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Abstract

The stability of a straight plasma column confined by a static axial
magnetic field and a small oscillating transverse magnetic field is
discussed. Growth rates for the most important parametric instabili-
ties are obtained. The influence of damping in providing a stabilizing
mechanism against these instabilities is discussed and a set of sta-
bility criteria are obtained using a viscous fluid model for the plas-
ma. The possibility of suppressing the fastest growing instability by
"wobbling" the frequency of the applied field is also discussed. An
order of magnitude calculation for dynamic stabilization of a toroidal

plasma is presented.

Lausanne



I. Introduction

The problem of transforming the stable straight 6-pinch into an equili-
brated, stable toroidal configuration by adding some suitable additional
static field, is still unsolved. Various schemes which use additional
oscillating magnetic fields to dynamically stabilize the confinement have
1-10 .
been proposed . In the present paper we return to the transverse oscil-
lating field scheme proposed by Weibe15’6, which consists in superposing

an oscillating axial current to a 8-pinch configuration.

The original basic idea6 is to oscillate the current at a very high fre-
quency. The plasma then feels an average force due to the current and,
providing certain geometrical conditions are met, this force is a posi-
tive restoring force. The marginally stable 6-pinch then becomes posi~-
tively stable. The system could then be curved into a torusll, the oscil-
lating current providing a dynamic equilibrium; or, alternatively, a
small amount of "bumpiness" or a small steady axial current could provide

the toroidal equilibrium without destroying the stability.

The minimum frequency has not been determined precisely. Weibel5 has shown,
in the case of a high-8 collisionless plasma, that a frequency larger than
the transit frequency of an ion across the plasma column should be suffi-
cient. For a collision dominated plasma, the frequency will always be
higher than in the collisionless case, since the damping is smaller. The
transit frequency is already very high and application of a frequency of
this magnitude causes great technical difficulties, while leading to a
prohibitive ohmic heating of the plasma. We want to reexamine this problem

in order to investigate the possibility of using lower frequencies.

To study this problem we assume the plasma is field free (B=1), surrounded
by vacuum. Because the dangerous modes all have long wavelengths (low fre-

quency approximation) we describe the plasma behaviour by a fluid model.



We can summarize the results in the following manner. The oscillation
increases the stability of the non-resonant modes which have k = o0 for
all m » 1, while for m = o it reduces only slightly the stability of the
2
6 -
The most dangerous modes for stability are those which are in parametric

non-resonant modes. This stabilizing influence is proportional to B

resonance. Without dissipative terms, these modes are always unstable
with a growth rate proportional to Be. If one includes damping there is
a threshold on Be for the onset of parametric excitation which defines

the limit of stability.

We find that a plasma of radius a, confined by a static axial magnetic
field BO and an oscillating azimuthal field Be coswt and surrounded by a

concentric, perfectly conducting cylinder of radius b is stable if
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¥ is the ratio of specific heats, )) is the ion transit frequency for the
p

plasma ('Qp = u/a, where u is the sound speed in the plasma) and :\is the
effective ion collision length for the plasma. If (1) is violated, a para-
metric excitation of a long wavelength kink mode appears. Condition (1)
was derived using a fluid model for the plasma, which remains valid only
for :K.(ad However, a calculation using the Vlasov equation13 shows that

(1) remains correct, with :\of the order of a.

If the straight pinch were curved to form a torus of major radius R, there
is a minimum value of € which would be needed to compensate for the out-

ward toroidal drift and prevent the plasma from touching the wall. For an



average displacement of the equilibrium position of the plasma column
b-a

3 » @ new condition is obtained from (0,
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This shows that.for any reasonable R/b, ¢)would have to be near \%f

By "wobbling" the frequency 6 by a small amount AW, the condition (1) is

weakened and becomes
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which gives a new condition on R,
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which is still very stringent.

It appears therefore that dynamic stabilization of a 6-pinch, using a
frequency appreciably below the sound transit frequency, cannot provide
a sufficient restoring force in a torus of reasonable dimensions, for
equilibrium. Other possible ways to equilibrate the toroidal drift must

be considered.

II. The Basic Equations

A. The Steady State

The magnetic pressure P at the plasma surface is



P
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where P, is the average pressure. Under the influence of the small oscil-
lating pressure, the surface will also oscillate. For small @), using an
adiabatic equation of state, we find (cf. Appendix B, eq.(B7) )
el

a(t) = O.,(l - iy am&wl:)

where a is the average plasma radius.

