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GENERALIZED ONE DIMENSIONAL MAGNETOHYDRODYNAMIC COMPUTER CODE
FOR PARTTALLY IONIZED HYDROGEN OR HELIUM PLASMAS

F. Hofmann

Abstract

A computer program has been developed to solve the "generalized" MHD
equations (including electron inertia and drift velocity effects) for
four fluids in one dimension. The physical model and numerical methods

are discussed. Results of a typical calculation are presented.
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I. Introduction

Numerical solutions for one-dimensional time-dependent problems in
magnetohydrodynamics are widely used for the interpretation and
planning of plasma experiments. Several computer programs have been

1,2,3

developed for this purpose , and, in general, the agreement bet-

. . .. 1
ween calculation and experiment has been surprisingly good * .

There are experimental situations, however, where some of the basic
assumptions of the standard MHD model are not satisfied. Consider,

for example, the confinement of a high B plasma by rapidly oscillating
magnetic fields (Rotating Magnetic Field Pinchs). In that experiment,
current densities and electron drift velocities, and, especially their
time derivatives, are so large that electron inertia becomes important.

The standard MHD model assumes electron inertia to be negligible.

Therefore, in order to simulate experiments of this kind, we have
extended the standard MHD model to include the effects of non-zero
electron drift velocity and inertia. The resulting equations, which
we shall call the '"generalized" MHD equations, are derived in Section
IT of the present paper. Finite difference approximations and nume-
rical methods are discussed in Section III, and typical results are

presented in Section IV.
Two different versions of the program have been written: The first is

a three fluid model for partially ionized hydrogen or deuterium, the

second i1s a four fluid model designed for helium plasmas.

11, The Physical Model

As has been pointed out in the Introduction, we are considering two

distinct models, one for hydrogen and one for helium. The two models



are very similar, however, because in the helium version it is assumed
that the temperatures and fluid velocities of the two ion species are

-> > - . -
equal (T . = T vV LTV ++). The derivation of the hydromagnetic
He He He He

equations is, therefore, completely analogous in the two cases.

In the first part of this section, ''generalized" MHD equations are
derived for three fluids, i.e., electrons, ions and neutral atoms. MKS
units are used throughout the derivation. Then, at the end of the sec-
tion, a complete list of equations, in terms of machine units, is given.
It includes the hydromagnetic equations and transport coefficients for

both the hydrogen and the helium model.

1. Basic Assumptions

Cylindrical symmetry, quasi-neutrality and ideal gases (y = 5/3) are
assumed. Ion motion in the azimuthal and axial directions is neglected,
i.e., ion currents are assumed to be negligibly small compared to elec-—
tron currents. Momentum and energy transfer between electrons, ions

and neutrals due to ionization, recombination, charge exchange and
elastic collisions are taken into account. The transport and rate

.. . 6-11
coefficients are functions of the local plasma parameters .

2. Conservation of Mass

For every particle specie, there is a conservation equation of the form

Jn >

—_— + V e = 1
Y (nv) P (1)
where n is the number of particles per unit volume, v is the velocity

and P describes creation and destruction of particles as a result of



ionization and recombination. In cylindrical symmetry we have

ane 1 3
: P —_ = - +
for electrons 5t + e (r never) ne( n o noS) (2)
for ioms: n, = due to quasi-neutrality (3)
ano 1 3
for neutrals: Y + z 37 (r novor) = ne(nea - nOS) (4)

where S and o are the ionization and recombination rate coefficients,
the subscript r designates radial vector components and the subscripts

e, 1 and o refer to electrons, ions and neutrals, respectively.

