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INFLUENCE OF LIMITERS ON THE PENETRATION OF AN OSCILLATING
AXTAL CURRENT IN A STRAIGHT DISCHARGE
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Abstract

Schemes of dynamic stabilization of pinches which rely on oscillating
magnetic fields transversely to the main static field encounter severe
difficulties caused by the screening of the field by residual plasma.
It is shown that insulating limiters, regularly placed along a column,
suppress the screening effect by exciting stationary Alfvén waves, and

allow the axial oscillating current to flow on the central plasma core.
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1. Introduction

In soﬁe experiments aimed at obtaining dynamic equilibrium and/or dynamic
stabilization of high—8 plasma columns, it is necessary to apply a high
frequency B8 (cylindrical geometry being considered) magnetic field which
is perpendicular (or nearly perpendicular)to the main confining field h

In general, the pinched plasma column is surrounded by a low-density plas-—
ma. The origin of this residual plasma is not well established but it can
be supposed to arise from, amongst other causes, incomplete collection
during the implosion phase of the pinch or from ionization of gas liberated
from the discharge tube wall. It is to be expected that any applied alter-
nating axial current will flow in this tenuous plasma thus confining the
high-frequency Be field to a skin layer near the wall of the discharge tube.
This indeed turns out to be the case in some of the experiments referred to

above (see Refs. 5 and 6).

In other experiments1 3, limiters have been incorporated into the apparatus
with the stated purpose of restricting the diameter of the plasma column.
The role that these limiters play in determining the distribution of the
high-frequency axial current has not yet been fully elucidated, either
theoretically or experimentally. In one experiments, the use of quartz
limiters shifted the current distribution only slightly inwards from the

bd

wall region. However, in other experiments , the use of limiters clearly

allowed the alternating axial current to flow on the plasma column.

For some time, van der Laan has stressed that the Be field distribution in
linear combined pinches (combined Z-and 8-pinches) depends greatly on the
manner of feeding in the axial Z-current. He has outlined a mechanism
(which does not invoke the use of limiters) which can allow a vacuum field
to be formed in the region between the plasma column and the wall of the
discharge tube. This mechanism fails if breakdown occurs at the discharge
tube wall and is inoperative in a toroidal system. It is because of the

possible occurrence of this mechanism that van der Laan has counseled



caution in basing the design of toroidal combined pinches on results

obtained in linear or toroidal sector experiments.

The purpose of this paper is to point out that if certain experimental
requirements are met, then limiters, by enforcing the mechanism des-
cribed by van der Laan, alter the current distribution in such a way

as to allow most of the current to flow on the plasma column.The effect
of the limiters on the current distribution is described below and the
necessary experimental conditions for enhanced penetration are esta-
blished. It should be noted that the use of limiters in toroidal systems
is not precluded and would indeed allow alternating axial currents to be

induced on toroidal pinches.

2. Description of the system

Consider a straight cylindrical plasma column of radius a confined by an
axial steady magnetic field BO and surrounded by a low density plasma.
Insulating limiters are placed regularly with a spacing 2L inbetween
(Fig. 1). The inside radius is equal to the plasma column radius a. The

limiters extend to the insulating wall of the tube of radius b.
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Fig.1 Schematic of the system



An alternating current Icoswt flows in the axial direction. At the tube

radius b the oscillating magnetic field Be(r = b) is then given by
% t
B, (r=b)= =—=— coswt = H cosw
© iTb

We want to find the oscillating field profile in this system.

3. Field profile for a perfectly conducting plasma

We assume that in the region ag rgb:

1) The tenuous plasma has a low uniform density % and is pressureless,
which implies that the field Bo Is constant in this region.

2) The oscillating field B6 is small compared to BO : ’B8’<k'BO .

3) The plasma is perfectly conducting.

4) The system is in a stationary regime.