To study the stability of the system, we consider small motions of the

surface of the form
iz +inn
r=o()+t (Rt)e

To find the equation of motion for E(t) we shall compute separately the
perturbation of the magnetic pressure P, (t) and of the plasma pressure

pG(t) in terms of E(t) and then equate them.

B. Perturbation of the Magnetic Field

The surface deformation causes a change in the magnetic pressure 1
the deformed surface, which has been computed by Weibel to be

Bt D[ Yo la®)
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+ ¢t conawl'] (5)

where

Yo Bx) =K GBI () - T (R K (i),

In(x) and Kn(x) being the modified Bessel functions.
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Expanding (5) in powers of € and retaining terms up to order € we

find

PR b= K Eg(&,k) g X (R) + By (R) conwk + By (R) wn(amt}z

(6

where
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and

Xn(k) =

(9)
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where
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The properties of the functions fn(k) and hn(k) have been studied by
Weibels. Both are positive definite, hn(k) being a monotonically increa-
sing function of k, while fn(k) is a monotonically decreasing function of
k. All other properties of these functions necessary to the development

of this paper will be quoted in the text when required.
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It may be noted that An(k) 1s of order € while B (k) is of order §°.
n
However, in discussing non resonant interactions, it will be shown that
.. . . 2
these coefficients appear in the relevant equations as An(k). Hence,
7 .
contrary to work reported by other authors , we retain terms of order
2, . . . . . .
€, in X (k) in order to remain consistent in our discussion of these
n

interactions.

C. Perturbation of the Plasma Pressure

The surface perturbation E causes a change in the plasma pressure
in® + ik . :
Sp(r,t) eln tRz, Assuming that E(t) = o for t & o, the equation for
2 . . . .
the Laplace-transform of Sp (to order £7), derived in Appendix B, 1is of

the form
+ vy - B % (s-0i
vLeR )+ (Hut) s, ()= Elé Hp (5,) § (sr2ie) + H, () § (5-2 w)§<12>

where a superposed tilde has been used to represent the Laplace-transform,

defined through (+ 9]
E(s) = | dk efStg(t-)

o
The right hand side of (12) represents the coupling between the plasma
o

pressure and the forced motion, and since its dependence is on E(sf 2i0))
the effect of this term in the final dispersion relation will be to modify

the function Bn(k) in equation (6).

We have also shown in Appendix B that
t w?
P1 (SvOD) ~ O (\J‘ )
° P

N (sw) ~ o(8%) » n#e

4

Thus the correction term in §p due to the alternating field at most is of
T wt .
order € ‘5?_5 s while for the most dangerous mode (n=1) the correction is

P



of order 59‘ -:To—:- . However, from equations (6) to (9) we may observe
that the terms of order &? in the magnetic pressure response are inde-
pendent of the applied frequency, and since we are interested here in
the low frequency limit, we feel justified in ignoring the effects of

the alternating field on the perturbed plasma pressure.

Neglecting the right~hand side of (12), we find

§p = =R (0.2 2) ¥ (R,n)
'é(nh)-‘, A ¥ In(Rya) (13)
§ [} hd ?— '
°u thK(&“&)
where k}21 = - k2 - 32/u2 and we have used the boundary condition on S:;r
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Inverting back to time,the perturbed plasma pressure pG(n,k,t) may be

written in the form

t
P(T(n,h,k') == | RORE-4) E.n(b-»*') dt’ (14)

0
where R(n,k,t) is defined through (13).

We are now in a position to discuss the dispersion relation for the sSys-

tem,

III. The Dispersion Relation in the limjit €£=0

Using equations (6) and (13) to equate the magnetic and gas pressures at

the perturbed plasma surface in the absence of the alternating component



of the magnetic field (i.e. & = 0), one obtains the dispersion relation

(Y N S¥ Iy (hyo)
a ut By Ty (R, 0)

(15)

For each value of n, the eigenmode solutions to equation (15) are an
infinite set of purely imaginary functions of k. In Fig. 1 the two lowest
frequency modes O = ls‘ are plotted as functions of k for each of n = 0,

I, 2. It can be seen that for each value of n there is a mode which starts
at the origin and increases with increasing k. Except in the case where

n = 0, the higher frequency modes at k = 0O are solutions to Jn(cL,k/u) = 0,
and the frequency of all modes again increases with increasing k. For

n = 0 it can be seen that the higher frequency modes are slightly above

the zero of the Bessel function for k = 0, but otherwise follow the same

pattern as the higher n modes.