3. Conservation of Momentum

The equation of conservation of momentum, for one fluid, may be written

12
as

>

] - -> 2 > -> -> >

o [S%'+(V‘V)V = - Vip + §-u(v-v) + Ve ju(Vv + vwW | + F (5)

where p is the mass density, p is the scalar pressure, p is the visco-
> >

sity and F is the external force. F is given for electrons, ions and

neutrals by equations (6), (7) and (8) below

> T > >
F =-ne(E+vxB) —-nn, o .v.m (v -v.)
e e e e i el ei e e i
> > >
-nn ¢ v m{(v -v)-nnSmi{{v -v) (6)
e o eoeoe e o e o e e o
- > > > > >
F.= n,e(E+v.xB) +nn. o .v.m({(v -v,)
i i i el elele e i
> > >
-n.n o, v, m,(v. —v)-nn Sm.(v. - v ) (7)
10 io 10 1 1 o eo 1 1 o



> > > >
F = nn o v m((v -v)+nn o, v, m (v, -v)
o e o eo eo e e o io 10 io i 1 o

> ->
+ n.n om,(v, - v 8
1 e 1( i o) (8)

where Ny OiVes is the Coulomb collision frequency for an electron,
%o is the cross section for elastic collisions between electrons
and neutral atoms, Voo is the effective electron velocity relative
to neutrals, SP is the cross section for elastic scattering and
charge transfer between ions and neutrals and v is the effective

ion velocity relative to neutrals. From equations (6), (7) and (8)

we may compute the quantities

.+
F +F, = -n e(; xB) -n.(v. -v )lm.(n o. v. +n §)
er ir e e r i ir or i oio io o
+m(noc v +n8) (9
e 0 eo eo o
F E + v xB
= - +
eB,z nee vex )6,2
B m
2 2 e
- + + 0
Pe vee,ze nSp 2 (no erveo nOS) (10)
ne
— e
-
F = n(v. -v J)m(mo, v, +na)+mno v ) (11)
or i ir or i o’io io e e 0 eo eo
In ti (10) is the Spitzer resistivit 11 ( =n.¢ .v .m /n ez)
equation y nSp s e Spitz sistivity nSp 1%iVei%/ .

The indices, r, © and z refer to radial, azimuthal and axial vector com-—
ponents, respectively. The last term on the right hand side of equation

(9) and equation (11) may be neglected because me << mi, and we have

>
F +F, =-n e(g xB) - n.(v. - v Dm.2x (12)
er ir e e ‘r it ir or’ i

> > 2
F =-n e(E + ; xB - n2 v e 1

ed,z e e )e,z e eB,z (13)

Cl



F =mn(v. =—-v )m, A (14)
or o ir or’ i o

where we have used the abbreviations

A = no.v +nSs (15)

o 10 10 o
nn.
A = n.o. v, +—%X g (16)
o 1 10 io n
o
M
= +
nCl r]Sp 0 e2 (noceoveo * noS) (17

The radial components of the momentum conservation equations for elec-

trons and ions are now summed and, using eq. (12), we obtain

v v 1 3 4 3v
ot v ar A(v—v0)+ nimi or {(neTe+ niTi) - Sv or
m_j
2uv _ 2uv . . e
* 37 } 7+ B, 3,8y * ) (18)
T nee T

Here, u is the ion viscosity, electron viscosity has been neglected
and we have introduced the definitions: v=v. =v , Vv =V _ ,
ir er’ o or

T = T. = p./n., j. = - j = - . T -
. pe/ne, ; pl/nl, ig env o and i, en v he corres

ponding equation for the neutral atoms reads

(19)

where T, = po/nO and by is the neutral viscosity. The azimuthal and

axial components of eq. (5), for electromns, are given by



LR 3 ne
8 1 2 .. _ .
e ¥ 2ot (v jg) = (g = Nc1de ~ VB,
ajz 1 3 nee2
— 4 i) = - i+
ot T o (T Vi) . (B, = Ngpd, + vBg)

(20)

(21)

If the resistivity, o1 is anisotropic, equations (20) and (21) must

be generalized:

Bje 1 3 9 n_e
— —— 1 = - 3 - 1 -
2 (v ig) = By ~ ngglg gzl = VB,)
ot r 9r e
ajz 13 ne
to— (v Jz) B (Ez - nZGJG - nzsz * VBG)
ot r or e
where
1 2 2
= = B” +
o6 52 nu By + B,

=L -

1 2 2
zZ ;—2- l:n” Bz * n-‘-BG]

Ny, and n, are the resistivities parallel and perpendicular to the

magnetic field and B2 = Bé + Bi . Equations (22) and (23) may be

3
1]

regarded as a '"generalized Ohm's law'".

