A USEFUL FORM OF THE VARIATIONAL PRINCIPLE OF IDEAL MHD FOR ONE-DIMENSIONAL NUMERICAL STABILITY CALCULATIONS

K. Appert, D. Berger and R. Gruber

Centre de Recherches en Physique des Plasmas ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE December 1973 LRP 76/73

A USEFUL FORM OF THE VARIATIONAL PRINCIPLE OF IDEAL MHD FOR ONE-DIMENSIONAL NUMERICAL STABILITY CALCULATIONS

K. Appert, D. Berger and R. Gruber

Abstract

We treat the variational problem of ideal one-dimensional MHD stability by the method of Ritz-Galerkin 4. Finite elements are taken as the basic functions. In order to find the best approximating elements we have performed a radius dependent transformation on the eigenvectors. The matrices of the transformed eigenvalue problem are given explicitely.

This report serves as an appendix to published papers [2, 5, 6].

1. Normal mode analysis

We study weak perturbation of a cylindrical ideal MHD equilibrium. The perturbation is described by the normal modes $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

$$\vec{\xi}(t,r,\theta,z) = \vec{\xi}(r) \exp \left[i\left(\omega t + m\theta + kz\right)\right]$$

$$\vec{\xi}(r) = \left(\xi_r, \xi_\theta, \xi_z\right) = \left(\xi_1, -i\xi_2, -i\xi_3\right).$$

The linearized equations of motion can be brought into the variational form of Hamilton's principle

$$\omega^2 S k = S W_p$$

where the potential and the kinetic energy of the plasma are given by \mathbb{W}_{p} and \mathbb{W}_{k}^{2} respectively. \mathbb{W}_{p} and \mathbb{W}_{k}^{2} are quadratic forms of \mathbb{K}_{p}^{2} . Takeda et al. [1] have shown how the problem (1) can be treated by the method of finite elements. In this approximation problem (1) reduces to an algebraic eigenvalue problem.

Takeda et al. [1] approximate the real physical displacement (r) by linear admissible functions. However, it may be more appropriate to expand a transformed displacement

$$\eta^{2}(r) = U(r)\xi^{2}(r)$$
(2)

in a series of finite elements [2].

The transformation taken in [2] has given better results for the displacements near the axis. In [2] it was shown that the singularities induced by the cylindrical coordinates may give rise to numerical difficulties near the axis. Further it was shown that these difficulties may be removed by a special choice of U. Then there was a difficulty of a different character, which could not be removed at that time. One class of solutions was badly represented, because the internal condition (div [3] = 0) characterising this class, could not be exactly fulfilled with the linear elements. So we proposed to use constant elements [6] together with another transformation U which allows to satisfy the internal condition. Therefore we have chosen the transformation

$$U(r) = \begin{pmatrix} r^{-d} & 0 & 0 \\ br^{\beta} & \frac{1}{c}r^{-\beta} & 0 \\ 0 & 0 & dr^{-\delta} \end{pmatrix}$$

$$A = \begin{cases} 0 & 0 \\ 0 & 0 & dr^{-\delta} \end{cases}$$
(3)

$$\overrightarrow{\eta}(r) = \begin{pmatrix} \eta_{1}(r) \\ \eta_{2}(r) \\ \eta_{3}(r) \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{N_{p}} R_{i} r_{i}(r) \\ \sum_{i=1}^{N_{p}} \theta_{i} t_{i}(r) \\ \sum_{i=1}^{N_{p}} Z_{i} z_{i}(r) \end{pmatrix}$$
(4)

where the elements are denoted by Y_i , t_i and Y_i , the expansion coefficients by Y_i , Q_i and Y_i . Note that the numbers Y_i , Y_i , Y_i may differ by 1, if a mixture of linear and constant finite elements Y_i is used.

Let us define

$$\hat{X} = (R_{1}, \theta_{1}, \xi_{1}, R_{2}, \theta_{2}, \xi_{2},) = (x_{1},, x_{m})$$
(5)

where $M = N_r + N_\theta + N_\xi$. Then (1) can be written in the form

$$\omega^{2} \sum_{k=1}^{m} \left(\int_{0}^{1} R_{\ell k}(r) dr \right) x_{k} = \sum_{k=1}^{m} \left(\int_{0}^{1} C_{\ell k}(r) dr \right) x_{k}, \ell = 1, ..., m^{(6)}$$

Let us denote the total number of integration intervals by N and a specific interval by i. Then the matrices R and C may be written in terms of partial matrices ($\mathbf{R}_{:}$) and ($\mathbf{C}_{:}$) which are for U = $\mathbf{1}$ and linear finite elements the same as in $\mathbf{1}$]. They are given by

