October 1973 LRP

PARAMETRIC EXCITATION OF ALFVEN

AND ACOUSTIC WAVES

Nguyen The Hung

Centre de Recherches en Physique des Plasmas

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

71/73






October 1973 LRP 71/73

PARAMETRIC EXCITATION OF ALFVEN

AND ACOUSTIC WAVES

Nguyen The Hung

Abstract

The non-linear interaction becween two Alfven waves and a sound wave isg
studied, using the normal mode approach. This leads, in a simple way, to

a set of coupled equations, and consequently to a dispersion relation for
the waves under consideration. It is shown that a large amplitude Alfven
wave can give rise to two distinct types of parametric instabilities,
namely the oscillating and the purely growing waves. In each case, the
expressions for the threshold pump intensity, the frequency shift, and

the growth rate of the excited waves are obtained. In particular, the
results for a propagating pump under perfect frequency matching conditions

are compared with those of Sagdeev and Galeev.

Lausanne



1. INTRODUCTION

It is well known that an electromagnetic wave, above a certain threshold
intensity, can excite other plasma waves through the parametric coupling
mechanism. These effects, presumably responsible for various observed phe-
nomena (e.g. anomalous reflection and enhanced absorption of laser radia-
tion), have raised some recent interest, both in the domain of laser fusion

and in ionosphere research (DuBois 1972).

In this paper we study the interaction of two Alfven waves and a sound wave,
using the coupled mode theory where both the frequency mismatch and the

finite wavelengths of the waves are taken into account. One of the interests
of this problem lies in the fact that a large amplitude Alfven wave is an
exact solution of the non-linear MHD equations: Resonant harmonic generation
being absent, the main non-linear mechanism responsible for the decay of

this wave should be its coupling with another Alfven and a sound wave. This
coupling process can be studied by various well-known methods (Kadomtsev 1965,
Sagdeev and Galeev 1969). Here, the normal mode approach will lead, in a

simple way, to a set of first order differential equations.

In Section II, we shall obtain the normal modes of the Alfven and sound waves
within a linear analysis of the MHD equations. Section III is devoted to the
derivation of a coupled set of equations for the three-wave interaction. In
Section IV, we shall consider the case of a large amplitude Alfven wave
acting as a pump to excite another Alfven and a sound wave: It will be shown
that, according to the nature of the pump wave (standing or propagating),

there can exist two distinct types of parametric instabilities.

I1I. THE LINEAR EQUATIONS

Let us consider the case of Alfven and sound waves both propagating along an
externally-imposed magnetic field, in a uniform, unbounded plasma. The equi-

librium state of the plasma is characterized by a density f% , a scalar
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-
pressure Po s & zero drift velocity ( VG =0 ), and a steady magnetic

. -~
field H, - H, 2.
the Alfven wave, as well as

In an ideally conducting, compressible plasma,

the acoustic wave, can be appropriately described by the following MHD equa~

tions (Van Kampen and Fenderhof 1967):

af + Vfi-; = 0 7 (la)
ot
P L (VBT - Up - L Aa(GaA) (v
it 4T
_Q_B’ = —V’A (\7/\/:{') ) (1c)
ot

together with an equation of state
P = flp) . (1d)

To obtain some approximate solution of this highly non-linear coupled system,

we shall first study its normal modes within a linear analysis.

Let

(2)

<i

1

<i

+

4 FEE‘

<P = f% + j; y

where the subscripts I and [ refer to the components parallel and perpen-

dicular to the static magnetic field. The linearized form of Eq. (1) can

be expressed as follows

(3a)

éj; + J 2 . = o )
2t Jz



p, W, & 9F - o , (3b)
ot oz
aH.L - HO b\/J- - O ) (3C)
2t 2z
2V, _ Ca dH, = o (3d)
2t H, 2z
where we have defined
ct = df(f) , (3e)
g | P=fr
and
2 2
CA = Ho . (3£)

4mp,

This system can easily be solved by introducing the normal modes of the

Alfven and sound waves, defined as follows
a = F + ¢l ) (4a)
with the coefficients €, and €, chosen such that
da - —iW a , (4¢)
dt
26 - _cw,b , (4d)
2t

under consideration.

w, and w, being the frequencies of the linear waves



By taking a linear combination of Egs. (3a) and (3b), one immediately gets

da . o LA/ 20 - 0 . (5)
Qt aZ Po 32

Assuming a spatial dependence of the form exp({ksz) » and using Eq. (4c),

one then obtains

11%} — Q: k; ) (the dispersion law) (6a)
and
-C, = t _Fo Ks . (6b)
w.S

*
Thus, for a given wave vector ks » there exist two normal modes of the
sound wave:

k.z _iwt
a’ = T+ ks fo v/ ~ e 7 ’ ) (72)

and

- 4_'/<Sz+t'w5t
a = pT ookl e . (7b)
wS
+ - .
Clearly, a and a correspond to the forward and backward propagating waves

—,
with respect to the wave vector kk (of course, Ws is here defined as a

real positive quantity).