The basic equations are:
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where E, v and J are respectively the electric field, the flow velocity
and the current density. By elimination, it results the equation of propa-

gation of torsional waves
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In the region between 2 limiters the stationary solutions have the form

(2)

where

) we o b ogin 92
=B (D osut. o8 =2 ¢+ B (1) coswt . Sin ==
'Be-'Be () cosut . o8 = 6 Vy (3)
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Choosing the origin of z equidistant from the two limiters, we have

(2) (1)
B 2

(r) = 0. B (r) is determined by the boundary condition on the

limiters, namely
]z_ (i L) = O,
which is equivalent to the condition
b

on the limiters. This gives

Q) Hb
BB ()= Twsg

expressing the continuity of Be

where we have introduced the crucial dimensionless parameter £ .
ng
= VH
For convenience, let us normalize the distance z by

?=Lj

The two limiters are now in y = * 1. The solution is then
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In the limit € -0, Be = ;—-cosmt, as 1f there was vacuum instead of

the tenuous plasma. All the current is flowing at r = a, namely on the

central column. For £ << 1 the equations (4) become
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We see that the corrections to the vacuum solution are of order ¢ . The

field profile is shown in Fig. 2.
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Fig.2 Profiles of the Be field



The solution (4) can be thought of as a superposition of a vacuum solu-
tion and a vortex structure as shown in Fig. 3. It is this vortex which

Creates the surface current at the tube wall.
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Fig.3  Distribution of the currents
between two limiters

We want to minimize the current in the vortex in order to reduce as much
as possible ohmic dissipation in the residual plasma. This can be done by

choosing ¢ ¢¢ 1, which we shall always assume in the following.

This result can be extended to the case where % and Bo are functions of

r only. The equations (1), (2) and (3) still hold and B. and Jr are still

6
given by (4) with g being now also a function of r. JZ has also a distri-

) L) .
buted term proportional to —a—}g - If €«< 1 in the tenuous plasma, the

field will still be nearly equal to the vacuum field.



4. Influence of resistivity

The field discontinuities inr = a and r = b will disappear if one takes
into account resistivity. The surface currents will be smeared. The width

of the transition layers should be, at worst, of the order of the classi-

<
U%fﬂ§r
which we assume to be much smaller than b-a (otherwise limiters are not

cal skin depth Q = (where (¢ is the electrical conductivity)
needed). The situation should look like this: away from the wall and from
the central column a<r «<b the solution (4) should be valid with two thin

transition layers at r = a and r = b.

To verify this conjecture, let us repeat the previous calculation with
resistivity included. We assume the conductivity @~ to be constant and

isotropic (scalar).

The equations (1) become:
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By elimination we obtain the wave equation
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Let us introduce the constant k =<£vlo€’wh1ch relates to the skin-

depth by S= J;}k. We write
Lt
Bg(\’,‘é, b) =Re B(",‘ﬁ}& “ (8)

where y is the normalized variable already introduced: equation (7)

becomes:
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collision frequency defined by @~ = ™ \) , 1s always very small and can

be neglected in all cases of 1nterest We shall neglect 1it.

The general solution of equ. (9) which satisfies the boundary conditions

at r = b and on the limiters can be written (Appendix)
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A;n) are constants to be determined from the boundary conditions at r = a,

namely the continuity of B and EZ.
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Instead of the developments (10), which are limited to the range -lgygl,

we expand B and EZ as

B« ;:‘—6 B{(") COS{TT?,

0
Ez - QZ E-Q.(r) s LT y
0

Note that the B2 in (11) are different from the Bn in (A4), and that the

(11)

thickness of the limiters is neglected.