(22)

(23)

(24)

(25)

(26)



4. Conservation of Energy

For any one of the fluids, the equation of conservation of energy may

. . 13
be written 1in the form

-% n [ —~ + (VT | = - p(V-v) +9-(Q VT) + W (27)

where T = p/n and Q is the thermal conductivity divided by the Boltzmann
constant. W is an energy source (or sink) which describes the following
phenomena: (a) energy equipartition between the different fluids, (b)
heating due to dynamical friction(including Joule heating), (c) ioniza-
tion and recombination, and (d) viscous heating. Eq. (27) is written

for electrons, ions and neutrals in cylindrical coordinates:

T T

aTe aTe 2 e 3(xv) 2 ) & e
3t 3r 3r dr 3ner ar e dr
2 [T .\ Tty . 2 2 o a2

3n T T . 3n ”eeJe nezJBJz nzsz

e eo ei e

-2 n S(X + N, ) - n o x (28)

3 o 2 e e

aT. aT, T, 3T,
___]_._+v__];=__2__1_8(rv)+ 2 E"[I’Q __1‘.]

Jt ar 3r 3r 3ner or i 9r
T.-T T -T
. . 5
2l Lo & 1) ¢ (v-v)® -n S(T.-T)
3n T. T . 1 o o} 1 o
e 10 el

2
2u | 491 3(v) _ Y
* 3ne 3 {r or } 4 r{arz (29)



3T 9T T 3(rv ) oT
ot o 3r 3r r 3nor ar o ar
2 [T _To Te_To 2 nea
+ - — -
3n * * fo(v vo) * (Ti To)
| 1o eo o
— 2
2u 3(rv ) v v
D D S _ 42 2_° (30)
3n0 3)r or r ar

where Too? Tei and T,, are the coefficients for energy equipartition,
. .. . . c . .

X is the ionization potential (13.6 ev for hydrogen), o is the colli-
. . . .. 7

sional part of the recombination coefficient , fi and fo are the coef-

. . . 10
ficients of frictional heating .

5. Maxwell's Equations

Under the conditions stated at the beginning of this section, Maxwell's

equations may be written as

aBe BEZ

at B ar (31)

3B
z -1 3

ot = T or (B (32)

SBZ

LJ038 = - ar (33)
. . Lo

i, T Ta% (rBe) (34)

Combining eqns. (22), (23), (31), (32), (33), (34) and eliminating je,

jz, Ee and EZ, yields



C d(rB )
e 3 e
nr B—E{ dt } (35)

1 3(rv) 1 3 2CeV aBz
= = =l +—) =2
r or ry ar 06 nr ar
o e
l.ffff@i + EE.Q_. EEE (36)
T ar n 3r dt
e
m
) e
B—t-'*'va—", and Ce— 5
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6. Summary of Equations in Machine Units

For convenience, we shall use the following set of units:

Name Symbol Unit
. -2
distance T,z 10 m
-2
mass m 10 7 kg
. -6
time t 10 sec
number density n 1021 m_3
. -1
velocity v lO4 m sec
temperature T ev
magnetic field B Gauss
. . . . -15 3 -1
ionization and recombination coeff. S,a 10 m sec
. .o 6 -1
friction coefficient A 10~ sec
. .. 23 -1 -1
thermal conduction coefficient Q 107" m sec
. . .. -27 3
energy equipartition coefficient T 10 m sec
. . . -2 -2
coefficient of frictional heating £ 10 ev m  sec
o s -2
resistivity n 10 Ohm m
: : - -1 -1
v1iscosity u 10 4 kg m = sec