4 mz0

ms12

Fig. 1 Schematic representation of the first natural
frequencies of a 6-pinch for m = 0, 1, 2 and

ak < 1,
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We examine first the limit k=30, for which one has forn = 0O

X (B.)~—->

(ij,) (16)
and for n # 0O

3

R, (3_) — (_Q%.) (17)

where ) s+(a,[b)z,“‘
7“ - "Ca-lb)zhﬂ

In the case n = 0, equation (15) has a solution in the limit of small k

~'h
[H—-((ba)—l)] " (18)

together with a series of solutions of the form

2
oL = o¢o+°¢—§l (blo.) —l] (19)

where QO are the series of frequencies defined by

30 (.0(0/1)‘3) = 0.

For higher values of n, there is a mode which, for bmall k, is given by

o
0
oL = (‘—87—) (lELfﬂp

(20)

There are also a series of modes described by
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where OLn satisfy Jn(OCn/'vg) = 0. From the form of (20) and (21) and
the definition of’?n, one may note that for large values of n wall

effects are negligible (i.e.12n ~1).

As k—»W0, hn(k)~—>lak' and the mode described by equation (18) becomes
o = LLQL)

while all other modes approach asymptotlcally the value

ol =—?-[\/(|+xl -3] u‘\t

In the next section we shall discuss the effect of the oscillating field

on the modes which have been described above.

IV. Influence of the Oscillating Field

For € # 0, equating the magnetic and plasma pressures at the deformed

interface given by equations (6) and (14) respectively, one has

(X (R) +ip (B) coa(wh- ¢) + B (B) o0l (w-¢)) _S%ﬁ,_l-)
b

(22)

Pl ROEEE)E (AE)dY <o,

o
where @ represents the phase difference between the oscillating field

and the perturbation, which is arbitrary, since the perturbation may be

created at any time.
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We examine first the effect of the oscillating field on the non-oscil-
latory term, Xn(k), of equation (22). If £ # 0, it can be seen from
equation (9) that the oscillating field introduces a frequency shift

on the modes described in the previous section. Since the correction to
Xn(k) is of order 8,2, it will be of importance only in the region where

hn(k) is small. For n = 0, one has

£ (k) = o,

and hence the effect of the oscillating field is destabilising. However,
since ho(k) is finite for all values of k, the correction term will never
become important. For n # 0, discussion of the effect of ¢ may be res-
tricted to the region where k is small, since hn(k)—ﬂpo as k-=»o (Cf,

eq. (17) ). In this region one has

£ = Inl

where, as remarked earlier, 12{1;; 1. Thus, from equation (9) it may be
noted that the effect of the oscillating field is a stabilising one,

since near the origin

A
X (B) ﬂ';ﬁ&) + € (M, Inl-1).

We now proceed to examine the effect of the oscillating terms on the sta-

bility of the system under consideration. As is well known, the most
dangerous instabilities which may be parametrically excited in a system
are those for which the applied frequency, @), is exactly one half of the
natural frequency, O, of the system (i.e.Q =0)/2). Parametric excita-
tions may also occur when O is an integer multiple of @ /2, but these are
of higher order in § and are therefore less important. In the absence of
dissipation, one does not expect non-resonant interactions to play an
important role. We shall consider the regions of interest (i.e. those re-
gions which may produce instabilities of order up to and including E.z)

separately.
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Since we have assumed that the applied frequency @) is smaller than the
plasma transit frequency, parametric interaction between the higher fre-
quency modes described by equations (19) and (21) are of very high order

in € and may therefore be ignored.

(i) Non-Resonant Interactions

A purely imaginary mode s = ie¢ will experience a frequency shift due to
the presence of the oscillating field which, when &/ and Ware not in re-

sonance, is given by (Cf. Appendix A eq. (A5) ),

A (@)
“Ldi(s)

[%(s+£w}+%(s-im) ) (23)

~ ol
where d(s) = n + s R(s) = (s). In the absence of dissipation therefore,

83313 purely imaginary and is given by

ety [ 1
oS = 1Y @) T & ) (24)

for n # 0. For n = 0, §s is of order €_4 since A (k) = 0, and these
interactions may be neglected. Equation (23) is no longer valid in the
limit 0L <€) and we must use equation (A6), which is given, in the ab-

sence of damping by

Ao (%)
1d’ (o)

,.(t)

$S =

Be g Ciw) ~ot 3 ﬂe% (wo) 025,

. . . 4
Once again, for n = 0, non-resonant interactions are of order § . For

n # 0 one has

d):25afitn>o  and
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(26)

and we see that the oscillating field stabilises all modes for n # O.

