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Abstract

A medium which may be slightly inhomogeneous in space and time is charac-
terized by its current response. We derive a system of equations describing

the linear and non-Tlinear coupling of WKB modes.
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Introduction

DuBois has derived previously a system of equations for the non-linear wave
propagation in an inhomogeneous p1asmas]). In this paper we treat the same
problem in a somewhat more general and concise form, allowing the plasma to
vary slowly in both space and time. We find that the analysis is simplified
if we split the Tinear Maxwell operator into its hermitian and anti-hermitian
parts and defining the zero order WKB modes by the hermitian part alone. The
ikonal thus becomes real. The amplitude variations are then not only due to
geometric optic effects, but are also due to the anti-hermitian part of the
polarization operator and to the non-linear coupling. These amplitude varia-
tions are determined in the first WKB order. The effects of damping do not ap-
pear in the form of a complex propagation vector, and the use of bi-orthogonal

sets of polarization vectors is avoided.

Analysis

Let us assume that the current density j produced by the plasma in response
to the applied electromagnetic field is known. The propagation of waves is

then governed by Maxwell's equations

x (N« E)- € =2 /7¢t o

R =-\xE (2)

and the initial conditions @& = N E -8 =0 which must be satisfied
at some time. The E field determines the B field up to a constant field Bo(r).
Therefore the current response j of the plasma must be expressible in terms

of E(r,t) and Bo(r). The most general response can be written in the form
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The dependence of s, Q, T on Bo(r) is not explicitely indicated. These res-

where

ponse functions depend on R through the dependence of Bo(r) and of the other
plasma parameters which determine its equilibrium. The plasma need not be

in an exact equilibrium state, it suffices that this state varies slowly in
time. Thus we assume that the functions s, Q, T depend only weakly on the

first variable R. This dependence disappears altogether in a uniform plasma.

It will be convenient to introduce the following transforms:
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where
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and

2 Q = + R (8)

The Tinear part of :Qa /EQt can now be written as
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Maxwell's equations (1) take the form

(R -L -—-)E (R) = J:"e) (R (10)

where
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is the linear Maxwell operator including the Tinear conductivity and

()
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represents the non-Tinear part of the current response.

We make now the additional assumption: decomposing M into its hermitian and

its anti-hermitian part

nzH-Q-I‘.Q, (13)

*Note that: 3/?“’{‘9/3t ) '3/9 -':} and '3/91 { 30.) 93
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we suppose that the hermitian operator a is much smaller than the hermitian
* *
operator H (that is: (E , aE)/(E , HE) <=1 for all E).

We now assume that equation (10) possesses approximate solutions which can

be expressed as a sum of WKB modes:
N .
E,R=A"® exp ES (R)_] (14)
N [
In this expression the amplitude AN(R) is assumed to vary very slowly, and

the eikona1 SN(R) is real. Since the electric field must be real we require

sN oo gN aN_aN* g0 = 0. Considering that

{A ((\)efzf LS(R) - exp ({ SR) %é i%ﬁ AR 05

equation (10) takes the form
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Sofar no approximation has been made. We now examine equation (16) in two

‘s (R)

successive approximations. In the zeroth order we neglect: the non-linear
term, the anti-hermitian part of M and we neglect the derivatives QA/?R
compared to A ?S/’)P\ Furthermore, we require that each term of the
series (14) satisfy separately the linearized equations:

N WLIP
He (RS0 ) A, (B=0 o)
The solution of (17) requires that a condition

N
D(R, ’aai ) 0 (18)

be satisfied, implying that the determinant of H vanish (D need not itself be
the determinant). Solutions SN(R) of (18) can be constructed according to the

classic theory of Hamilton and Jacobi by solving the canonical equations
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for the trajectories R (’t’) ,'X (T) . 't is a parameter which depends
on the choice of D: Had we solved D (R,X) for U= .Q—(,R'S._) and

used \S:_Q_(R'&) - Ww then "fj = & . The ray velocity

,ode | drdr _90hE _ 20
dt T dEdr T vkw R

is the group velocity of the waves. The eikonal can, in principle be found

from the action integral R
S(R)= jm %% dr

taken along the raysz). Each solution reprensents a wave train. To each so-

Tution belongs a real wave vector

h/
2" )= %%— (19)