The MHD equations for three fluids, eqns. (2), (4), (18), (19), (28),

(29), (30), (35) and (36), written in these units, are listed below:

dn n 3{(rv)
e

dt r ar * ne - nea * no S (37
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dr, N, (rvy)
—°..2° >4, [neoc - Ny S} (38)

dv | 2 2 (v 2Mv] tpv
.y L—I.GT(RQLTQ_-\-R])Q' {3}13( —?;—"—} 1

0 {(8-51 gﬁ)%%ﬁ:e a(rBe)H A (v-v,) (39)

dv, 1 ? oy WV MY
) .2 N A
TR [ L6 3¢ (“°T°)* I [ 3N I L

+ A, (v-v,) (40)

dle 2 T, D(rv) L2 [rQ?I&}- 2 {T,’-TO*T;TE]

de " T3 ar TARTAr | %ear | anm, oo ol
]
2 | o8, 1 3(rB,) I 3(r8y)
+3n. 16 {M* [?ee{ar} 762{9"}{“ ar } ?zz{F—Dr——}]
= [n. S(X+-T)] [n o X] (41)

T, 2T 2o [ . an}_ : [n-n T..-n]

— —_— Y. -
dt -3 F ar fangroar| v [3n |7, 2,

e

+{ (""’)"“ S(T-To)+ c,n Hr 3’(:")} 3r{%€” “2



_12_

dl, 2T kv 2 3 [rQ W, 2 [Tl TTe
3n° tio teo

1 A
e T . 5 | a(rV.) V_O 3VO
R T “N[{r S (R

A(rﬁ’):—l' Vv -V |03 ? QB} Qu a(l'B) C)_ __9_ d(ree) (44)
ak wor h? 3r ?ez r o 9r ner ar | di

d.Bz _Z, [a(rv)] 10° j—{r{( N v ) 2&1 a2 3(rB)

& 7 | [Tywr or 88 MNr 'Jr t  Ir

+ .c_'_"_ _?_ {i‘;@_{} } (45)
n, or dk

-4 .
where c, = (me/0.1024 T, c, = (me/256 Ty, m, = 9,108 x 10 , X is
the ionization potential of hydrogen, X = 13.6 ev, m, is the ion

3 3 d ]

. . . d
mass in machine units, and ~— = — + v —T—or 5— = - + Vv — depen-
? dt ot o Jr dt 3t ar 9°P

ding on whether it operates on a quantity with or without subscript o,

respectively.

6, 7, 8, 10, 11,

The corresponding transport coefficients for hydro-
gen or deuterium, are given by:
s 3
T T ) -3
o =083 T, n,+0.355 1, * 10 (46)
-3 X
2 -
: [o.%TQ n,_}r 10 47)

Q=S+ [Soo- SO] 3{5’_&_ (48)
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Te
where So = 25 ¢
_(10.73)
- T,
So=55e e
.13
X s n, S+ N Vio [0 983 + —— VT - 0.106 Q«Xo TJ (49)
where 4.07 ( T 1 '/l
122 (T -
Vio ‘[ mi ‘+ O) +(V VO)J
2
n_ o 1.7
)\°= t—+n VtO[OQS"J-l- i - 0.106 T,. (50)
Yo M Vio io
L 0.2h44 T, L [L‘ 74 + 0.2y (51)
i 3.3y 2)
—= 437 + — - ©0.159 T, (5
To eow{ m; v 0
-3z
A 39 r\,’é B A T (53)
’tu. m" 3/ l/
-39 A
? = 0.00522 In /L To +356% 0 —2 [3%7{“7“0 ?-N}T (54)
ne e
?1_(0_ = 197 Qucq, (54a)
| _ kA 1+ 2.0k % o>} BTe T‘Sh Z + Yo 2% Lo |  (55)
Q. TR ' InArn, 3380, T, 7 |Te+!3
r 2
¥, - 3
1 wrndn tJmlm sk LU PP l"?Ti (56)
Q; i T,;sh' h'tmiy“%j’* Re 1%, T m vy 0
| ow R 0
a2t ._ 1.0S - 0.106
Qo 79 T L0 hhﬂ- T { 7+ 3‘0 } (57)
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§ -00052 m; 0, v 297+ 9%:1 (58)
vaLB
} 00052 m; 0,V ['z q74+ 2 ] (59)
o A m; Vi
n
}L = ‘-‘E_— QL “LL (60)
l*
My e G (61)
The MHD equations for four fluids (Helium) are
dry o, 3V) S +n. S (62)
E:—F Ir LTS ——TLSQ(‘-Q-I'\O l'n'ioc& ST
dn. a3y I
af:—f*a-;-)‘f N [~y + 0y S?-} (63)
dn n 3(rv) 8
PTar A “s“"%g‘} o8
dv 3 - 9 (Y4 v ) 2mv
el lcte(n, T +n, LY+ T ue -2 L
dk r\,l}t&.c Qr(ee ) ar {3}‘8!‘ %r} v
C, 9%8; 9%2 '&e 3("% )
hwm {( ¢ nyr ) Qr 7\'(\/ v) (63)

