted to Dr. R.A. Dory and Dr. F. Hofmann who have carefully read and
criticized the manuscript. We would also like to thank Prof. Dr. J. Descloux

and Dr. F. Troyon for their helpful comments and discussions.

This work was supported by the Swiss National Science Foundation.



_16_

REFERENCES

10

11

12

M. Ohta, Y. Shimomura, T. Takeda, Nucl. Fus. 12, 271 (1972)

T. Takeda, Y. Shimomura, M. Ohta and M. Yoshikawa, Phys. Fluids
15, 2193 (1972)

-3

.J.M. Boyd, G.A. Gardner and L.R.T. Gardner, Nucl. Fus. 13,
764 (1973)

K. Appert, D. Berger, R. Gruber, F. Troyon, J. Rappaz, ZAMP 25,
229 (1974)

H. Grad, Proc. Nat. Acad. Sci. USA, 70, 3277 (1973)

K. Appert, R. Gruber, J. Vaclavik, Phys. Fluids, accepted for

publication

G. Schmidt, "Physics of High Temperature Plasmas", Academic

Press , New York , 1966

W.A. Newcomb, Annals of Physics, 10, 232 (1960)

G. Strang and G.J. Fix, "An Analysis of the Finite Element Method",

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973

J.M. Greene and J.L. Johnson, Hydromagnetic Equilibrium and Stability,
in '""Advances in Theoretical Physics" (K.A. Brueckner, ed.) Vol. 1,

p. 195, Academic Press, New York / London, 1965

J.P. Goedbloed and H.J.L. Hagebeuk, Phys. Fluids 15, 1090 (1972)

I.B. Bernstein, E.A. Frieman, M.D. Kruskal and R.M. Kulsrud, Proc.

Roy. Soc. A 244, 39 (1958)



_17_

REFERENCES (Cont.)

13 V.D. Shafranov, Sov. Phys. Tech. Phys. 15, 175 (1970)

14 K. Appert, D. Berger, R. Gruber, J. Rappaz and F. Troyon ZAMP 25, 116 (1974)

15 K. Appert, D. Berger and R. Gruber, Physics Letters 46A, 339 (1974)

16 K. Appert, D. Berger and R. Gruber, LRP 76/73, Ecole Polytechnique

Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas

17 J. Tataronis and W. Grossmann, Zeitschrift f. Physik 261, 203 (1973)

18 E.M. Barston, Annals of Physics 29, 282 (1964)

19 V.D. Shafranov in "Plasma Physics and the Problem of Controlled

Thermonuclear Reactions', Vol. IV, p. 71, Pergamon Press,

London 1960.



_18_

FIGURE CAPTIONS
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Numerically calculated spectrum of the slow wave branch in the
homogeneous currentless plasma cylinder as a function of the
number of intervals. At right hand side the first 19 eigenvalues
of the exact analytic spectrum are plotted. The wave numbers are

m=1, k = - 0.5.

Analytic (solid line) and numerical (points) solution to the

component E of the slow wave branch. The corresponding eigen-
p 3 P g g

values are w4 - mi = 2.5 ° 10_6 and wé Tw o= 5.8 - 10_7 res-

pectively. The boundary conditions have been used for the inner-

most point.

"Singular" Alfven eigenmodes of the inhomogeneous currentless
plasma cylinder with 5, 10, 20 and 40 intervals. Only the domi-
denotes the analytically deter-

A
mined position of the "singularity".

nant component 52 is given. r

Numerically detected "continuous" spectrum of the Alfven branch

for a density profile with € = 0.1.

For an inhomogeneous currentless plasma cylinder with varying
density profile e, we show the frequency spectrum for the slow
wave branch. The wave numbers are m = 1 and k = - 0.5. The solid
line represents the analytic limit between the discrete spectrum
(upper part) and the continuous spectrum (lower part). At left
hand side the analytic and the numerical spectrum are given for

e = 0.
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FIGURE CAPTIONS (Cont.)

Fig.

L}

|~

Growth rates versus o of an incompressible screw-pinch carrying
a homogeneous current. The solid lines represent the 6 most un-—
stable mode pairs as obtained analytically from (24). The corres-
ponding numerical results are indicated by points. At left hand

side Takeda's method was used.

Analytic (solid line) and numerical (points) solutions to the

radial component Er of the 2 dominant unstable modes at o = 1.98.
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