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Abstract

The study of the dynamic stabilization of certain plasma confinement

and fluid systems leads to equations of the form

t

(X + 2 A cos(ut -~ @)) y(t) + R(t = t") §(t') dte' =0,

where X and A are constants, @ an arbitrary constant and R(t) a sin-
gular response function. This equation is solved for all values of A
and the general stability properties of the system are discussed .
General formulae are given which relate the perturbed spectrum of the
system to the unperturbed system. For the case where the static sys-

tem has well separated eigenfrequencies, a perturbation expansion is

derived.

Lausanne




I. Introduction

The study of the dynamic stabilization of certain plasma confinement
[1, g’ and fluid Eﬂ systems reduces to the analysis of an equation of
the form

t

[X + 2 A cos(uwt - Q))} y(t) + R(t - t") §r(t') dt' = 0 (1)

o

The function R(t) is a singular response function which is characteristic
of the system, X is a constant, y(t) is a displacement about the equili-
brium position for the system and @ is an arbitrary phase which represents

the fact that the perturbation may be excited at any time.

In this paper we wish to examine the stability of the solutions to equa-

tion (1) when A is small, by developing a perturbation theory about A = 0,

II. Properties of the System

We introduce the Laplace transform R(s) of the response function R(t)

8

R(s) = e” 5P R(t) dt, (2)

o

where a superposed tilde is used to distinguish the Laplace transform.

We restrict this discussion to include only those classes of systems

for which the following properties of R(s) apply:



a) ﬁ(s) is analytic in Re s > O and meromorphic in

Re s £ 0 (3)
b) Re R(s) >0 in Re s > 0

s

c) Lim [ﬁ(s)lz M >0 for Lim |Arg s| s >

|'s ] s |
The fact that R(t) is real implies the symmetry relation

R(s*) = RrR¥(s)

The assumptions (3) are sufficiently general for most applications.

III. Stability of the System in the Absence of the Oscillating Term (4=0)

If A = 0, equation (1) may be resolved immediately by applying the Laplace

transform, giving

y(s) = g(s) R(s) y(o) (4)
where
1
g(s) = "
X + s R(s)

The symmetry of R(s) implies

g(s*) = g*(s) (5)

g(s), like ﬁ(s), is a meromorphic function. We denote the complex poles



*
of g(s) by S;» Ss and the real poles by P.-

If X > 0, one has Re s, £ 0, P. < 0 and the system is stable.

If X< 0, there is one and only one zero in Re (s) > 0. It is a

simple pole on the real axis. The system is thus unstable.

IV. Stability of the System with the Oscillating Term

The Laplace transform of equation (1) may be written

. -i¢~ i®~ .
y(s) = - Ag(s) {e y(s+iw)+ e y(s-iw)p + g(s) R(s) y(0)

This equation is resolved in the Appendix and gives

5 i Nk(s) 5 - ik@
y(s) = y(0) E R(s + ikw) e

ke D(s)
where
D(s) = 1 + E -1 8% (s) a2
g=1

S:(s)= E G(s + ik w) G(s + ikyw)... G(s + ik,w)

G(s) = g(s) g(s + iw)

= &

Nk(s) = Ak D F~k,0/s gls - igw)

(6)

(7)



and
K k
N_k(s) =A D E), k/;] I g(s + itw)

L=0

The minor D i,k/% is defined in the Appendix. From equations (5) and

(7) one may deduce that

D(s*) = D"(s)
and (8)

D(s + iw) = D(s)

We denote the set of points s + ifw, s* + 12w (where % is integral and

—wszsm) by { } . D(s) and N (s) are entire functions of A, provided
} {p and they are meromorphic on s. The poles of D(s) and

N (s) are inp [s} IJﬁ)] - The zeroes of D(s) are denoted by {r{‘ . The

identity
+0 _k[ ]
D'(s) 2 0,0/s + it
D(s) A Z G'(s + ifw) D(s + I7o) (9)
f=—co
shows that NO(S) = DD%;?/S has at least one pole in each row {ri} .