23, 1 3 [ o] L [Tl LT
db T 3 r oar 3t oar | k| 3, | T, Ze

Lo 28 9%, [+ a8 | 2(rBy) 2
+3—"¢"""")‘[ { F’} ?ez{ Z}{r ‘5;%} ?z{r Sr }] (66)
“é‘[“og. (X,*%Te)ms S,_ (X 1;)] {uq‘cx‘mﬂ;)&]
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T, 2 1. Ay, 2 2 [I_Q_GTLJ L [T: -To _Te.-n}

[T R TN T AT B TH
L Naty g (T..T.)s S g | (L2, AV
+3. (v, “hp 5,(T%-T, wﬁ»“, ar}~3;{m_ (67)

— - — + +
' oot T30, T, T

dlo 172 2 3 {r 0 31'0} L LT, &-T,
db 3 ar o 3nroar 2

L
Wty (T )L S 1 Ary) Vo [3Ve
+ -?O(V o) + o Q’,'( . °)+——c'no )AN T 57 -3 - Tr (68)

where n, is the number density of doubly ionized He, n is the number

density of singly ionized He (nS =n, - 2ni), n_ is the total ion num-

t
ber density (nt = n + ni), oy is the recombination coefficient for
the reaction He + e - He, ¢, is the recombination coefficient for
++ - + . .. .. . .
He + e - He , Sl 1s the coefficient for ionization of He, 82 1s the

coefficient for ionization of He , X, is the first ionization potential

of He (24.46 ev), and X

1
is the second ionization potential of He(54.14 ev).

2
The equations for the neutral wvelocity, Vo and for the magnetic field

components, B and Bz’ have been omitted because they are identical with

6 ]
the corresponding three fluid equations (eqns. (40), (44) and (45) ).

The transport coefficients for helium6’7’9’lo’11 are listed below:

-9 . .3

c(,l = [5.(9 TQ e +0.27 Te_ ]* 10 (69)

c a_ -

oLl :S6¥i0 Ty @, (70)
% -3

o =[tm.811 R, + 1.53 T "]& "3 (71)
3 -

%;t 4.8 ¥ 1o TC, e (72)
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S = “Xt/T&
| 4o e (73)
C-158 e~¥,_/TL
) (74)
N Ne Ny 0.218
-————nt S| +0,Vie [2.3‘? + v 0.5 ‘Qn% TL (75)

e
where VI-O > [OGW (TL +T°)+ (v‘vo)l]

)\ ='—t—‘-r—L’- +n V.. 1239 0.213
o n, T e tio t ~0S Ti.] (76)
\ 2 1
Yo oaesn T T35
[}
—ann V. [|35¢-0.75 T + 0.415
i io
0 L © [ o v v%o (78)
-3z
Lo (ren) I ATe w20 (79)

