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Abstract

A method is described for the measurement of large currents with
an accuracy of better than one percent from zero frequency to 47

Mc which is specially suited for currents above 100 A.
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I. Introduction

In plasma physics experiments one is always faced with the problem
of measuring large, rapidly varying currents, typically 1-100 kA and
.01-10 Mc. This is usually done by magnetic pick-up coils, currents
transformers with or without cores (Rogowski loops) or by means of

1 .
>7. All of these methods are subject to errors

low resistance shunts
due to stray magnetic fields and the frequency response of all such
devices is often severely limited by the skin effect and parasitic

capacity.

To overcome these difficulties two simple devices for the measurement
of currents have been constructed and their performance has been care-
fully analysed and checked by experiments. The frequency intervals in
which these devices can be used are expressed in terms of the maximum

allowable relative error.

Each of these instruments gives a voltage

v = L — (1)

in a certain frequency range. To obtain a signal proportional to the

current I, V. must be integrated

1

(3

V. .dt = 1 (2)
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In what follows we ignore possible deficiencies of integrators of which

there exist many types, active and passive. A very accurate wide band



integrator has been described by R. Keller3. What concerns us here
is the accuracy with which the relation (1) can be realized in prac-
tice. The problems one encounters are due to the skin effect which
gives rise to a frequency dependent impedance Z(d/dt) rather than

simply L d/dt.

The first of the two devices is called a current probe: it satisfies
(1) from zero frequency to 10 megacycles, with a maximum error of 1 ¥
at the upper frequency limit. But the factor I cannot be determined

from its construction.

The second device, called a calibrator satisfies (1) from .75 Mc to

47 Mc with the same precision of better than 1 %. In addition its
factor L can be calculated from its geometrical dimensions with great
accuracy (.1 Z). This instrument is used to calibrate the current probe
by comparing their outputs for a current whose spectrum lies in the
frequency range common to both devices .75 Mc - 10 Mc. Both devices are
immune to even the largest stray-fields encountered in a plasma physics

laboratory.

II. The current probe

It is shown in Fig. 1. The current is introduced into the central con-
ductor, flows around the walls of a cylindrical cavity and returns co-
axially on the outer shell of the device. The voltage V1 is induced in
the loop placed into the cavity. The thick cavity walls serve to shield
the loop from any stray fields while the long coaxial input guarantees

a current distribution in the cavity which is independent of how the
external leads are connected to the device. Such a measuring cavity can
be built directly into an experiment as an integral part of the equipment

and may have a different and even asymmetrical shape.



Let the radius of the wire be a, its length 2 , and the area enclosed
by the loop A (Fig. 2). If there were no loop, the field B within the
cavity would be everywhere strictly proportional to the current I and
independent of frequency. But the finite conductivity of the loop al-
lows currents to flow in it which modify the field. These currents can
be considered as the superposition of those which are present in the
loop even if the terminals are open (eddies) and those which flow in
the loop when an external load is connected. Consider first the effect
of the eddy currents which is examined in the Appendix: the open cir-
cuit voltage can be expanded into a power series of iw of which the

first term equals

\' = iy BdA = 1wLI (3)

(T,y)

where BO is the field which would be present without loop and the in-

tegral is over a surface bounded by the curves T and y , Fig. 2. The
. . . . . 2,

next higher term, which is proportional to (iw)  1is smaller than the

first by the ratio

u owa3 L/ A,
o

where o is the conductivity of the wire material. This term must be

negligible so that one must require

uoowa3 L/ A< e

where ¢ is some preassigned accuracy. Thus the frequency is limited

from above by

fof = —EA “)



If the voltage V1 could be integrated at infinite impedance then (4)
would be the only limitation of the frequency response. In reality
there is always a stray capacity C connecting the terminals. Also

one is forced to connect a cable of some characteristic impedance 7
to the output. Now a net current flows through the loop, causing a
voltage drop across its terminals. Hence the voltage which is trans-
mitted through the cable, integrated and observed is not Vl but V2 R
Fig. 3. The impedance of the loop consists of two parts: an inductive
part Llw due to the magnetic field external to the wire and a part Zw

due to the finite resistance and the magnetic field inside the wire.