Thus, for almost all values of @ (which is arbitrary) ;(s) has also at
least one pole in the row {r.} . Since Nk(s) and Dk(s) have, in general,
the same poles, y(s) is regular in {g& , {p{} . However, it can happen
that a row {s£} or {b;} is not a pole of D(s) because of a cancellation
between the terms in (7). Since D(s) is analytic in A, a pole can only
decrease in multiplicity (or disappear) if a zero coalesces with a pole.
As it is impossible to have a simultaneous coalescence in N (s) of all
the poles in a row, y(s) has at least one pole for almost every value of
§ in the row considered. Using the convention that a zero which coalesces

with a pole is still counted as a zero, one can write a single stability



condition

Re r, 5 0 (10)

Classification of the zeroes of D(s)

In a row {ng there is always one and only one value r such that
0 <Imr < w/2. To simplify the terminology, we introduce the following

nomenclature. A row is said to be

Class-M if O#Imr # w/2
Class=-Q if Imr = w/2 (11)
Class-0 - if Imr = 0

The analyticity in A implies the conservation of the number of zeroes
less the number of poles (counted with their degrees of multiplicity)

in the interior of any closed contour in the s-plane, as long as no

pole or zero cuts the contour. Since the number of poles is constant,

the number of zeroes is consequently constant. Consider the half-hand
defined by Re s 2 -c(c 2 0), 0<Ims < /2. D(+ ») =1 and no zero can
penetrate in the domain from + . The symmetry relations (8) imply that

a zero never leaves the domain by the boundaries Im s = O and Im s = w/2.
When a zero reaches one of the boundaries, another zero, the image of the
first, arrives equally at the same point giving a zero of double multi-
plicity. The two zeroes can separate by staying either on the boundary

or by separating > One to the interior and one to the exterior of the
domain. Thus, if one uses the convention of dividing the multiplicity of
zeroes on the boundary by 2 (which can then have a semi-entire multipli-
city) the number of zeroes in the band can only change when a zero crosses

the boundary Re s 2 -c. On making ¢ » - = one deduces that the number of



zeroes in the band 0 < Im s < w/2 can only change by the appearance or

disappearance of zeroes at s = - o,

When A + 0, D(s) = 1, This implies that the zeroes of D(s) coincide with

the poles of D(s). One has therefore

{ri} - {sl} U {p].} , (12)

with the same degree of multiplicity. We wish to follow the displacement
of the zeroes when A is small. To study the stability of the system, it
is sufficient to follow the zeroes which are either in the half plane

Re s > 0, or in the neighbourhood of the imaginary axis.

Displacement of the zeroes of D(s)

We limit ourselves to the cases where g(s) has either 1 pole (necessarily
on the real axis) or 2 poles on the real axis, or 2 poles which are com-
Plex conjugates. The more complicated cases may reduce to one of these
cases if the poles are sufficiently separated from each other (i.e. having
sufficiently different real parts). The other cases, which give rise to
other possible parametric excitations are treated in the same manner but

the results are not as simple.

A: g(s) has 1 pole in P,

For A > 0, D(s) has a row of single poles {p.) of class-0. By virtue of

o
the conservation of zeroes, this row of zeroes cannot change its class

unless it coalesces with another row of the same class. One can write

p(s) = pfo,0/d - a%g(s) D, (s) (13)



where D[0,0/é] and DT(s) are regular at s = po. The zeroces of D(s) are

given by the equation
D, (s)

D[0,0/s]

2

d(s) =X + s R(s) = A (14)

. . . . 2
Since the RHS is regular at s = Py 1t can be developed in powers of A

about s = P, which gives

d(s) = A2 [g(s + iw) + g(s - iwﬂ + O(AA) (15)

Thus we find, in lowest order, for the zero of D(s) which reduces to P,

as A0
2 A2
P=p *+—— Re g(p + iw) (16)
o ' o
d (po)

For small A, D(s) has as zeroes the row [ﬁ} of class-0, If P, is the only
pole, one must have d'(po) > 0. The sign of p - P, is then the sign of

Re g(iw + po)~

When X < O one has P, > 0. If Re g(x + iw) < O for 0 < x < P, the row of

zeroes {ﬁ} is displaced towards the imaginary axis as A increases and for

X

(17)
2 Re g(iw)

one has Re {ﬁ}~;0 and the system becomes stable. This formula is only valid
if X is small. If Re g(iw) > O the row of zeroes cannot cross the imaginary

axis and the system remains unstable.