(ii) o{ =W/2 : In this region an instability is excited, and its growth

rate is given by (eq. (A8) )

R, (k)
ld‘(o() l

HO.I, (ss) = (27)

The width of the spectrum 8 over which the resonance is important is

given by Sw .9.SS

Once again one may observe that for n = O no important instability is
excited in this region. For n # 0 one finds, by substituting the appro-
priate values in (27), that the instability has a growth rate which is
given, to order & by
o
6S = El?'i— v (28)
y” T

The validity of this calculation requires that

%S < w/?.)
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which yields the condition

2
| ¥ w
£ <« —
n .‘2\'\ Q.VP

At first sight, it would appear that the most dangerous modes would be

those for higher values of n, since the growth rates in (28) are un-
bounded functions of n. However, as will be demonstrated in the following
section, the stability criterion obtained when damping is included is
independent of the value of d'(s), and the n in equation (28) and its

associated validity condition derive precisely from this term.

(iii)0C =D : In this region parametric instabilities are also exci-
ted, with growth rate given by equation (Al12), which becomes in the ab-

sence of damping

[ ()2 X, ()8, )
Mox (9= 20(e) X, (&) 2

Thus we obtain

2
¥var(bHat-) +a’+ bt wed 0
S= (30)
802 (2 +x (b¥a-)) ’

"
o

d
arn ‘)z_
s (?nwxlu)n B ig_ Cngo

- 2%

Summarizing, we see that in the absence of damping this system is always
unstable, due to the parametric excitation of long wavelength modes, the
maximum growth rates being of order € . If one includes dissipation, these
modes become stable provided € is sufficiently small. We now derive the
relation between damping and the maximum value of § which can be used

without destroying stability.
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V. Influence of Damping

If one includes the effects of damping in the equations for the system,
one finds the response function i(n,k,s) is no longer purely imaginary,
but contains a small real part, which displaces the resonant frequencies
6L away from the imaginary axis. Assuming the damping is small, the new

eigenfrequency may be approximated by
ocff\z?i,(ic()
& Gl

11
[l

(31)

where

dy ()= Xy - Tra R ) and d ()= 0

Clearly, if Re(s) in equation (31) is greater than the frequency shift
due to parametric excitation the system will be stable. In order to sta-

bilize the most dangerous mode, given by equation (28), one would require
ii < .._EiZﬂi___. ‘KQ Ei ('CUO
e R (32)
L] 'h 2
Po (¥ )

while the higher order modes, described by equations (30), will be sta-

bilized provided

T QW a’(a?+b')
€ <— |14
Po ¥ (b- o)

z Qw
B Gy ¢ ), "o

Reﬁ,(tw), Nn=0,

(33)

respectively.

Clearly condition (32) is the most stringent condition on &, since the

other conditions are on g_ and Re R(luu) is an increasing function of QO .
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~
These relations are useful, since Re R(1w) is an experimentally measur-

able property of the static system.

A realistic assessment of the effect of damping is, as usual, much more
difficult to obtain than the (model independent) spectrum of oscillations
for the system. We shall endeavour to give an idea of the characteristic
dependence of Re E(i%) by using a viscous fluid model to describe the
plasma. In view of the uncertainties involved, we shall use the values of
Re ﬁ(iOL) already derived for a slab model12 in the limit of small k, the

Im R(i0,) being essentially unaffected. One finds for symmetric modes,

Ne & (id)= — oA ot ¢ Bf“u"(bfy."-a’“)

o (Bryt-at)t ) 3 ) (34)

while for antisymmetric modes
S - QLQ,
Ro R(I) =y 2 Kok (35)

where ZO = O)Ou, o)o is the fluid density and 7\ =Y/u, VY being the
kinematic viscosity. One may note that 7\<is effectively the ion colli-

sion length for the plasma.