To each solution SN also belongs an eigen-vector of H, which we assume

normalized:

sty o L
\-\ae(k,ﬁ') P.& R=0 , ¢ e = 4 (20)

c

Thus the electric field has the form

E-) ¢ E Werpli S'® &
H a

In this (lowest) order the scalar amplitudes EN(R) are yet undetermined.
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The variation of these amplitudes can be determined in the next higher ap-
proximation: We return to equation (16) and include the non-linear current,
the anti-hermitian part of M and the derivatives 131/%)‘( occuring in H
to first order. Thus:
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The right hand side of equation (22) must now be expressed in terms of the WKB
modes. We Timit our considerations to the second order term of the non-linear

current. Introducing (14) into the second term on the right of (3) we obtain:

P .02 <
TST;.JP (R) :%; QHr(R,X“X,L) e: R-x,) e (R-Xz) ] (23)

ERx JE K(R-xz) ep ) [ S"(R-x )+ S"(mxzﬂ dx, dX,

We develop the argument of the exponential function to bring out explicitely

the rapid variation of the phase

SN(R'K,)* S (R-xz) -S"(R) + SK(R) - RHCP\)X,‘ = &K(R) Ryt (20

The integration over X] s X2 can be carried out if we remember that 2&")('
varies much faster than e (Q-—X ) or E H(R-X ) Since the term under dis-
cussion is already a correction to the Tinearized equation, we may ignore these

variations a1together Thus

2 w(R) Z @ r(R;&?&’K)eqH(R) e WEWE®. e
exp {[SGR) s"CR)]
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We substitute this expression into the right hand side of equation (22). Then

we multiply the resulting equation by e N q"(R)a)t‘P[l,S (R)] where upon it

takes the form

ZQ"‘P [‘5 SH }E Q)

=ZQNnKQDCP 1 [SK-\ S“—Sﬂ] En(“) EK(R)
KN

(26)

Higher order terms on the right hand side could easily be included. In equa-

tion (26) we have used the following abbreviations:

HH(R’t);- Q:*(R) Hrq (R,ﬁ.) 2: (R) (27)

Hpa (R2) el()
2, R,

r“"cn)=[e;*(a) 0, (08) ) @)+ &' ®)

in
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and

(29)

“HR
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The dispersion relation for the Nth WKB mode can be written as

D (R g)-0 (31)

In practice, of course, this is only possible once we have constructed the
eikonal and the polarization field belonging to the mode N.Therefore we could
have taken NN (R’ ﬁ) instead of 1 (R,X) as far as the Nth WKB

mode is concerned thus we may write

AN"(R ,.?;.9_. -0“(
ek . dT
2=3S"/2R
Thus the derivative term in (26) is really a derivative along the ray tra-

Jjectory. To express this fact in terms of r,t explicitely we solve (31) for w
N N
w=0 (R&;rb) (32)

Introducing the group velocities

Ny
vi(ct) = 20" 20 /R (33)
- R 20" w

we can express the diagonal elements of the operator on the left of (26) in

the form

NN 5 9p N y
M +A = 2y 2
4 M " ow |t Y 5 (34)

This system of equations (26) determines the amplitude variations of the WKB
modes as functions of time and space. These amplitudes are now coupled, both
linearly and non-Tinearly. However, since by hypothesis the amplitudes are

sTowly varying functions, we must neglect the terms which contain the rapidly
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varying exponentials. Hence Tinear coup]iqg between two modes M, N can occur

only in a region of space-time where £ ~ 28’1 » while non-Tinear coupling

requires that 'wk-{. 'Zﬂ n 'X“ .

In the special case of non-Tinear three wave coupling between modes 1,2,3 the

system (26) reduces to

- -
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These equations represent a generalization of those investigated by Rosenb]uth3).
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