B. g(s) has 2 poles on the real axis

We designate the position of these poles by m + A and m - A . When

A +~ 0, D(s) has 2 rows of single zeroes of class-0 at {m * A}.

For small A, each one of these rows is displaced according to equation
(16), but one has d'(m + A) > 0 and d'(m - A) < 0. If Re g(p + iw) re-
tains the same sign in the rangem - A < p < m + A, the rows of zeroes
will be displaced in opposite directions, approaching each other when

Re g(p + iw) < O and separating if Re g(p + iw) > 0. Equation (16) be-
comes invalid when the displacement becomes of the same order as A .

One may obtain an interesting formula if one supposes that A is small,
such that one may write d(s) = é:éEl (s—m)2 (d"(m) > 0). By substitution
into equation (15) one obtains for the position of the two zeroes which

reduce to m* A when A - 0,

2 A2 9 4 A2
Re g'(m + iw) AT+

d"(m) d"(m)

S =m+ Re g(m + iw) (18)

The new interesting case is that for which Re g(m + iw) < 0. For A << Ao,
where

2
A dll (m)

AS = - , (19)
4 Re g(m + iw)

equation (18) reduces to (16) and D(s) has 2 rows of single zeroes of
class-0 {st . If A = Ao the two rows coalesce into one row of double
zeroes and if A > A we have only one row of single zeroes of class-M,
{é} . This is another illustration of the conservation of zeroes. A row

M has twice as many zeroces as a row 0. For A >> A
o



A2 Re g'(m + iw) A
Re {é} m - — — (20)
2 A

Re g(m + iw) o

The sign of m is linked to the behaviour of R(s) in the neighbourhood

of s = 0 :
R(s) ~ R + R_s + R 52 ; R, >0 (21)
T o 1 /A |
R
When R_ > 0, m = - °© < 0 ; but if R =0 (implying that R, < O, by

virtue of (3b) m o~ 78,

and hence the sign of Re {g} is equally undefined.

> 0. The sign of Re g'(m + iw) is undefined

*
S

C. g(s) has 2 poles on the imaginary axis Sy» Sy

It is convenient to divide the section into separate cases.

nw
a) Im S # >

This is the non-resonant case. When A -~ 0, D(s) has a row of single

zeroes at {g& of class-M. To follow the displacement of the zero of

D(s) which coincides with s. when A + O, one may once again use equa-

1

tion (15), the term O (Aa) being regular in s,. One finds that, to

1
lowest order, the position of the zero is

A2

§ =g, + — [g(s1 + 1) + g(s1 - iw;x (22)
d'(sl)

The zeroes of D(s) are given by {é} . In this ordering, the row cannot
change class. Note that the sign of Re(s—sl) is undefined. As Im s, tends

to nw/2, the range of validity of this equation tends to zero and in this
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region a better approximation for the displacement of the roots must

be found.

b) Im s, * 0

*
The 2 zeroes s, = m + 1A, s. =m - iA(m < 0,A > 0) of d(s) are suffi-

1 1
ciently close to enable d(s) to be represented by

d(s) = Q:éﬁl [(s—m)2 + Aé]

1’ st when A - O are
. . . . . 2 .
once again given by equation (18) in which one replaces A" by - A", i.e.

For A > 0, the 2 zeroes of D(s) which reduce to s

2 A2 ) 4 A2
Re g'(m + 1iw) +\f- 2" +

d"(m) d"(m)

Re g(m + iw) (23)

For small A the zeroes in (23) reduce to the zero in (22) and its complex
conjugate. As long as the discriminant under the square root is negative,
expression (23) differs from (22) by an imaginary part, which corresponds
to a frequency shift. This shift is of no importance to the stability,

provided it does not invalidate the approximation made. In this case D(s)

has a row of zeroes {s;} , which is again of class-M.