In cylindrical geometry, the symmetric and antisymmetric modes in the
slab model may be used to represent the modes n = O and n =1 respec-
tively. For these cases, the stability conditions (32) reduces to con-
dition (1)

. i
w ¥

£ < — | —
3 \n)

1A
b a

while conditions (33) become
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The modes n » 1 have an effective wavelength given by k an/a and since

damping is strongest for shorter wavelengths we would expect the sta-

bility condition on & to be much less severe for these modes.

Finally, for non-resonant interactions, we note that if the pressure

response function ﬁ(s) is written in the form
k(S) :(R,‘-}%og'{-qlg +%%S )

then the real part of the frequency shift due to both damping and the

oscillating field is given, from equation (A6), by

9
102 BT E )
w Ry w* Q3

Re (s8) = % 1-

(37)

where x represents the damping in the absence of the oscillating field

(x £ 0). In the present problem
"%c>0'
Ro=% o, Ry=0, Ry Lt\)P?’

and hence the effect of the oscillating field is small but stabilizing.

Substituting the appropriate values in (37), one has

w? 2(2- (38)

We have shown, therefore, that there is always a value of € below which

the system is stable to parametric excitations. But the maximum size of £,
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say thx s goes as Qsi— - The stabilizing effect on the long wavelength
modes is of order E,z and thus goes as ({%lﬁ . The coefficient is of the
order<%§ » which as remarked in the introduction, is at most of the order
of 1. The conclusion 1is then, that @) has to be chosen very near Xé in

order to have a practically interesting stabilizing effect.

As emphasized previously the damping is model dependent. It may be that
other dissipation mechanisms are more effective than viscosity. But the
essential difficulty lies in the fact that the stability condition is
linear in € while the stabilizing effect is in g? only. If it were possi-
ble to suppress the first order parametric resonance responsible for the
condition (1) we would be left with the less stringent conditions (36)
which involve £F. If it were possible to suppress the second resonance
the next condition would be still better, involving E?, and so on, but

in no case can one hope to go much below & 2= (-—3)—-) We now examine pos-—

sible ways to alleviate the most dangerous parametric instabilities.

VI. Suppression of Parametric Resonances

We have already observed that the mode n = 1 is the most susceptible to
parametric excitations. In the absence of dissipation effects, the un-—
stable region is given by

o 'R h o
¥\ @ Y b [X) @ ) v
m) oo () S ek <[] o [reely)
12\ i.))P 121 e

Since the most dangerous modes are of long wavelength, they are not sen-—
sitive to finite skin effects. The only possible method of suppressing,

or at least weakening this instability, is by "wobbling" the frequency W .
To estimate this effect, let us assume the frequency spectrum of the
oscillating field has a width + A® around W, and that AW D E V.. The

e

maximum growth rate in the region is reduced to
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§S = ¢ (—X_) VP _A_u_;t X (39)

since a given mode is at most unstable during a fraction LSS/AUJ= ¥haw
of the time. This result is precisely what we are seeking - the growth
rate has been reduced to order 82 instead of order ¢ . This "wobbling"
will be even more effective on the higher resonances, which have a
smaller width. Using (35) and (39), we arrive at condition (3), quoted

in the introduction,

2 1
e ¢ u()\)(x go_) Aw
e la/im )Y v,
§ Vo) \¥p P
Thus we conclude that by wobbling the applied frequency it 1s possible
W

to suppress the most dangerous parametric resonances, provided & <« I
: : C . w P

The inclusion of dissipation may permit values of € ~ Yo but this

would appear to be the most optimistic value of g€ which this system could

tolerate.

VII. Dynamic Stabilization in a Torus

If the straight ©-pinch were to be curved into a torus, the plasma would
experience a net outward force due to the axial field. To first order in
the inverse aspect ratio, this force can be represented by a forcing term

in the n = 1 component of the magnetic pressure, given by

78 2 [ B
SP‘-‘-"YE %O =ogm P (40)

where R is the major radius of the torus. The average restoring force due

to the alternating magnetic field may be represented, to lowest order in§

by
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- = € (R0
Sp‘ =X (0) § (%=0) = QZPO (‘?\‘") E(& ) ~ (41)

The oscillating component of the restoring force causes an oscillation

of the plasma column about the average position g (k = 0), but provided

t.<

~
for the mean displacement

0 @
o) TR

In order to prevent the plasma column from touching the wall we require

—

B (k= 0) ¢ (b-a)/2, hence

5? » this amplitude is negligible. Equating (40) and (41) we find

£ > R/ (04b) (42)