@
e

_ i+ L7 R,
Ny = 000522 “t s Im A Te
y N Ly
+13.5S _° —= .1
6w 10 [S|+ S,_+67 {T +oosx}T 2} (80)

Ve = 9 ‘ - =
= .97
L@ T (80a)
| dAGen) sfarh ) '
- " e, e "o
o nen 1$0.511% 10 Jprs +0MQ——K{T?:§3+0027} (81)
I n3dnalngrun) o i
_ : s,
Q; - “lt T sl T, {1‘( 3- S&n} T b 25'} (82)

' l
- N L.2§
T T [z.s+ R {zu.s-s mTﬁ- 3 H (83)
Le
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Ty
F: = 0.0%46 nv, [&.75 ¥ “V; ]
Lo
29
%): 0.0346 U Vi, [\.73 + ’*ng
Lo
),{ = 1,77 QL
MN: W77 QO

III. Numezrical Methods

(84)

(85)

(86)

(87)

For the sake of simplicity, the discussion will again be confined to

the three fluid model. The extension to four fluids is straightforward

and is readily obtained from the equations at the end of Section II.

l. Finite Difference Equations

Let us first write down the finite difference approximations for equa-

tions (37) through (45), in Lagrangian form:

- r -0 -
l—-f-AYp, - A° . = 1 -¢) da + € da
At | j+3 3*7% »dtJj+% _dtaj+b
- - . .10 Y%
Ll - | - a-e|k ve| L
At | 3t J+6_J dt‘J""/g _dt_3+%
].___ f‘va _ VO T _ (l _ E) rﬂ_o .. ri‘{.vp
At | 7] i _dqj _dqj
~ - r .0 r . IWp
1 wp o dw dw
—— - = - —_ + —_—
At i wj W | (1 €) -dtdj & | dt ]

(88)

(89)

(90)

(91)



1 vp o _ _
e TR B

1 B vp )

— |F,P -F = (1 -
bt | Ti+E 3 (
I I R -
bt | Ti+s ivh

1 [ vp )

— |Y.5, - ¥ = 1 -
br | ity ity (

1 [ vp i

— |z, -1z = (-
ac | Ti+h o Tivh ¢

where A =n , C = s vV =

v =
er

18

[ (o} o -Vp
dE dE

£) at ! *e I3 1 (92)
- 31+3 - S3ts
— -10 - ..Vp
dF dF
— + —

28 el € lac]. ., (93)
- 2]tz - = 3t3
~ . 10 [~ wp
G 4G |

1%l telE (94)
SRS Sl As:
~ .10 - VP

€) %% e §%~ + X0 (95)
L _J+l/2 d -JJ+'/ 17z
1510 Ca7 VP

€) j—i + e %E— + U?E‘/ (96)
-+ h - 3+h :

vir’ W= vo, E = Te, F = Ti’ G = TO,

Y = rBe, Z = BZ, and the subscript j is the spatial index. Note that

the velocities are taken at integral space points, whereas all other

variables are defined at half integral space points

. The meaning of

the superscripts o, v, w and h is explained in the figure below:

A time, t

neutral fluid element

trajectory of a

s "/

trajectory of an ionized

fluid element

—
radius, r

t + At

b
=
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The superscript p appearing in equations (88) through (96) refers to
the pth iteration; 1f it is omitted, the (p-1) h iteration 1s under-

dETVP . .
stood. Note, however, that expre581ons such as[ ] contaln quanti-

dt
ties from the p th and the (p—l) iteration, as indicated in equa-
tions (99) through (l1l07). The iteration parameter e 1s usually taken

as g = 0.5.