* » . . * -
When the dlscriminant 1is zero, s, and s_ = s, coalesce and one obtains a
row of double zeroes of D(s) of class-0. If the discriminant becomes posi-
tive, then s, and s are real and D(s) has two rows of single zeroes {s;},

GL) of class-0. This can only occur if Re g(m + iw)/d"(m) > O.
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¢) Im ) = w/?2

When Im s; = w/2, there is a parametric resonance. If A = O, D(s) has
a row of double zeroes {si} of class-f, If either A # 0 or w is dif-
ferent from the resonance frequency w, = 2 Im Sy» the row splits into
either 2 rows of single zeroes of class-f, or into 1 row of single

zeroes of class-M.
In order to study this resonance, we write
D(s) =D [-1,0/5] - A? D%(S) g(s) - A% D2(s) g(s - iu)

- A% Di(s) g(s) g(s - iw) (24)

where D [—1, O/%] and the D%(s) are analytic at s = S and s = iw + ST.
Thus in the neighbourhood of these points one can develop these func-

tions in powers of A. The equation D(s) = O may then be written

d(s) d(s - iw) = A2 + A2 [d(s) g(s - 2iw) + d(s - iw) g(s + iwﬂ
+ 0 @Y (25)

. . . iw iw
We write s;» s in the form s; =m + 1A + >, 8 =m + 5 + 6s. By deve-

loping d(s), d(s - iw), g(s - 2iw), g(s + iw) about  =m + iw/2, equa-

tion (25) becomes

[d'(Q)LZ(Gsz + AZ) = A2 + 2 A2 §s Re [d'(Q) g*(Q + iw%

2 *
+2A° A Im [d'(Q) g (Q + iw)] . (26)
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The solutions are, to lowest order

A2 Re a ) A2 2 A2 A
8§s = — + - AT+ > + > Im a 227
[d* (@) | [d" (@) | '@ |
*
where a = 4'(Q) g (Q + iw).
*
When A = 0, 8s = ¥ iA and one recovers the two zeroes 1 and iw + S1»

neighbouring elements of the row of zeroes {sﬂ of class-M. When the
discriminant is negative, the square root is purely imaginary and Re s
given by (27) coincides with the Re s calculated for the non-resonant
interactions (22). When A increases from zero the two roots (27) approach
each other symmetrically with respect to Im s = %E' and for A = Ald' (%) |
they coalesce to give one double zero. At this point D(s) has a row of
double zeroes of class—Q2. If A still increases the square root becomes
real and the two zeroes are displaced along the line Im s = iv . Thus
D(s) has two rows of single zeroes {s;} ,{?:‘ of class-fi. If A>>A|d'(Q)|
the second term under the square root becomes dominant and §s = * TET%ESTn

This expression is real and linear in A and hence corresponds to a strong

destabilizing effect. The half width of the resonance band is

A
E

and is equal to &8s
max

d) Im s, =~ w

When Im S; = 0, there is again parametric resonance. For A = 0, D(s) has

a row of double zeroes {si} of class—0. If either A # O or w is not in
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resonance, the row splits into either 2 rows of single zeroes of class-0

or one row of single zeroes of class-M.

To study the effect of this resonance on the stability, we write
2 .
D(s) =D [—2, 0/;] - a? D;(S) g(s) - A Di(s) g(s = 2iw)
4 3 .
+ A DT(s) g(s) g(s - 2iyw), (28)

: *
where D [-2, O/%] and the D%(s) are analytic in s = 1 and s = 2iw - S

The equation D(s) = O can be written

—A4 Di(s) + A2 d(s-21iw) D;(s) + A2 d(s) Dz(s)

T
D [— 2, O/;]

d(s) d(s - 2iw) = (29)

*
The RHS is regular in s = s; and s = 2iw + S; (for small A) and can be

developed in powers of A, which gives
d(s) d(s-2iw) = -a" {g(s—iw) [g(s—Biw) . g(s+iw)] v g(s+iw) g(s—3iw)}
v 4 a2 [asi0) + g(s+i)] + a7 d(o)[g(s-iw) + 5(s-3i0) |
+0 (A6) (30)

We write s, =m + iw + iA(m,A real) and s = m + iw + 8s.