Designate by ZR the complex quantities

£ - E&Ef'_)_ (12)
4 By ()

They have the dimension of a velocity and they depend only on the proper-

(n)

ties of the central plasma column. The A2 can be expressed in terms of

the Z

.
For —— »» 1 equation (10) gives
H = M
b wseE :E:: n nw
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By compérison with (11) we find
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We see that A; n) =z 0. From (13), by reexpandlng in y, we find
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Substituting into (14) we find the desired equation for the A
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The ZR depend on the properties of the central column, but some general

statements are possible. Zz can be written

w Sy iyl

Rk )

2 VI
SL has the dimension of a length. co is independent of § while the other
Q‘L depend on it. The requirgﬁgnt that the Poynting vector points towards
r = o implies that 0% L’L‘ T . If equ. (7) applies in the central column,
with g- constant, So becomes the usual skin depth (C' <4 @) and S a
decreasing function of 4! This last property remains correct for more
general conditions. Since the %z are at most of the order of ZO, which is
independent of € , we can expand in equ. (15) in powers of £ . We are

interested in the leading terms only. It gives, at the lowest order,

R S a [M]t (16)
3
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It is pleasant that the leading term depends only on SO and VB. Putting

this result in (10), we find for € << 1.
0 cxa, Der
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This result has the form expected. B(r,y) is equal to the vacuum field
except in narrow transition regions. The transition regions in r = b and

r = a have the same thickness CAIN-ES, which is much smaller than § .

This is qualitatively understood as a balance between the influence of
the limiter which tends to create the discontinuity and the resistive
diffusion which tends to smear it. The profiles of the amplitude of B

and EZ are shown schematically in Fig. 4.

Fig.4 Profiles of IBI and IE4l
with resistivity
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Note that if So<g;$, there is no transition layer at r = a.

The inclusion of other terms, like viscous damping or a variable resisti-
vity should not affect the main result. It should only affect the boundary
layers which should still maintain their dependence on & . Away from the
boundaries the plasma rotates almost as a rigid rotor, which makes visco-

sity irrelevant.

5. The transient

We have assumed until now a steady state. It is important for the experiment
to know the transient phase in order to determine its duration and its effect
on the field profile. We assume the oscillating current IZ sinwt is switched
at t = o on the configuration of Fig. 1. To determine the duration of the
transient we include resistive damping, but we forget about the transition
layers. The equation for Be is then

38y (v 43y %8
PYE R Y >*> a2t

(18)

Laplace transforming in time (variable s) and denoting by a wiggle the
transformed functions, this equation reads

2y S
wt 3°8g 4§ s ?"B&

3
5 Be"

which has the solution

cosh ESy
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The inverse transform is

A
© T [(am)?"‘] ot
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where we have neglected damping in the first term, which is obviously the
steady state solution and where we have made the small damping approxima-
tion in the terms of the sum. This last approximation fails for large n
but this is irrelevant since the sum is very strongly convergent. The so-
lution (20) shows that the amplitude of the transient is of the order of

8¢

i;z~ for € <€ 1 and this transient dies out in a time of the order of
AN
gR*L
c- Q)TTZ

Since we always have kL »» 1 this transient will disappear slowly. This

is another reason to choose € £& 1 in experiments to minimize the influence
of the transient. It should be noted that the dependence in r is the same
for the transient than for the steady state (except for the transition

layers where large currents flow).

6. Feasibility

The parameter § can be written as

“g PR L (cm)/Hy o )
B (R0)

where MA is the atomic weight of the ion, n, the ion density and f the

£ :QQ x 10

applied frequency. A hot 6-pinch has a residual plasma of density unknown
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but certainly not more than 1014 cm 3. For a field amplitude of 40 kG

and a plasma of hydrogen, it gives

€ = 0.0075 fL.

€ = 0.3 corresponds to a maximum axial non-homogeneity of the oscillating
field of 5 %. We take this as the maximum value of ¢ , which then gives

for the distance 2L between 2 limiters

2L 80

a~ _SY
max £ (MHz) cm.

The big unknown is the frequency to use, but it appears that dynamic stabi-
lization will only be interesting if the frequency required is well below

1 MHz. This means limiters could be spaced meters apart. The situation would
be even better in low-B configurations with fields in the range of 60 kG and
above, and densities in the range 1012 - 1013 cm_3.

