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Abstract

We treat the variational problem of ideal one-dimensional MHD stability by
the method of Ritz-Galerkin 4 . Finite elements are taken as the basic func-
tions. In order to find the best approximating elements we have performed a
radius dependent transformation on the eigenvectors. The matrices of the

transformed eigenvalue problem are given explicitely.

This report serves as an appendix to published papers [2, 5, 6].
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L. Normal mode analysis

We study weak perturbation of a cylindrical ideal MHD equilibrium. The

perturbation is described by the normal modes [i, 2, %J

.g)(t,r) 6,2)= g(r) exp [t’(wl:+m6+&2)] ieh
?(r) - (gr 86 §3)= (S/Lft}z) _i.§3)'

The linearized equations of motion can be brought into the variational

form of Hamilton's principle
2
wgkzgw\o (1)

where the potential and the kinetic energy of the plasma are %igen by h/r,

2 1
and (D K respectively, WP and W kare quadratic forms of S (r) .
Takeda et al. [}] have shown how the problem (1) can be treated by the
method of finite elements. In this approximation problem (1) reduces to

an algebraic eigenvalue problem.

=
Takeda et al. [l] approximate the real physical displacement _§ (\') by
linear admissible functions. However, it may be more appropriate to

expand a transformed displacement

TE=UWE )

in a series of finite elements lé.].
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The transformation taken in [é] has given better results for the displace-
ments near the axis. In [?] it was shown that the singularities induced by
the cylindrical coordinates may give rise to numerical difficulties near

the axis. Further it was shown that these difficulties may be removed by

a special choice of U. Then there was a difficulty of a different character,
which could not be removed at that time. One class of solutions was badly
represented, because the internal condition (div !g 0) characterising this
class, could not be exactly fulfilled with the linear elements. So we
proposed to use constant elements [b] together with another transformation
U which allows to satisfy the internal condition. Therefore we have chosen

the transformation

W(r)- br ';'Ll:sy 0 (3)
0 o drt
where o , /Q s y’ , S , b , C and d are constants. Note that 52

is not mixed up with the other components, because the regularity conditions
at the axis [?] have no influence on .g 2 - Because (1) contains only deri-
vatives on S’r the form of U will introduce only derivatives on

So U is a simple generallsatlon of the transformations used in [? and [6]

The expansion of qt(r)ln finite elements is given by
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where the elements are denoted by Yﬁ , ti and i » the expansion coef-

ficients by ,R Q and 2 - Note that the numbers N‘,, Ne Ni may differ

by 1, if a mlxture of llnear and constant finite elements [é] is used.

Let us define

ST
X (Ri 03 R,,8,,2,,0)= (x/l,....,xm) )

where ¥ = Nr-l»N 9+ Na - Then (1) can be written in the form

1 A

w ) Ry Odr)x =) Gp®dr[x B=t-

K:i K’-'l
0 )
Let us denote the total number of integration intervals by N and a specific
interval by i. Then the matrices R and C may be written in terms of partial
matrices (‘R ) and (C, ) which are for U —ﬂand linear finite elements
v

the same as in [] . They are given by
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The factors CL!71 are the contributions of the basic functions and are de-
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o (10)
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termined by:

‘lv/u’eve,u ’ ',/494,...., 8 (11)
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2. Boundary and regularity conditions

We want to solve the eigenvalue problem

(C--Lu"P\)J(§ =0

(12)

with C, R symmetric and R positive definite.

(2 -3
W is the eigenvalue and X the corresponding eigenfunction.

The boundary and the regularity conditions are

Er(r’i) =0

(13)



-
ﬁ§0=®=0 (14)

The regularity condition (14) is satisfied, if the matrix elements of (7) and
(8) are finite at Y= . The transformation used in [?] corresponds to the

parameters
b=c=d=4, d=|m—4),-ﬁ=¥=$+25mi ) S=]m| (15)
where gm4 is the Kronecker symbol.

This transformation was specifically chosen to describe the asymptotic behav-

iour of the displacements in a 6 pinch at r = 0.

For the case w > O > we propose here a weaker condition to fulfil the regu-

larity condition (14):

BtP=0,d=0,8=0 bcm=4 (16)

In stability calculations AAU .g-)z _’;"_(rgi)"* V_:lg + &g . is for
i

some eigenmodes very small [?, 6 Or even zero [?, 6] . In order to describe

this fact we have to choose the elements properly. The parameters b = 1 and

=R

c = correspond to the transformation

Qizgi

'l ] §!+m£z
A r

(17)

(RER Y



Taking for rl linear and for Q' and fl' constant elements, we are able
3

to describe the divergence exactly.
It was this choice of transformation and elements which made it possible

to calculate degenerated modes [b] , localised modes [S} and even singular

modes with a continuous spectrum.
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