Developing (30) in powers of A and 6s about % = m + iw, we obtain

§8 -~ —————54s + — [2 g(m) Re g(+iw) + {g(Q+iw)| ]
la" () | la" (@) |
2
_2 AT Ima 42 (31)

ar @ |
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where

a = d'" () [g(m) + g(Q + iwi] .

Hence
2'
A2 Re o A4 gz(m) A2 Im o
i = —————- i e - A - (32)
2 2 2
[d" (@) ] d" (@) ] ld" @) |
When A = 0, 8s = T i|A| and we recover the two zeroes of D(s) in Sy and

ol * . .
21w+ S, » neighbouring elements of the row of zeroes {sﬁ of class—M.
If the discriminant is negative, the square root is purely imaginary and
Re {Si + 6;} given by (32) coincides with the value calculated in the

non-resonant approximation (22), as for the first resonance.
When the discriminant is positive, i.e. when

Im o ‘g(m)[ A Im o ‘g(m)‘
— +

@2 Jar@] a2 le@lt @]

> (33)

8s is real and the two roots are on the line Im s = w. Thus D(s) has two
rows of single zeroes {m + Ss;} , {m + Gs_} , of class-0. This destabi-

lizing resonant effect is maximum for

Im «
A = — A2 s
ld" () |

in which case the supplementary contribution &s ax to Re 8s 1is
m

a2 lgm |

65 = ——
max (d'(Q)l

(34)
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This contribution is thus of order A2, as is the non-resonant interaction.
The non-resonant contribution, however, is often very small or null (gene-—
rally Re a << Im a). The half width of the frequency band over which

there is a contribution from the resonant term is given by

A% g (m) |

' (@) |

and is equal to Gsmax’ as in the case of the first resonance.

d) Im s = %9'(n > 3)

Generalizing the preceeding results, one can see that for Im $; = %ﬂ

and A + 0, D(s) has a row of double zeroes {s{] of class- or 0, de-
pending on whether n is odd or even respectively. If A # O and (or)

A= Im $; - %9 # 0 the row of double zeroes separates either into two
rows of single zeroes of class-O or 2, or 1 row of class-M.Off resonance,
the row is of class-M and Re s is given correctly by equation (22).
There is a resonance when the row of class-M becomes 2 rows of classes

2 or 0. This occurs when

- g A+ aAnggoLA2+BAn, (36)

where o and B are independent of A. The width of the resonance region
varies as ~A". The additional contribution to Re s in this region also
varies as A". It is thus of higher order then the non-resonant contri-
bution. However, when the system is non dissipative, the non-resonant
contribution is identically zero. When the system is weakly dissipative
(Re ﬁ(iy) << Im ﬁ(iy)), some resonances can make a non-negligible contri-
bution for n 2 3, but for sufficiently large n the non-resonant effects

will dominate in any case.
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V. Summary

For the reader's convenience we present here a recipe for the use of the
results which we have derived in the main text of this paper. One pro-

ceeds as follows:

*
1) determine the unperturbed spectrum (A = 0); S:» s. and P poles of

g(s);

2) complete the spectrum by adding all the points modulo (iw), thus for-

ming the row spectrums {sg} and {Pi} 3

3) if the zeroes {s]} and (p;} are simple and

F)-B)ew e 1B e

the rows do not interact with each other in leading order (in A) and

we find for the modified spectrum:

a) {5;} » where

_ 2 A
p; = p1 + RPN Re g(pi + 1iw)
Py
b) {;i} , where
s, = s, + —T———— [g(si + iw) + g(si - uuﬂ
d (Si)

This result requires Ig. - s.| << ls., - sfl. mod (w)
i i i i



c)

d)
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=
1]
=]
X
|
w
2

Im s. and d(s) can be approximated by

d(s) = dném) [(s - m)2 + Az]

valid in the range ls - m‘ ~ A, where m = Re s, and A = Im s.,

the spectrum becomes either {ég} , where

2

- 2 A . .
s, =m + EFTEY Re g'(m + iw) + 1 q -D ,

2 4 A2

D=-A +a—'Tm)—

Re g(m + iw) ,

in the case where D < 0 ,

or {5¥} , {5;} , where
2
2 A . . +,,"
+ 37?57 Re g'(m + iw) T D

when D > O.

o
H+

- *
When |s. - si‘ = |s, - s, + iw| (the first parametric resonance),

the spectrum is given by either {;T}, where
i

2
_ A" Re a
s, =8, — 1A ¥+ —m————— + 1 q -D
1 1 2

4" @]



e)

£)
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2 A2 2 A2 A
+

D=-A" +
@ % Jar@)?