0

0

0

4-1	$^{f_{11}a_{11}}$	$^{\mathrm{f}}_{12}^{\mathrm{a}_{12}}^{+\mathrm{f}}_{24}^{\mathrm{a}_{42}}$	f ₁₃ a ₁₃ +f ₃₄ a ₄₃	$^{f_{11}a_{15}}^{+f_{14}}(^{a_{18}}^{+a_{54}})^{+f_{44}}^{+f_{44}}$	f1,21,4f2,,a,c	f,,a,+f,,a,_
44	f ₁₂ a ₂₁ +f ₂₄ a ₂₄	f ₂₂ a ₂₂	f ₂₃ a ₂₃	$f_{12}^{a}_{25}^{+}_{f_{24}^{a}_{28}}$	f ₂₂ a ₂ 6	13 1/ 34 47 f,2a,7
n H	$^{f_{13}a_{31}^{+f}_{34}a_{34}}$	f ₂₃ a ₃₂	f33 ^a 33	f ₁₃ a ₃₅ +f ₃₄ a ₃₈	f ₂₃ a ₃₆	23 2/ f33a37
	$^{\mathrm{f}_{11}}{}^{\mathrm{a}_{51}}{}^{\mathrm{+f}_{14}}{}^{(\mathrm{a}_{81}{}^{\mathrm{+a}_{45}})}{}^{\mathrm{+f}_{44}}{}^{\mathrm{a}_{84}}$	$f_{12}^{a} f_{24}^{+} f_{24}^{a} g_{2}$	$^{f_{13}a_{53}+f_{34}a_{83}}$	f ₁₁ a ₅₅ ^{+2f} 14a ₅₈ ^{+f} 44 ^a 88	f ₁₂ a ₄₆ +f ₂₄ a ₈₆	f ₁₃ a,7+f _{2,} a ₀ 2
4	^f 12 ^a 61 ^{+f} 24 ^a 64	f ₂₂ a ₆₂	f ₂₃ a ₆₃	f ₁₂ a ₆₄ +f ₂₄ a ₆₈	f ₂₂ ^a 66	f 23 47 54 8/
чі <u> </u>	f ₁₃ a ₇₁ +f ₃₄ a ₇₄	f ₂₃ a ₇₂	f ₃₃ a ₇₃	f ₁₃ a ₇₄ ⁺ f ₃₄ a ₇₈	f ₂₃ a ₇₆	f ₃₃ a ₇₇
ап	and					
٥	10					
511		g_{12} $S_{a_{12}}$	0	8 ₁₁ S a ₁₅	8 ₁₂ 8 a ₁₆	0
812	.2 8 ^a ₂₁	8 ₂₂ \$ a ₂₂	0	8 ₁₂ 8 a ₂₅	822 S a ₂₆	0
	0	0	833 8 a33	0	ì	900 Q
811	9 a ₅₁	8 ₁₂ \$ a ₅₂	0	8 ₁₁ 8 ⁴ 55	81, 8 ac	1 32 0
812	S a ₆₁	822 8 a62	0			, ,
	0	0	6 6			0

8.) II

where:

$$\begin{aligned}
& \beta_{44} = r^{2a+4} \left\{ \frac{1}{r^2} \left(\beta_2^2 + \Gamma_p \right) \left[\frac{1}{4} + 1 - b c \, m \, r^{\beta+\beta^2} \right]^2 + \left[\left(d - 1 \right) \frac{\beta_e}{r} + b c \, k \, \beta_2 \, r^{\beta+\beta^2} \right]^2 + \left(k \, \beta_2^2 + \frac{m \beta_e}{r} \right)^2 - 4 \left(\frac{\beta_e}{r} \right)^2 - 2 \, \frac{\beta_e}{r} \, r \, \frac{d}{dr} \left(\frac{\beta_e}{r} \right) \right\} \end{aligned}$$