The theory of the skin effect in wires gives

nJO(n)
z, = R —2—
2 J1 (n)
where
2,
R =13/ (ﬂqaz) , n2 = - yga iw

and Jn are Bessel functions. At low frequency ([nl << 1) Zw can be
approximated by expanding the Bessel functions up to the second term
in their power series

Z = R+ upgivw/ 81 =R + inw

Thus the inductance LO of the equivalent circuit (Fig. 3) equals

L1 + L2 . Examination of the equivalent circuit yields V2 in terms of
V..
1
-1
L+ ZRC ZL C
vV, =V Z . 1+ 2 (iw) ~ —= wz
2 12 +R Z + R Z+R

If the ratio V2 to V1 is to be independent of frequency within an error

€ the following two conditions must be satisfied



€ Z + R
fifz"zn L+ L, +ZRC (%)

Ve Z + R

I N = SRS Y (6)
1 2
A probe was built with the following characteristics: a = .01 mm ,
£ =10 cm, A = .8 cmz. As conductor for the loop Molybdenum was

chosen, because it is less fragile than copper. The resistance R
was measured to be R = 18.1 2 . The probe is used with a Z = 75 @

. . -8
cable. The inductance L was calculated approximately to be L,= 1.4 10

Hy. The stray capacity C is roughly 10—12 F. Hence one obtains for the

three limiting frequencies in cycles per second

10 9 10
fp =510 e, =100 ¢, fo= 14100 T

The second bound is the most stringent one. If one requires an accuracy

=2 . .
of ¢ = 10 one obtains as upper frequency limit

f = 10 Megacycles.

ITI. The current calibrator

It is shown in Fig. 4. It is similar to the current probe, except that
there is no loop and the voltage V1 is tapped off the cavity itself.

The parts are machined with a precision of a few microns.

The voltage developed at the terminal of the device equals

V1 = Z(iw) 1



where Z consists of an inductance due to the field within the cavity

and a frequency dependent part due to the skin effect:

2Gi0) = Liw + 110 + . Az(im)_l/z + x3(iw)“1 "

The first two terms suffice for our purpose and are easily calculated.

U
o o W
L = 5 {.h lg(b/a) + By Teb/a) ; (7)
U h+h h
1 o] 1 h 1
i + =+ —+ 2 1gbla-1ly b/a § .(8
A o 13 Tt + lg b/a g b/d1 (8)

1

For the dimensions shown in Fig. 4 the values of L and » are

2.00 1070 H,

-
it

4.33 1078 gel/2

>
I

If one wishes to keep the corrective term MJiw down to a fraction

€ of the principal term Liw one obtains the frequency condition

The distortion of the wave due to the term Afiw can be exhibited by
examining the response of the calibrator to a step current I = 0,

t <0, I=1, ¢ - O:

L .
v o= L vade == |1+ 22 ¢
1 T T L

-~

(o]

The second term in the parenthesis represents the distortion due to



the skin effect. It is negligible for very short times. If this dis-
2

tortion is to be a fraction e then t i.g-(e %) . Therefore a square

wave with a period of .33 us is reproduced accurately to 1 Z. If 5 %

distortion can be tolerated the period of the square wave can be

8.4 usA.

At a fixed single frequency the calibrator can be used down to lower

frequencies if one takes into account the term KViw .

. W w
v, = |i (Lo + xv S SR
1 (Lo 5 ) 2

or for the calibrator described above

Vo= el |1+ 0061 (1 + i) gL/2

where f is in megacycles and L = 2.00 nH.

As mentioned in the introduction this current calibrator is used pri-
marily to calibrate the current probe by connecting the two in series,
passing a current whose frequency spectrum lies between .75 Mc and

10 Mc, and comparing outputs.
The upper frequency limit is given by the self resonance of the cavity.

For low frequencies up to and including its lowest resonance, the ca-
vity can be approximated by the equivalent circuit of Fig. 5 where
L + L1 is the total inductance of the device as seen from its input.
C is the capacity between the central rod and disc and the surrounding
return conductor. Thus

-1

V1 = 1L 1 - (L + Ll) sz I

To keep the response proportional to iw within an error of ¢ the fre-

quency must be limited from above



- 1/2
Ve

ff_f5=‘2-; (L+L1)C

For the calibrator described above one finds L + Ll = 4nH, C = 29 pF

and

f.o= Y& 4.7 10% ec!

If the error tolerated is 1 7, the frequency must lie below 47 Mc.

Thus the calibrator is accurate to 1 Z from .75 Mc to 47 Mc.

IV. Optimum design of the calibrator

The dimensions of the cavity should be chosen such as to minimize the
ratio A/L. In practice the value of L is determined by the magnitude

of the currents to be measured, their frequency content and the charac-
teristics of the integrator. Also one wishes to keep the calibrator
down to a reasonable size. Hence one wants to minimize ) while keeping
L and b fixed at predetermined values. This can be done by using the
method of Lagrange for minimizing A/L while keeping L constant. If one

sets

L and a = be

(éh x2 -1) e_x = l-x,

which must be solved for x. With x determined one finds a and h:

a = be h = i/Zx

Fixing b = 5 cm, L = 2nH that is L = 2 cm one obtains x = .432, a = 3.25

cm



._10_.

and h = 2.32 cm. These are the dimensions used in the calibrator shown
in Fig. 4. The value of ) is:

5 /2.