Limiters can be used in the same manner for other configurations. The
essential point is that, whenever %?—- & 1, where 2L is the distance
between two limiters measured along g%e field lines, the current can only
flow along the field lines. Examples of interesting geometries where such
a scheme would be useful are screw-pinches, high-B8 stellarators. Note that

the toroidicity does not invalidate the results. It only changes the spatial

field distribution of the residual currents which are still of order ¢
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Appendix

r
Let us introduce the new variable x = —ET-. The equation (9) now reads:
2 [4 a0@)], 228  e2Reo0
M 7 (A1)

ax [ x M 9y
= —ET , the boundary condition 1is

At the surface, x, =
B (x ,\3)=H

and at the limiters, y = % 1,

B(X,'_"_-() = H;hxb

Since we are only interested in the range between two limiters, namely
We can use this to extend

-1 y&+ 1, B is not defined outside this range.

the definition of B to the range -2&y&+ 2, by the following definitions
-quk<~i ; 'E(\a\z—B(\aﬂ)
Sloyert s By By -
rleyer2; Beg=-By-2)

It has two discon-

B(y) satisfies the equation (Al) on the enlarged domain.

tinuities in y = ¥ 1 with the jump relations

bb
B (t4+0)- B (2 -0y 3 L0 s

A

(-2). Since the solution is symmetrical in y, E;—- is conti-

2y = 2B (L
Y

and B(+2 j;
B

o

nuous and

v l
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We expand B in a Fourier series

w0
~ ni
3 b«.33 = Z Bn (x) cos _T‘t (A4)
N=0
3'B
We also need the Fourier expansion of — , given by
® ay*
'R T
235, E C cos —&
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with ¥ 0 . +2 i -
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-7+-sm—-——{3( 1+0) B(“ -0) - B(—Ho){-%@ o)} (nn) Xd}%‘“

2
nr TR n
= nmsin T —— (2) B

for n # 0 and CO =0 .

This gives the expansion
WH% o\, m
33 E vsm"— TR, Jeos ¥
/A n 2 (A5)

Substituting into (Al)
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The general solution of equation (A6) is

T
nrsin 5  Whb (n)
Bn(x}=(£ﬂﬁ)z - € e ' Hz“ () (A7)

where qn_ (;:':‘E.& (2‘) ?,2' and Z(rll) (x) is a general solution of the

Bessel equation of first order.

(n)

We choose to express Z (0( x) in the form

Z() Q(n) H4 (e X) : (n) H(:)(ocnx)
4 m (g Xs) 1 H(})@‘nxc)

(2)

in terms of the Hankel functions H( )(x) and H (x) which behave asympto-

11 e ix d e X ively for 1 Ka 'y 1
tlca y as rx- arn VX— rESPECthe y or arge X (XC = E . e

constant. A, and A2 are fixed for each n by the boundary conditions.

The function 6(y) defined by
9(33 =4 |3| 2
6Ly =-4 |, A<lyler

has the expansion

00 . AT
sin —
2 My
9(3)2224 ili s 2 (A8)
N: 2

Using this relation the boundary condition at x = X, extended by (A2) ,
B, (x) =
ByXg) = 28 ———

gives

sin ntT

T
——==— , N#0
e
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which imply

30 (x) =0
“m 2 €"sin —%_1 (n) Hiz)(a(n Xg)
CUEER) T k) "
Replacing into (A4), B(x,y) becomes
N (-1)"cos(2n+s)-§—y fxﬂf‘)@(m )

“H’ B(y)+2 “M’ g 1-
B (x, B) 3 "o (ﬂ.hH){- H(!n‘h) %] ". f_? hb n:')&mﬂxs)

+ H Z A") H( (‘q"ﬂx) H(:)(«“xs) H(:)(dn)()_} (A10)
TP hPa K |
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