However, in order not to excite any parametric instabilities, either
condition (1) or (3) must be satisfied, depending on whether the applied
frequency is "wobbled" or not. Using these conditions we derive the new

conditions (2) and (4),

2 Y
i Q. x-g (7)

T —P

w )
R o\ -2 :)El Y
o 2 (37 (3) (&

which are both very stringent. Thus we conclude that the outlook for

Qb

dynamic stabilization in a torus is rather pessimistic.
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APPENDTIX A

Consider the equation t

[" * Hoob (wt- ) + %cob(awt—w)}m) + [R(t-t‘)‘é(t') dt':o,

©
@ being an arbitrary phase. By taking the Laplace transform of this equa-
N
tion we find the difference equation for E(s) (a superposed tilde is

used to denote transformed quantities):
E ! ahS N g
E(s) = - v F\%(s)g(’, E(s+iw)+e "E(s-iw)

_ _‘2. g% (s)ie,’wg(sncwﬂ e.""‘gtsﬁze@}

(Al)

+ R (0) R %(})

%(S X +sR,Ls)

The poles of g(s) are the natural frequencies of the static system

(A =38 =0).

If A and B are non zero, the poles of E (s) are given by the zeroes of

. .. . 12
the infinite determinant D{s)

(A2)

D(s)= " S),'m T (3(S+ Lew) B%(’ﬂ' Qo) S_e n

where -2/,“1 take all values between - and + 00 . Because of the

symmetry relations
DI
DG+iw)

O
D s)

4

1
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the zeroes of D(s) can be divided into subsets of the form
. * .
gch LQLO'EL+LQ.O.)J' ~w<¢femw )

which we shall denote for convenience by zi . Whenever Im zi = 0{(mod %g)
. x . .. . . . .
the points z. * ptco coincide with the points 2.+ 1Q00 and the "density"
. . . w
of zeroes in the set gzii 1s then half of the density when Im z, # 0(mod 37).

We classify the zeroces in the following way. A column of zeroes gziz is

said to be

class~M if Im z # 0 (mod %?)
class-{} if Im 2z = %’) (mod @y )
class=0 if Im z = 0 (mod W)

D(s) is an entire function of A and B and can therefore be expanded in

powers of these coefficients. We are interested only in the first two

.. S 2 4
parametric instabilities and hence we keep terms of order A, A , A, B,

2 2. . . . .
B”, A'B in the expansion (i.e. order Eﬁ), and find

I)(s):l-(%)’-i G'(anw)Jr(%_)'* Z G_'(si-iﬁ‘w)g-'(s-}&zw)
B Qﬁ.le
& 0~

- (_E.)l z G, (s+ LQw)-&{T p\zgg; Ga(sn%)%(m@m}

(A3)

8

6—‘ (s) = %(s) %(Sﬁw) , Gz(ﬁ) = %(S-Cw) %(s+€w)

In the limit A,B—>0 the zeroes coincide (modulo @) with the poles of
g(s), namely with the natural frequencies of the static system. We denote

%
these zeroes si(si ). For A and B # 0 but small the zeroes will remain in
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the vicinity of the poles (the poles are fixed). We consider successively

the various possibilities.

a) non-resonant case:

We follow the zero which for A,B—» 0 coalesces with the pole s, We assume
that g(s+ieoo)== 0(1) for-ev# 0. This implies in particular that Im s. #0

Omxiqg). D(s) can then be rewritten, kee ing the leading term
2 p

DW= 1 Mg|g e io) +q (- o)

(Ad)

In the vicinity of s. we can expand
da) = %_‘ ()= x + AR B) = d (1) (a-n))

Replacing for g(s) in (A4) we find for the zero located in the vicinity

of s, :
1

B . :
A-,b({-m %(Aii‘(.w)*\-%(/ii—(.w) (A5)

These zeroes are of class—M.