A= 4.33 100 va teue)?

V. Comparison of Probe and Calibrator

In the frequency interval from 1 to 10 Mc the probe and the calibrator
have both the same frequency response (namely proportional to w). This
can be verified by passing the same current through both devices and
recording their output. This has been done and the results are plotted
in Fig. 6. At frequencies below .75 Mc the calibrator gives too high
an output which can be corrected according to equation (10). With this
correction the ratio of the output of the calibrator and of the probe
stays constant within one percent between 100 kc and 15 Mc. At higher
frequencies the probe gives too low a voltage due to the drop across

the inductance L.

Together the two instruments cover the frequency range from zero to

47 Mc with an overlap between 1 and 10 Mc.
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APPENDTIZK

Consider the loop shown in Fig. 3. As before let the radius of the
wire be a, its length £ and the area enclosed A. An exact solution
of the problem would require the solution of Maxwell's equations
without displacement current (because the wavelength shall always be

much greater than the size of the loops)

curl (§0 + B) = uOOE

curl E = -iwB (A 1)
div B = 0

div E = 0

Here EO is the magnetic field that would be present in the cavity

without loop:

BOV = uOI / 27r.

The boundary conditions at the surface of the conductors are as usual:

B continuous (no surface currents)
nxE continuous (dB/dt finite)

n- =0 (no current leaves conductor)

E
-
where n 1s the vector normal to the surface of the conductor and the

subscript c¢ denotes the field within the conductor.

The purpose of this appendix is not to solve these equations, which
would be very difficult and not necessary, but to make estimates of

the frequency dependence of the solution. To this end we expand the



solution into a power series in the parameter

a4 = 1y ow
o

by writing

f o
M
Aw

= i E E an
-1

(o]

|t

This leads to a system of equations (n - 0)

curl E = - B div E =0
~n ~n ~n

curl B = E div B = 0
-n+1 -n -n+l

(A 2)

~1

which could, in principle, be solved successively for Eo’ §1, E_ and

so on. The fields E , B (n > 1) are due to the currents within the
n’ -

loop and are therefore concentrated in and around this conductor.Thus

one has the following relation for the orders of magnitude

1
{curl E = - E n
-1 a !
1
curl B j= - B s n
- a 1

and hence

B

where the brakets indicate "order of magnitude'. Let

V
[u—

v
—t

V
[

us now

equation (A 1) over surface bounded by two curves T and Y

(A 3)

integrate

indicated
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in Fig. 2.

¥ (r%) r

The line integral along Y equals the voltage V1 which appears at the
terminals of the loop. The surface integral and the line integral along

[ can be written in terms of the expansions (A 2)

v

L (B + iwowB, + ...) - dA + \ (E + iuowE, + ...)-ds (& 4)
iw ~0 -1 - —o 1 -

(r%) r

To estimate the order of magnitude of the four terms on the right side
of (A 4) we observe that EO extends over the entire loop, while Bl is
concentrated in and around the wire of the loop. This is so because Bl
is the field due to the eddy currents in the wire which form two anti-
parallel streams. Therefore 21 tfalls off as the inverse square of the
distance from the wire axis. Thus the effective area of integration
for B1 is of the order of af while for the field BO it is A. It is now

possible to write down the orders of magnitude of the first four terms

of (A 4):

B A : v owB fa E ¢ : U owkE_ ¢
0 o 1 o fa) 1

Using (A 3) a d dividing through by BOA one obtains the relative orders

of magnitude of these terms:

3 3

a i at a £

1 : U Cw —— : — : Hoow e
o A

Only the second and the fourth terms are frequency dependent and their

ratic to the constant dominant term is
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3

5 a £
uo . A

which is the desired result.

The integral over EO disappears if the path of integration t is chosen
such that it passes only through points at which E is zero. This is
possible because E = j/0 and because the total current through each
cross section of the wire is zero.(This special path is of course very
close to the axis of the wire). By definition BO is strictly propor-

tional to I so that we may define a constant inductance L by the equa-

tion
B dA = LI
1)
thus
aBQ
V1 = 1iwLl 1 + order uoow o
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Always assuming that the input 1Is integrated perfectly,

see 1ntroduction.



Figures

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
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Current probe.

Loop within cavity.

Equivalent circuit for current probe.

Current calibrator.

Equivalent circuit for calibrator at

high frequency.

Ratio Va/Vb as a function of frequency.

Va = Voltage of calibrator, Vb = Voltage

of probe. Dashed line: without frequency

correction. Solid line: with frequency

correction A‘,iw.
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Fig. 3
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