The subscripted quantities appearing on the right hand side of equa-

tions (88) through (96) are listed below:

s 4 -A" V C{‘ . .
J*3 [ it Ayt CJ{—-;: S\hlz ©n

dC Civs o .
[E;JJ*' TR, M [RJ“- Wi (Ré WJ]
t 3

i [iey %ot = Gy Spoa] o0

b .6
[ar}zﬂd“‘e { 'HJ i By Fiv)- UEIUEEL Y]

s A Mt P _.}*'-i P 1%
O i (v vE )

R 1 ¢

2 }* M.y 3 .V.?
- -'.VP - J™t P ? }‘

3”3 [2?\ * ( d” ) :mj_% (VJ +V\~)_‘)]- —-—'1—-!1-%3

llooon [(2 AR )ZD 3 YDJ} —XJ (VJ"W\}) (99)
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P
d'w - ‘ .6 ' ' \
[O\J.’C- it i % {C‘S*i Sjei - Cd“ G]

o [Bwisk (7 W) Auick (7]

+
34 “d”i J Hd-- :
2 [}AN l*t (W + Wf) -- (Wf W )] l}«lzw
W 30, L . B
+ 7\00 (\3-\!\6\ (100)

F

¢E 2 E- \

hﬂ *?m?ﬁ.‘thH“V]
Y in 1

ALy
2 %, Q P ¢ W; Q, ; P e
+ A ( -E NiQRe, i (_E __E __)
*-%,h “y- [ “JH J*s ) “J ‘V S
- 3 :‘ [Ed*z 'Gd*t N Ejvd '%-r-'i]
c
It teo,\ii--';_ 2",\3*.\.

2
B Q% ‘l'- + Ne:
e [ i [2%. zo] ”J: [zo +zo“yow+yn}
t

2z, i+ 1 z
[ + T + .

+ AT [\/D. VDJ]
)
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1 [F.‘*’ - Gr\ﬁ--{ EJ'!'{-FJ#-"-}
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In order to simplify the notation, the superscripts o, v and w have
been omitted in equations (97) through (105). It is understood that
if the quantity on the left hand side carries one of these super-

scripts, all quantities on the right hand side must carry the same

superscript.

In equations (97) through (107) we have used the following abbre-

viations:

A = LA, | + A,
j ZCAJ+% J—%)
C = L(c. + C
3 1Chay * iy
Y = L(y. , +%Y
j 1y * ¥5y)
Z, = Y@z, ,+7272. )
i Uik %
1
YD, = — (Y. , - Y. ,)
j Hj itk i-%
D, = (2., -2z, )
J Hj J+3 72

The spatial mesh is shown in the Figure below:
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2. Method of Solution

Let us assume that all variables are known at time t (superscript o)

and that we are looking for the solution at time t + At. The unknowns

W VV’ WW’ EV v W

v
i+%* 3 i+L T iek T4k ¥
N J J J+3z 3*+z J+3

. ’
1+3

L

. v
are the quantities A, ,,
its ’

and Z,
Jj+
for all values of j. The problem is solved by matrix inversion and

. . . . . vl . . .
iteration: A first approximation (Aj+L’ etc.) 1s obtained from the dif-
2

. . . h

ference equations (88)-(96) by putting € = O and using X? , and U, ,
J+3 J+3

from the previous time step. Then, this first approximation becomes

th . . . .
the (p-1) approximation and the difference equations are solved for
t . . . . .
the p h approximation, using ¢ = 0.5, for example. This is done by
‘s L . 14 . th . .
tridiagonal matrix inversion’ . At this stage, the p approximation
is called the (p—l)th approximation and the procedure is repeated until

a convergence criterion is satisfied. It should be noted that, after

. . . w v w v W w v
every iteration, the quantities A, ,, C. ,, V., W., E. ,, F. , and G.
1*3 e ] ] J+3 1*3 J*3
must be computed by interpolation from the quantities

v w v W Vv v

A-+]/, o+l/’ .y .oy .+]/, F¢+l/

J*3 J*3 J J J*+z J+4

at time t + At must be recomputed at every iteration, according to the
p y g

w .
and GA+L. Furthermore, the spatial mesh
2

prescription:

RVP = g% 4 AL | (yVyPTL , y© (108)
J iz L] 3
R7P = g% 4+ At yPTl Lo (109)
3 32 3 J ]