Ima |,

* .
a=d'(Q) g (+ iw) and @ =m + %ﬁ » when D < 0O ,

or by {Si;} s {si:} s, Where

2
- A" Re o
$., =8, - iA + ———— * VI)
1+ 1 ‘d'(Q)IZ

- *
When |s, - s.]| ~ ls. - s, + 2iw| (the second parametric resonance),

i i
the spectrum is given either {Si} , where

2
- . A" Re .
s, =8, - 1A + ———o 1 \’— D ,
1 1 ld'(Q)‘z

4 2 2 2
D = A g (m) _ A- A" Im o

lar(@)]? FUIE
a=d'@ fgm +g@+ iw>] , 2 =m+ iw,

2

gi* =5, - i A+ é__BE_EE ¥ \/D
) " () |
when D > 0 .
- * I3 - -
When ‘si - si] = lsi - si + nlw‘, n 2 3, corresponding to higher

. n
order parametric resonances, the resonance effects are of order A .
They are of higher order than the non-resonant shift b) and are
only important if the non-resonant contribution is very small (sys-

tem very weakly dissipative),



4)

5)
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If there are two interacting rows {p{k and {p;} , where Py, =m * o,
d b

1 2 2
and d(s) may again be represented by d(s) = ; ) [(s - m) + A]

in the range |s - m]| = ]pl - p2[ then the modified spectrum becomes

either {SDJ , where

2
S, =m + - Re g'(m + iw) T i \/— D,

‘ 4" (m) I
2
D = Az 4 Re g(m + iw) , when D < O
d"(m)
or {5+} , (E;} where
- ZA2
p =m + Re g'(m + iw) * V51 "
- d"(m)
when D > O

If the rows {s{} are not well separated there may be interactions
every time the displacement of the roots calculated separately for
each row by 3) becomes of the same order as the separation of the
rows. In this case, our results are not applicable, although the

method used here may again be applied.



_20_

APPENDTIX A

In order to resolve equation (6) one follows exactly the same procedure

used in resolving the Fredholm equation.

By successive replacement of s by s + inw in equation (6), one obtains

an infinite system of difference equations for y(s + inw),

-ig
y(s + inw) = - Ag(s + inw) {;(s + iw + inw)e
~ . ; i@ . ~ .
+ y(s + inw - iw)e } + y(0) g(s + inw) R(s + inw), (A1)
n taking all values from == to « .,
Making the change of function
§(s + inw) = eln® Y(n),
Y(n) + Ag(s + inw) {Y(n + 1) + Y(n - 15}
- ing 5
= y(0)e R(s + 1inw) g(s + inw)

Resolving this linear system by Kramers rule,

_ N(n,s)
Y(n) = Dls) y (0)

where D(s) is the infinite tridiagonal determinant
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D(s) = |$ + Ag(s + ifw) 5, (A2)

Q’am ,[l'lilF

and where the indices f,m take all values from - = to + = . N(n,s) 1s

a periodic function of @. Writing

oo

5 - 1ik@
N(n,s) = E Nk(n,s) R(s + ikw) e R

k:—oo

one has the relation

Nk(n,s) = Nk+n (0,s + inw)

Nk(O,s) may be expressed as a function of the minors of D(s), D [i,k/%
defined in the following manner: the minor D [i,k/% is equal to the
infinite determinant (A2), from which the lines and columns i< % < k,

i <mzsg k have been suppressed. One has (k > 0):

k
k .
Nk(O,s) = A D [O,k/;] I g(s + itw)
=0
k
k .
N_k(O,s) =A D [T k,O/% I g(s + itw)
=0

Development of D(s)

Introducing the truncated determinants Dk’ where

D = D[?’ + oo/sj],



