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Abs tract

A collision dominated plasma confined by a rotating magnetic
field is stable if £ > ., 02 vy where f is the frequency of
rotation and 2 the ion collision frequency. Short wavelength
perturbations are the most difficult to stabilize. Growthrates
of parametric instabilities are shown to be so large as to
make impossible any attempt to use a fregquency much lower than
the above limit. A simple interpretation of a wide region of
instability, which cannot be ascribed to any parametric insta-

bility, is given in terms of an equivalent negative resistance,

Lausanne



Introduction

A rotating magnetic field pinch consists of a superpesition
of oscillating © and z pinches, 900 out of phase and of in-
tensities such that the field amplitude on the plasma sur-
face remsins constant in time, Such a configuration is pre-
sently being studied experimentallylng and theoreticallyﬁ_s.
In a previous paper (ref. 4) it is shown that, for a colli-
sion dominated plasma, the frequency necessary to obtain
stability of all modes of deformation of the plasms surface

is of the order of the ion-ion collision frequency. Such a
high frequency is reguired to stabilize the short wavelengths,

the long wavelengths being stable at a much lower frequency.

The aim of this work is to calculate numerically the stabi-
lity diagram for the short wavelengths in order to determine
precisely the minimum frequency needed to obtain stability
and to find if the maximum growthrates in the unstable regime
are acceptable, It also presents a simple physical interpre-
tation of the various instabilities which are uncovered. In
particular it is shown that the stability analysis at high
frequency can be carried through using a more general method

7

than the usuzl time averaging procedvre which can only be

used for simple systems (Methieu-Hill equations for example).

The Model

Consider a sharp boundary plasma which fills a half space z> O,
with no field inside the plasma. A rotating magnetic field B

fills the other half space z < O:

BX = B coswt, B = B sinwt



To describe the plasma behaviour we use the Navicer-Stoxes
equations for a viscous gas obeying an adiabatic law

pp--Y = conatant. The thermal conductivity is assumed to be
zero; however the case of infinite thermal conductivity

can be simulated by taking v = 1 . We estimate the influ-

ence of finite conductivity by comparing the resulis for

the two cases v = 5/5 and vy = 1. Dencte by p the viscosi-

ty (the second coefficient of viscosity is agssumed to be zero),
P, the pressure, °, the density and u = 'Ypo/po the sound ve-
locity of the plasma. o = u/(%u) has the dimension of a length

to which corresponds the characteristic freguency v = W/ o .

For a perturbation of the plasma surface of the form

v = e(t) e

we obtain the equation of motion (ref., 4)
b
X (1 + cos2ut) e(t) + R(t-t') &(t') dt' =0 (1)
0

where X = quO, and R(t) is defined through its Laplace transform:
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Stability

We introduce the normalized variables
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For simplicity we shall drop the underlining since from now on
. s,

we shall only deal with the normalized variable

To study the stability of equ., 1 we shall use the method of the
determinant presented in ref, 4. The function D(s) is defined as

(=] +eo
D(s) =1 - 2 (-1)Q I G(s+ikQ)6(s+ikQ+21iR)...C(s+1kQ+211Q)
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where  G(s)

B/2

B+ Ysﬁ(s)

i

g(s)

There is stability if D(s) has no zerces in the half plane

Re 8 > O. When there are zeroes in Re s > O the real part of

the zeroes gives the growthrate of the instability.



Nyquist diagrams

D(s) has the following properties

D{a*) = D (s) , D(s + iw) = n(s) , Dl+=) =1 (1)

It is analytic in Re s » O. From these relations it follows that

Im D{x + inQ) = 0 ,

The curve obtained by joining the points D(iy) for 0 <y g 92

can be called a Hyguist diagram although the curve is not the
image of a closed contour in the s plane. The number of times

the curve, closed by 1ts complex conjugsate, encircles the origin,
gives the number of zerces in any band Re s > o, Y8 Im s g yo + Q
(yo arbitrary). Rcf. 5 gives more details on the use of such dia-

grams in more zomplicated cases.
In this simple case there are only four types of Nyquist diagrams:

stable: D(0) > 0, D(i®/2) > 0 and the curve does not encir-

cle the origin. This is the only stable case.

M-unstable: p(0) > 0, D(iR/2) » O and the curve encircles the

origin once. D(s) has zeroes at s = x * iy + inQ,

Q-unstable: n(o) > o, D(i%) < 0. D(s) has zerces at

s = x+i§ + inQ. -

O-unstable: n(o) < o, D(ig) > 0. D(s) has zeroes at s = x + inQ.

In these equations n is an integer, x and y are positive; x is the

growthrate of the instability.



There are only two parameters in the problem: £ and Q. Fig., 1
shows in the plane [(-Q the regions of instability for v= 1,
ok There is an infinite
number of these needle
shaped unstable regions
all parallel to the first
three shown. They are
very narrow and centered
1.45
around & = m;~“ 8. s n
increases these needles
recede to the left, conti-
nuing the trend already
visible on the firsv three,

Above these needle shaped

regions there iz a wide un-

107 on . .
stable region which grows as
Fig., 1 Stability diagram for B decreases, in contrast to

vy= 1. The regions hatched are
unstable. Only the first three
parametric instability regions a constant width at small
are shown: n = 1, 2, 3,

the “needles!" which assume

values of B.