In a quite analogous way, one obtains the following normal modes of the

Alfven wave:

+ + 4k Z__‘iwAf
b = H _ kA KV o e A , (8a)
Wa
- - - ckaz tw, T
o= HD L kg o et T (8b)



with
w? = c;f k:' , (the dispersion law) , (8c)
and
<, = 3 H, ka : (8d)
©a

Before going to a non-linear analysis, let us express now the perturbed

quantities p , Vb y Vl and fﬁ_in terms of the normal modes a and b. This is

readily done by means of Egs. (3) and (6)-(8):

Fi = 31— ai ) (9a)

V”: .t ws a (9b)
zfokS

V_Li = F_ Ya bt , (9e)
2H, k,

HEo- 1 bt oD

1II. THE COUPLED EQUATIONS

We now consider the interaction between a sound wave and two Alfven waves
(denoted by indices 1 and 2). Here, non-linear terms corresponding to the
harmonic generation of these waves will be neglected. Eq. (1) then reduces

to

_?E +  fs 2 Vi = 0 ) (102)
Dt dz
vy 4+ S5 OF = -1 2 (H, H) (10)




o _H 2V - g (v, Hy)
ot 0z P¥4

(10¢)
W, LG M oy % oo
Sl 2z pH, T 3z (og)
ot Hy, 3z ﬂ’ ° =
Hy _ H 2 - (V. H,) (10e)

—_—T - I/ ‘ /

Py dz 9z
Vo L <h oM oy OV L <k 5 O, , (10£)
at Hd az (32 faHC‘ 52

where the sign » referring to the transverse components of the Alfven

waves, has been omitted.

In a low-beta plasma (‘Cz'<§’C& ), Egs. (10¢)-(10f) can be further simplified
P S A

by neglecting the first terms on the right hand sides, because of their smallness
compared to the second terms.
Taking the same linear combination of Eq. (10) as we did to obtain Eq. (5), we

now have

dat + ¢ dat - __/‘_5_ 9 (H . H,) , (11a)
ot dz ynw, 9z

db* 4 <, 2bF - 4 <4 k, I IH, , (11b)
ot 2z P W, dz

abai. * <, abzr = t <a k, J8’ IH, ) (11c)
;;Z~ 492 .ﬁ,coz 3 Z

As such, this system is still intractable, except for the case of weak coupling.

Then, one can look for solutions in the form of plane waves with "slowly"

varying amplitudes, i.e.

at Ai (#) CX/D (ikSZI‘.wst)" 40mf:/ex cory't/_qafé , (12a)

i



P = Bt (t) exp (A:kAZ ;&wAt) + <omplex wﬂju’a.te , (12b)
with

a InA? d ¢ BY

dt ’ /;; " 8 &  Wa - (120)

(11a), and using Eq. (9) to express
*
, we readily obtain :

On substituting these solutionms into Eq.

F*

. + x*
Hi in terms of @~ and b
1,2 1,2

+ At
(u)s 4 kS ) -?_A_ + (- ws ’ "ks) i.é. = (13)
2T t

ks 2 {[ 2N (w’+wl’ ki+ke) + 88’ (we- W, /k”kz) +
enw, 9z
B,. Bz" (~w1+wll k.,-f kz )+ B:B]: (—wf’wZ; k1+kz_)+
B,*E; (w""wz 'kf’k?- )"' B"+§; (wlf'wz., k- k) +

B~ .B‘; (-~ kv-kz) + B:B.; (’wq +w, , k,-kz_)] +

<complex conjugate } ;

*
Notice that, in calculating the coupling terms on the R.H.S. of Eq. (11),

one must allow for the influence of both the forward and backward modes.



where a barred quantity stands for its complex conjugate, and the abbreviation

(w, k ) stands for exp (tkz -iwt ),

(14)