$$\begin{aligned}
& + \left(k \, \beta_2^2 + \frac{m \beta_e}{r} \right)^2 - 4 \left(\frac{\beta_e}{r} \right)^2 - 2 \, \frac{\beta_e}{r} \, r \, r \, \frac{d}{dr} \left(\frac{\beta_e}{r} \right) \right\} \\
& + \left(k \, \beta_2^2 + \Gamma_p \right) \left[d + 1 - b c \, m \, r^{\beta+\beta^2} \right] - \beta_2 \, k \left[\left(d - 1 \right) \frac{\beta_e}{r} + b c \, k \, \beta_2 \, r^{\beta+\beta^2} \right] \\
& + \frac{\beta_e}{13} = d \, r^{4+5+2} \left\{ \frac{1}{r^2} \left(\Gamma_p \, k - \frac{\beta_e}{r} \, m \, \beta_2 \right) \left[d + 1 - b c \, m \, r^{\beta+\beta^2} \right] + \frac{\beta_e}{r} \, k \left[\left(d - 1 \right) \frac{\beta_e}{r} + b c \, k \, \beta_2 \, r^{\beta+\beta^2} \right] \right\} \\
& + \frac{2\beta_e}{14} = r^{2d+2} \left\{ \frac{1}{r^2} \left(\beta_2^2 + \Gamma_p \right) \left[d + 1 - b c \, m \, r^{\beta+\beta^2} \right] + \frac{\beta_e}{r} \, \left[\left(d - 1 \right) \frac{\beta_e}{r} + b c \, k \, \beta_2 \, r^{\beta+\beta^2} \right] \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{2\beta-4} \left\{ \Gamma_p \, m^2 + \left(\kappa^2 r^2 + m^2 \right) \, \beta_2^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{2\beta-4} \left\{ \Gamma_p \, m \, k - \left(\kappa^2 r^2 + m^2 \right) \frac{\beta_e}{r} \, \beta_2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, k \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right)^2 \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right) \right\} \\
& + \frac{\beta_e}{12} = c^2 r^{3\beta+4} \left\{ \Gamma_p \, r^2 + \left(k^2 r^2 + m^2 \right) \left(\frac{\beta_e}{r} \right) \right\} \\
& + \frac{\beta_$$

and

$$g_{11} = r^{2d+1} \left\{ 1 + c^{2}b^{2}r^{2\beta+2} \right\}$$

$$g_{12} = -bc^{2}r^{d+\beta+2} + 2\delta^{2} + 1$$

$$g_{22} = c^{2}r^{2}\delta^{2} + 1$$

$$g_{33} = d^{2}r^{2}\delta + 1$$
(10)

The factors α_{μ} are the contributions of the basic functions and are determined by:

$$a_{\mu} = e_{\mu} e_{\mu} , \quad r_{i,\mu} = 1,, 8$$
where $\vec{e} = (r_{i}, t_{i}, z_{i}, r_{i}, r_{i+1}, t_{i+1}, z_{i+1}, r_{i+1})$ and $\frac{d}{dr} = 1$.

2. Boundary and regularity conditions

We want to solve the eigenvalue problem

$$(C - \omega^2 R) \cdot \vec{X} = 0$$
(12)

with C, R symmetric and R positive definite.

 $\mathbf{w}^{\mathbf{z}}$ is the eigenvalue and \mathbf{x} the corresponding eigenfunction.

The boundary and the regularity conditions are

$$\xi_{r}(r=1)=0$$

$$r\vec{\xi}(r=0)=0$$

The regularity condition (14) is satisfied, if the matrix elements of (7) and (8) are finite at $\mathbf{Y} = \mathbf{O}$. The transformation used in [2] corresponds to the parameters

$$b=c=d=1$$
, $d=|m-1|$, $-\beta=y=d+2S_{m1}$, $S=|m|$ (15)

where f_{m1} is the Kronecker symbol.

This transformation was specifically chosen to describe the asymptotic behaviour of the displacements in a θ pinch at r = 0.

For the case $\mathbf{m} > \mathbf{0}$, we propose here a weaker condition to fulfil the regularity condition (14):

$$\beta + \gamma = 0, d = 0, \delta = 0, bcm = 1$$
 (16)

In stability calculations div $\xi = \frac{1}{r}(r\xi_1) + \frac{m}{r}\xi_2 + k\xi_3$ is for some eigenmodes very small [5, 6] or even zero [2, 6]. In order to describe this fact we have to choose the elements properly. The parameters b = 1 and $c = \frac{1}{m}$ correspond to the transformation

Taking for n_1 linear and for n_2 and n_3 constant elements, we are able to describe the divergence exactly.

It was this choice of transformation and elements which made it possible to calculate degenerated modes $\begin{bmatrix} 6 \end{bmatrix}$, localised modes $\begin{bmatrix} 5 \end{bmatrix}$ and even singular modes with a continuous spectrum.

Acknowledgments

The authors would like to thank Dr. F. Hofmann for his constructive criticism of a preliminary form of this report.

This work was supported by the Swiss National Science Foundation.

References

- [1] T. Takeda, Y. Shimomura, M. Ohta and M. Yoshikawa, Phys.Fluids <u>15</u>, 2193-2201 (1972)
- [2] K. Appert, D. Berger, R. Gruber, F. Troyon and J. Rappaz, to be published in ZAMP
- [3] W.A. Newcomb in "Magneto-hydrodynamic Stability and Thermonuclear Containment", A. Jeffrey and T. Taniuti [Eds], 1966
- [4] E. Kamke, "Differentialgleichungen", 3rd edition, Chelsea Publishing Company, N.Y. 1959
- [5] K. Appert, D. Berger, R. Gruber, to be published in Physics Letters
- [6] J. Rappaz, R. Gruber, D. Berger and K. Appert, to be published.