When Im s is small, the approximation for d(s) becomes inadequate, because

*
of the presence of the other zero at 5. - In this case we approximate d(s)

by

d(s) = —5‘.- d,“(x){(s-x)z + Al] (@ (x) real)

where A = Im s; and x = Re s Substituting in (A4) we find for the two

zeroes in the vicinity of s and s,
i
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=X+ W Re g'l ) +

S
2d" (x)

- At R Re (xﬂu;
m % (A6)

"t
When Re g(x + iw)/d (x) » 0, the two zeroes which are of class—M move
towards each other as A increases, coalesce on the real axis, then se-

parate again giving two real zeroes which are now of class-0.

b) The first resonance case:

D d

When Im s. = T the terms in g(s - iw)) are very large. Retaining the

| N Hz
b(b\ = | -—q- A2%(A)%(A-Lw)¥ }- q'd-'biit(b'bi)(’).bi{Fﬁm)

where SUD== W - Inm S D(s) = 0 has the two roots

leading terms in equation (A3) gives

. 2 !
Lsw \ A (A
- " e e—— + — had Xm
A=hi L T2 ld )l 47

For A = O we recover the roots s and si* + 10). As A increases these
two roots move together with Reg = constant and coalescg when.su)=(a£%731.
For A>S(D‘O.|(5{)‘the two roots are on the line Im s = E-iu-) and are thu; of
class~{L and the square-root being real, one of the roots is destabilized.

The maximum destabilizing effect occurs at $w = 0 for which we have

(Re i

2]d'(a;)] (48

For a given A the half-width of the resonance (corresponding to the square

A
ld' (a)]

A)mm = Qen; +

root being real) is

dw =




3) The second resonance case:

When Im S, = W the terms in g(s - 2iW) are very large in the vicinity
of si. We must therefore retain these terms in equ. (A3). Bearing in mind

that B ::O(Az), we approximate D(s) by

NONE (_‘;_)1 §)[g (s +i0) + qls-iww)]

- () 3ty ge-aco]

t (—H‘% (5)9(s- 2‘Lw)h (s~ tw) §% (5 -3iw) *8(S+Cm%A9)
¥ % (s-3tud g (s 4 cw)} (_%_)2%@) %(&2‘&0)

b W8 gl gls-2i) g (s -t

We write s = x + i) + $s, S, T X+ i + iSw (x, S real).
We have for small SUO and &5

d(s) = d' (s¢) (88 - ( Sw)
d (s-2iw)= A (8) (65 + { sw)

Replacing these values in D(s) and returning only the leading terms we

find the equation for §s

, l ) ' ;
601 st s efa sl guesecal
+(%)q[3%(x+z£w)lz+ zg(X)Rea(HZiw)}—i- Gz+t AR %(") t (a10)

. }d\'(gi)lz ng“‘J{ F\ZS(‘O Im}d'*(si){%(xﬂg(x +Zim)]§ =0
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which has the two solutions

-

T AL (o) X
Sz=x 4w+ Re o (—g-)i M—(&m D (A) (AL1)

(s3] gla' syt U leeit| 2

where

o =q" (s;)[%(x} + %(x + ziw)}

For A = B = 0 the two zeroes are in s and s, + 2iéu), which are two
elements of a row of zeroes of class—M, As long as the square root is
pure imaginary, the real shift is proportional to A2 with a coefficient
Re k, which is small if damping is small. There is resonance when the

square root becomes real, namely

_Ml S}Sw _(_Q_)?' Imac

. INg-28
21d' (s¢Y) L) sl

T oad(s) ]

We now have two rows of zeroces of class=0.

The maximum destabilizing contribution of the resonance 1s given by

2
(ﬂﬂ 9) T X 4 |A7q(x)-28| (Al2)
QX 9_\(1'(5()\

Note that the half width of the resonance region is equal to (Re gs)max
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APPENDIKX B

Forced motion

We wish to investigate the effect of the oscillating magnetic field on
the plasma pressure. For the system under consideration, the unperturbed

magnetic pressure at the plasma surface r = a is

ﬂ
P:?O | + ret Y st (B1)

The oscillating term in (Bl) forces an oscillatory motion onto the plasma
surface. The effects on the plasma quantities due to this forced notion
may be obtained, to order E?, by equating the plasma and magnetic pres-—
sures at the unperturbed plasma surface r = a. We assume that the plasma
may be described by an ideal fluid model. The fluid equations, assuming

a scalar pressure and zero viscosity, may be written

2%
ot +V.%0 =0
(B2)

3 .
3¢ Bu)+v-(pL+3V0) =0

and

p |
+ U . ¥pvy U =0
at ~ Ve Ipy-Y

where p is the plasma pressure,‘% is the density, (Yis the fluid velocity

and ]{the ratio of specific heats.