On substituting (14) into (13), and keeping only terms with approximately
the same oscillating exponentials on both sides of Eq. (13), this will

reduce to

—_ A —
QAT (- 2wy, -2kg) JAT _ -iks [Bf82+ (8-ws,0) +
2t It 16 1o g (15)

BB (-8-w;,0)- BYBI(-dow, -2k _ BBy (5-w 2k, ],

Noting that the mode amplitudes are only time-dependent, we can therefore

take a space average of the above equation and obtain

OAT L ik [B,*é'; e (W)t 87B; e"(é*ws)t] . (16a)
ot /67[0%
In a quite similar way, one gets
. - _—y - 4 - t

A~ = «.k; [B,"B; e (J+w5)t+3,‘3z—e (o W) ] , (16b)
ot 16 Lo,

: (dFw)t ()t
B = I»k/kz‘if[A*Bj‘ gt 0T ) +ABY e «( S)], (16c)
2t 4}%“&

!

08 - tikk X[ aipt ei"(‘s;ws)ﬂ Z’B’e“(“ws)t] . (16d)
ot 10,0,
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This set of equations represents the non-linear coupling between 6 normal
modes treated on the same basis. In the next section, we shall consider the
case of parametric coupling in which one of the waves has an amplitude much

larger than that of the others, and can be treated as constant.

1V. THE LINEARIZED COUPLED EQUATIONS

In various situations, one deals with a strong,externally—imposed electro-
magnetic field in a plasma. The field will change the behavior of the plasma
with respect to small disturbances: The problem then is to know how these
disturbances will develop in the medium, and whether they can be driven

unstable.

Here, we consider the case of a large amplitude Alfven wave ( b, ) acting
as a pump of constant power. Using the coupled equations derived in the last
section, we shall determine the conditions under which some initially small
perturbation will grow in the form of an Alfven and a sound wave. Within this
approximation (constant pump power), Eq. (16) reduces to a simple set of four

. . es . . . +
linear equations describing the parametric coupling of A%* and B,

At . ik (e SHBFO)E pogm t(4EWNT ] T2
ot |6 TTWs

. - cofd + (T
be - i‘k'le;[BfAf C*‘( Fws) . B1tA—e+1r(é ws)t]) (175
bt 4’fawz

Bt - Constant (17¢)
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Eq. (17) can be readily solved using the following transformation:

Xt - A+ k
PEE A—-ethst , o
Yt o —;e-i(é-w,)t/
YT o B e<(brwat

On subtituting these new variables in Eq.

the form exp (-iwt

w V]

0 w 4 Zws
- kkeld -B-,’ - ki k, C,: é:f
4fcw2 4 fg w,

k ks ca ér- k ky ca -B:—
4'f¢ wZ 4‘fn wb

), we obtain

which yields the following dispersion law:

w(wW+ 2w ) (We g +3) (w+ws -3)

k k, k. cl

327mp, w,

[1B7 e ) 1837 s, 5) ]

(17), and assuming solutions of

(19)

(20)
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A first view of this equation suggests us to consider separately the two

cases of standing and propagating pump.

A- Standing pump

In this case, we have
/871 = 187 (21)

and Eq. (20) takes the form

(Qr - wi) (0] -8) ks = 0 (22a)
where
Q, = W+ W ) (22b)
2 2 + 2
K - ki kz ks Ca IB:I . (22¢)

16T 0, W,

It is worth noting that if we separate the real and imaginary parts of Qg ,

and write
Q, = 02, + Y , (23)

then, Ilr and Y represent the frequency and growth ( Y » 0 ), or damping
(Y ¢ © ) rate of the sound wave, respectively. Physically, one should dis-
tinguish the two cases: i) £2,.40,Y >0, corresponding to an oscillating
instability, and <4) L2, =0 ,7Y >0 > corresponding to a purely growing

instability.

From its structure, it is easily shown that Eq. (22a) can admit either purely

growing or oscillating solutions, depending on the sign of Ké :
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1. Ké >0 :

In this case, there can only exist purely growing solutions

given by

n

r

(24a)

y* = EL[V(w;-J*)”+4Ka —(wls 5‘)] . (24b)

The threshold pump intensity for excitation of this wave is

K = w!é (25a)
or, in terms of the pump field F*:,
YL~ 2
Ca

475500

For a given pump intensity, the maximum growth rate is attained at

o = (ZK+ /%11‘ isé)y'; (4 t/KL )/3 (26a)

which reduces to

4

m

I
—
[x
&

3
in the case of a "strong" pump ( [K[ P W

one has

- K
b = K

(26b)

). For a "weak" pump ( [K| & w,3)

(26¢)
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The maximum growth rates are given by

VZ
'YM - ( L/;_!) 3 (strong pump) y (27a)
and
’YM = Kl (weak pump) . (27b)
2w5

From these equatlons, one can notice that the maximum growth rate increases
much more sensitively with the pump power in the weak pump regime than it

does for strong pumps.