. 3 .. .
The time step, At, must be chosen such that Y At < 1. This is equivalent

ar
to the condition that the mesh size should not change by a large amount
. . v o ) . . . .
in one time step, (H. ., - H. [)/H. , < 1, which is an obvious requirement
1*t3 J*+3 J*i

for a Lagrangian system. The iteration procedure described above converges

quite rapidly, usually in about five iterations.
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3. Boundary Conditions

Consider first the inner boundary where symmetry about the point

r = 0 is desired. Here we have

v. =v =20 (110)

= = =0 (111)

BBZ a(rBe)

e 5 0 (112)

No boundary condition is required for the density because its spatial
derivative at the end points, j = O and J = jmax’ does not appear in

the equations.

The conditions applied at the outer boundary, i.e., at the wall, are

not quite so obvious. We are using the following scheme:

v, =0 (113)
1
v = - %/n (114)
o o
L
e,1,0 2Te i,o ’
393 = - i 23 11
Qe,1,o or Ye,1,o Te,1,o e,i,0l m . (115)
,1,0
B = B
e o,wall (116)
= B
Bz z,wall

are prescribed functions of

d . B
where ¢, ye, Yl’ Yo’ and Bz

8,wall ,wall
time. The first of the above conditions, v, = 0, might seem incompatible
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with a Lagrangian difference scheme. This is not the case, however,
because all densities are kept above a certain minimum, typically 10—4
times the initial filling density (see paragraph 4., below). ¢ is a
given flux of neutral atoms being injected from the wall into the
plasma. The temperature boundary condition, eq. (115), states that

the energy flux, at the wall, due to thermal conduction must equal

the energy lost to the wall, per unit time, as a result of inelastic
collisions. The fractiom of particles that collide inelastically with
the wall is expressed in the quantities Yor Yo Y, (typically, we
assume Y =Y TV, T 0.1). The magnetic field at the outer boundary

is either given as a predetermined function of time or it is computed

from external circuit equations.

4. Minimum Density

It is clear that the density cannot be allowed to approach zero because
certain terms in the equations are divided by n. Therefore, some minimum
density must be specified. As soon as the density tends to go below that
value, at a certain space-time point, it is artificially restored to the
specified minimum. This means, of course, that matter is being intro-
duced into the plasma. We have investigated the effect of this "source

4

term" and found that if the minimum is chosen sufficiently low (-~ 10

times initial density), then it has practically no influence at all.

1v. Results

In this section, some of the results of a typical calculation are pre-

sented. The following input parameters were used:
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discharge tube radius 2.45 cm

tube length 50 cm

filling pressure 80 mTorr He

initial ionization 30 7% singly ionized
magnetic field at the wall as shown in Fig. 1.
initial temperatures - Te = Ti = T0 =1 ev
iteration parameter e = 0.5

resistivity classical (eq. (80) )
flux of neutral atoms from the wall 1020 cm—z sec—l
flux of ions and electrons from the wall 0

number of radial mesh points 20

Fig. 1. shows the magnetic field components, Be and Bz’ at the wall.
They were obtained from measurements in an actual experiment™. Fig.2.
and Fig. 3. are '"three-dimensional' plots of electron and neutral den-—
sities, as functions of position and time. Fig. 4. compares the aver-
age densities of electroms, singly and doubly charged ions, and neu-
tral Helium atoms, as functions of time. Electron and ion temperature

distributions are shown in Fig. 5. and the average temperatures of

electrons, ions and neutrals are plotted in Fig. 6. Fig. 7. shows

A

the magnitude of the magnetic field, B = (B; + Bz) as a function of
radius, at various times, and Fig. 8. shows some of the current distri-
butions (j = (jg + ji)%). Velocity profiles of ions and neutrals are
shown in Fig. 9. Finally, we have plotted the thermal, kinetic, ioni-

zation and magnetic energies as functions of time in Fig. 10.
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