To examine the effects of the forced motion on the plasma, we expand the

field quantities in the form



p = PO(H—Ezpp)
U= o g

523, (1+€23)

11

Equations (B2) now reduce to

ut ok Fﬁ roor 9r ()

. .. . 2
Applying the boundary condition (Bl) at r = a, we find that, to order £,

(B3) has a solution
2
Jo (527)
F- 2w
Io (3};

Since we wish to examine the limit QO <ﬁ;\) » we may approximate (B4) by
P

wn (2wt (B4)

22 _ )
- (\ - —03—9——-&-’-) (on (2wt )

F ul (B5)
From equations (B2) we obtain
wr . n
Up = — Mn(2wt) (B6)
F~ oy
and
Sp= P | ¥
The amplitude of the surface oscillation may be written 2‘2 E s wWhere
(for UJ((\)P),
e L&
P~ Y (B7)
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Perturbed motion

We next consider the effect of a small surface perturbation of the form

ikt +in 0
foao g e

on the plasma pressure. We expand the plasma parameters in the form

Py (1+E8p. +5p)

o)zgo(us}s,; + 8%) (88)
= ¢t Y
U=e 0 & + U
Substltutlng (B8) into (B2) and discarding terms fk s : . LI (A.i“)and

%PL SS SU , whilst retaining the cross terms ? SP etc., we obtain

;583 - 2 + U 383

3?“7 SU g%gg Fgr+SVSu+S%V¢F
MYyt 25 u (89)
—_= + — VSp ¢ § — Vép +

at Ty P gts [%F P +83 VPF]

—(Sg-v)gp-(u -V)Sg‘?

95p

at

pp
+¥V-8U = %S&rr = U“F—gf +b’[epv-&g+s€v.gt]§

We now take the Laplace transform of (B9), introducing the rotation

A oswb

et

Ninowt

and obtain
~ ~ A A -~
885 () + 7.8V (s) -5 X [(v%p) -t 3FV-HSQ(S+2iu>}+S?r(s -zam}]

a2 A g . _C%fc_m;
£ ¢ [UF o +V~gF IS%(S%-Z&&)) 8% (s ZLU))E
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- 2 ~ L A -~ . — . \
589_’(9)'*-% vsp (s):-;: ﬁzg-‘% SFV(SP(S{Q\(»)*-&?(S -2iw)

¥ -‘;—: V@F (€3 (s r2iw)+ §% (s-2iw))
- L[(gg(suew)- 3§CS-ziw))-V] U
- L(gF°V)($§ (s +2iw) &:{(s-ziw»;

o~ bt 2 A g N A N
SSp+YV-§T=-1 € E[LVPF)~+K$F V-H&g(swcm)ng(s-m@] (810)

b L[VF—;—‘_—P(V ][Sp(sntw) Spls- ﬁtw)}g

£ . .
Henceforth we shall use S° to denote s % 2it). We may solve equations

(B10) to order C? by replacing quantities Sp(si), S%(si), SLr(si) by
A

the solutions to the equations
+ A~ ~
$TSp (M) +¥v.sU(sY) =0

STl st) + L pga(st) =0
~ + X P = (B11)
~ ~ +
RGst) = Spsh)/¥
together with the boundary condition at r = a
(st)? E (st w2 $5 (st)
% St P (B12)
Equations (B10) and (Bll) may be reduced to a single equation

PSP+ (s f s)= L5 §r SFENEEpE) oo

where
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~ \ aU l 12 int . \

LY A A (B14)
30’ (__.__ y L 9 Vg . OU’F +(" 5 )U *.\):E.;.\,rf_s_s_ 9.42_(31

R ATOR )

Equations (B11) together with the boundary condition (B12) have the
solution

0. STy el .
Sp, (st)=- u%*'.fn(h* £, (s1)

(B15)

where k;z = - k2

A A
- AT Substituting the values of Uk, g; and
S@'(st) in equation (Bl4) e

we find to lowest order in

- assuming s
1s at most of order Wand in the limit k=% 0 P
t2 2 ~
STty 9w \
(st Nl A
F, (86, s1)= Hau’ - +S+B. TE (8 nso
and for n # 0

~ X3
Fi(gfn(gt)):g%{ -‘H.o Yy _ .‘lt(.o(n’lwz

b
ut Py 2yt b )
(B16)
. 9 )
Iw ) duws? (ﬁ—i)*—L <t J&, " qwfz) Stz \§
Tty g9y ARV S T (S‘J
P P P .
"
Thus the RHS of (B13) is of order E? ﬁ%? for n = 0 and &2 f&_
for n # 0. y
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