2. Ko < O
Contrary to the previous case, Eq. (22a) now has only

oscillating solutions. The frequency and growth rate of the sound wave are

given by
2 2 2
-Qr _ v o4 é‘(ws " 5"') , (28a)
and
7
yro- _(wis d7) 4 }-L(wfél_Ké)z ‘ (28b)

4

The threshold power for excitation of this wave is

K., o (wio8Y)” . (29)
4 4

In the weak pump regime, the growth rate attains its maximum value

Y = < | K] >'/2 (30a)

4 Ws

at the perfect matching frequency

aM - o, . (30b)
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Then, the frequency of the sound wave becomes

%
n = [y (IKI (30c)
r = +— w .
( 4 wg $

For a strong pump, one obtains

Yo = E(LK)E o

5 - (;’S.) 73 , (31b)
and

o, = ,_ZV_E-( [a’ﬂ)% ' (31c)

Let us notice that in both cases ( Kd pae; , and K d (O ), Kis allowed
to take either positive or negative values, corresponding to the forward or

backward scattering of the Alfven wave, respectively.

B- Propagating Pump

This is the case where

B‘ = 0 - (32)
From Eqs. (17b) and (20), one sees that the backward mode b;’ is not excited
while the three modes a’, a”, and b; are coupled according to the following
dispersion relation:

wWWs 2w, ) (W w, -3) - _:_ = 0 (33a)

or

0} - dnt _wr, 4 dwr - K=0 , (33b)
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which can admit unstable solutions if the pump intensity exceeds the following

threshold value:

3 T2 2 1%
K = 2%[-5+95w5 i (3w’ +67) ] (34)

m

For |K/{ Y ’kﬂw‘ , the frequency and growth rate of the (unstable) sound

wave are given by

0, = 4 _ xt+y , (35a)
2
Y =B [x-y] ) (35b)
2

where

Y

%
b4
X - 1 3 2 27 + 3 S 1_27 2; 2 21\3/72
( ) - ;2(_5 + 98w, ,TK)-[(_J + 9w, = K ) (3w5+5)]j(35c)

Tn the threshold region, Eq. (35) yields the following values:

7
Qo =94 . 9w 8373 (1- 2K (36a)
r k3 + 3( s ) ( 4(95w5¢_53)) 4

and

%
[ 28w’ _ 6w cwy - & (9‘;“52'53)] - (36b)

v
(98w - 83 )%

n

Putting 4= Ws 1in Eq. (36), one obtains

a - w, - 3K , (372)
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f
:
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:
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and

/5
Y = f(=K)7

s

This can be compared with the results obtained by Sagdeev and Galeev (1969)

in the same situation (i.e. propagating pump under perfect matching conditions),

written in our notation:

N, = w, , (38a)
_ - K \A (38b)
ENE

where one notices that the frequency shift is zero, and the growth rate 1is
twice that given by Eq. (37b). While the first discrepancy stems from the

space and time averaging process used in their theory, the second is due to
the fact that they have not accounted for the "slow-time" dependence of the

fluid density in the mass conservation equation.
One can also note that their theory, using the space and time averaging,

does not allow for any frequency mismatch, neither does it allow for any

influence of the backward sound wave.

V. CONCLUSION

From the foregoing analysis, it appears that
1. a standing pump can excite both oscillating and non-oscillating sound
waves;

2. a propagating pump can excite only propagating waves;

3. due to its low frequency (compared with the Alfven wave), the backward

sound wave can couple efficiently with the Alfven waves;

(37b)
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4. the growth rates of the excited waves depend on the pump intensity in
3 3 4 ! - .
a characteristic way ( K” or K73 ), according to the pump regime (weak

or strong).

Finally, note that in Section IV we have assumed the pump amplitude to
remain constant during the coupling process. Although this is a very good
approximation in the case of parametric excitation, it can be easily avoided:
In fact, solutions to the non-linear system (16) can be expressed exactly in

terms of elliptic integrals (Amstrong et al. 1962).
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