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Abstract

The influence of a small, steady axial current on the stability
of a straight plasma column confined by a static axial magnetic
field and a small oscillating transverse magnetic field is dis-
cussed. Stability conditions are derived and compared with those
previously obtained in the absence of the steady current. The
possibility of obtaining a toroidal equilibrium by using a
steady current which is above the Kruskal-Shavranov limit and
dynamically stabilizing the resultant instability is also dis-

cussed.
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I. Introduction

In an earlier paperl), hereafter referred to as I, we have exa-
mined the possibility of dynamically stabilizing a 8-pinch using
a low frequency oscillating axial current. It was shown that the
stabilizing effect could be used to provide a dynamic equilibrium
for a toroidal 6-pinch. However, in order to remain below the
threshold of excitation of parametric instabilities, the aspect
ratio of the torus must be very large or the applied frequency
must be chosen close to vp, the sound transit frequency across a
plasma radius. For a torus of major radius R and minor radius b

the conditions are

(D

in the most optimistic case, where a is the plasma radius, A the
mean toroidal shift, w the applied frequency of the oscillating

current, Bz the steady axial field (B = 0 in the plasma), ée the



oscillating field at the plasma surface (rms value) and
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Combining the two relations (1) gives the stringent condition
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In this paper we consider the case of a dynamically stabilized
screw-pinch with a small steady axial current. We wish to exa-
mine the possibility of obtaining a toroidal equilibrium using
the steady current (which is then above the Kruskal-Shafranov

. .. 2,3 . A . . Ly
limit ) and dynamically stabilizing the resulting instability
with the oscillating current. We may briefly summarize the re-

sults as follows:

In a straight geometry the stability conditions are
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where Beo << Bz is the value of the steady azimuthal field at
the plasma surface and A the ion collision length. The second
condition in (3) shows that the maximum size of Beo is of the

order of JE~ S ée for a<<b. Therefore the steady component can

only be of importance at small compression ratios.

In a torus the relations (3) have to be completed by the equi-

librium condition
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Replacing EG and Beo by their maximum values, we get the condi-~

tion, in the most optimistic case A ~ a,

R 2 b-a V 4
> 4 nl — -z (4)
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This result differs only by a factor nIl from (2). Clearly the
steady current is only important if n, > 1. However, the most
favourable condition for stabilization of parametric instabi-
lities is Nyt 1, in which case the effect of the steady current

is negligible. It appears that further investigation should be



directed towards either a suppression of the parametric insta-
bility of the n = 1 mode, or towards finding schemes where

these instabilities cannot occur.

II. The Basic Equations

As in work previously reported1’7, we assume the plasma is field
free (8 = 1) surrounded by vacuum. We are interested in the case

w << vp , and since it was shown in I that the most dangerous ins-—
tabilities occur for long wavelengths, we shall consider only the
limit ak << 1. A further assumption, justified in I, is that the
interaction between the forced motion of the surface and the

perturbation may be neglected, since this interaction introduces

w2

v2

2y, .
4 term at most of order O € 1nto the equations and the

fastest growing parametric instability is of order e.

For convenience we write

B. =¢B b , B =¢B b (5)

where



Following standard perturbation theory, we suppose that the

plasma surface experiences a small radial perturbation £, given

by

ikz + ine
£(8,z,t) = in(k,t) e

The resultant perturbation of the magnetic pressure at the de-

formed plasma surface, p_» may be written in the form

gk, t)
P Py 7 {X (k) + A (Kcoswt + B (k)cos2ut (6)
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where P, 1s the average plasma pressure (po= %{1 + ez)Bj) and,

for the present problem (to order 52), in the limit ak << 1,
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The Laplace transform of the perturbed pressure, Pg is shown

in I to be of the form

Pg = s R (n,k,s) £(s), (8)

where, in the limit ak << 1,
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u is the sound speed in the plasma and Y is the ratio of specific
heats. The superposed tilde has been used to denote the Laplace

transform, defined through
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pG(S) = pG(t) e dt.
(o]
We may thus write
t
py(t) = - R(n,k,t = t') £(t') de' , (9)
(o]

where R(n,k,t) is defined through (8).

IT1I. Influence of the Azimuthal Field

If € # 0, the dispersion relation obtained by equating the magnetic
and plasma pressures at the deformed interface, given by equations

(6) and (8) respectively is

£ (k,t)
(X_(k)+A (k)cos(wt - @)+ B (k)cos2(wt - @))
n n n a
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where @ represents the phase difference between the oscillating
field and the perturbation, which is arbitrary, since the per-

turbation may be created at any time.

We look first at the n = 0 modes. The only difference brought

by the steady current is an oscillating term Ao(k)coswt, the
amplitude of which is of order 62. The contribution of this term
to the non-resonant modes is of order 64 and is thus negligible.
The stability condition for the nen-resonant modes is then

Xo(k) > 0. The possible parametric excitation due to the new
term Ao(k) is of the same order as the one due to Bo(k) which

has been shown to be of no importance in I.

For n # O the steady current has two effects: an additional

term of order €2 in An(k), which is negligible compared to the
leading term in e, and a destabilizing term in Xn(k) or order ¢,
The condition on the oscillating field such that no parametric

instabilities are excited is thus identical to that derived in I,

eb o« | —|[— — (10)



which 1s the first condition (3), where X represents the ion
collision length for the plasma if A < a and X = a 1if the
plasma is collisionless. For the non-resonant modes the correc-—

. 2 . . .
tion, of order €% is only important for marginal modes. If

An(k) = 0 the stability condition for these modes 1is
X (k) > 0.
n

Equation (26) of I shows that An(k) # 0 gives additional stabi-

lity, but this effect is negligible here when (10) is satisfied
2 y2
€2 v

2 R . .
(order —F® (ak)”™ ). This is in sharp contrast to the Berge-
2
)
)
Wolf scheme where it is precisely this term which is used to

stabilize the system. The condition Xn(k) > 0 is equivalent to

whic¢ch 1s the second condition (3). Note that (10) implies

X (k) > 0 as long as w < v
o P
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IV. Dynamic Stabilization of a Toroidal Screw Pinch

Finally, we wish to consider the stability of a screw pinch if
it were to be curved into a torus. The mean outward toroidal

drift of the plasma column is given by

(b2 - a2)

2 62 R ,
where we have assumed A << b - a. The oscillating component of
the restoring force causes an oscillation of the plasma column
about the average position 4, but this is negligible provided

(10) is satisfied. In order that the plasma column be prevented
from touching the wall and no parametric instabilities be excited,

we arrive at the rather stringent condition (4),

R b-a v
: p

a+b 24 w

Thus we conclude that the introduction of a steady axial current
will not provide any worthwhile contribution to a dynamically

stabilized toroidal confinement.
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