To gain some understanding
0of these diagrams let us
look at tﬁe Nyquist dia=-
grams in the various re-

gions. Fig, 2 shows how

Fig.2 Kyquist diagrams

for v = 1, B = . 001l. The

values of Q written on the
diagram have to be multi-

plied by 1073,




T the first unstable region deve-
bGy)

lops as Q decreases, for s fixe
value of 3. It shows that the
first region is Ne-unstable, Fig,
5 shows that in the first two
needle shaped regions the dia-
grams are (- or O-unsiable resg-
pectively. If one identifies
each region by the value of n,

- the odd regions are {- unstable

and the even ones (O-unstable,

The stability diagram for y = 5/5
is shown in Fig. 4. It shows very
few differences from the stabi-
lity diagram with v = 1, There is
a recduction in the extent of the
large instability region and a

slight change in the locaticn

of the needle chaped regions,
which are now given approximate-

Fig. 3 lNyquiet diagrams ly by @ = 1.2B/n. The end points
for v =1, = , 01l. The
values of § have to be

multiplied by 10-<, for vy = 1 and y = 5/3 correspond

almost to the same frequency.

of these needle shaped regions

From the two stability diagrams we can conclude that stability of

all modes is achieved for @ > «13, which corresponds to a true
_.‘7_{'
W
to relatg v to Vi the ion collision frequency, it gives f = .OZvi,

frequency f = *. 0lv . Using the-results of Braginskii ()
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4 STABLE

Fige 4 Stabilit
gram for v = 5/3
hatched regions are
table, Only the firs
tiree parametric reg
are shown: n = 1, 2

Interpretation of the results

Consider the hypothetical system desecribed by equ. 1 without
the cos2wt term. We shall call this system the average system
(cos2wt term averages to zero), The dispersion relation for

this system is simple for f << 1:

Py —L2— . 0 (5)

which has the solutions 8, = * iﬁ\! E, 5 . The average
1 +\/1 + 4y

system has an undamped resonance at the freguency fsof . For
vy =1, }soi +79 B and for y = 5/3 , | SO! = L,67 B. We expect

the oscillating term to pump energy into this mode and drive



2ls |
. . . o . o - Lo
it uvnstable wnenever @ = T (o= 142.0.). We have indeeg
1.8 s
' . : . o e 4 ep
found unstable regions whe Q = B — The differernce
in the coefficient is not important and reflects {he fact that

egu. 1 is not a Vaihieu equaiion, We can conclude that the nea-
dle =zhaped regions are parametric excitations of a weakly

~

damped mode of the average system,

The existence of the region of instability for « »> 2 sOf and
B << 1 was aiready uncovered in ref. 2. Since in the case of g

Mathieu-Hill equation there is always stability for § »> 2)3!
(where s, is the resonance frequency of the system without the
oscillating term), it is of interest to try to understand this

difference in behavior,

The determinant D(s) (equ. 3) can be written as

3

D(s) = 1 - g(s) Dy(s) - D,(s) (6)

where Dl(s) and D2<S) depend only on g(s+ikQ), kdo.
We generanlize the definition of g(s)4:

g(s) = A2

X + sZ (s)

i(s) ¢an be any response function which satisfies the three condi-
tions:

é(s) holemorphic in Re s > 0, Re i(s) > 0 for Re s> 0O and

gim 72(s) > 1.

|s]se



The roots of D 5) saticsiy the eguation

o
..(,‘
0
[N

X - x -4 —S— s X real (7)

o* . L B L o
é (S) = g(?)) - % - et et
8(1-1,(s) ) 5(1-0,(0))(1-3,(s))

The dispersion relation with the oscillating term is thus reduced
to the disversion relation without the oscillating term, with mo=-

PP N . . N,/ . . . L
dified values of X and Z{ej. This is just a formal transformation

A
}
of the egquation D(s) = 0. For [Ims| ¢ Q/2 and @ sufficiently

above all possible parcmetric excitation fr

e
{Dl(s){ <<l and the eqguations for X and 7 () simplify

*~ . ;g‘:
Xo5 X -3 Dl(o)

We have also assumed that [Dé(s)] << 1,

For our case 4 = X = B and 2(s) =yR(s). We limit the range of &

. * % N
to B<< @ <<1, In this range R(JQ) = 1 and X s 2 (8) reduce to

X 0B
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The oscillation has the same effect as adding an active element
to the static system (negative res istance), It is noteworthy
that by choosing a freguency @ in the ra nge where the plasma
behaves as a comvletely passive element (X (iQ) = 1 !) has the
same effect as adding a negative resistance to the static 3yS=-

tem, By solving equ.(7) we find for the upper stability boundary

5 3vB

2(1 +6~{?’) (1 +\/1 + 4y 2)

At thls frequency the damping in R( ) Just balances the negative

resistance and the oscillation at the frequency [s | (equ. 5) is
undamped. At a lower frequency the mode given by equ. (%) is
~driven unstable,

In the case where R(s) . s at large frequencies we find for large

values of @

The oscillating term has clearly a s*abilizing influence. ﬁ(s)
is unaffected at this order by A. These formulas give identical
results to the conventlonal quasi-potential approx1mat10n7 in
the restricted case where R(s) = s for all s (Mathieu equation),
In conclusion we have shown that the stability diagram obtained
numerically can be interpreted physically. The method presented
to study the high frequency limit is very general and reduces

to the usual quasi-potential approximation for the special case

of a Mathieu equation.
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Growthrates

Because of the high value of the frequency needed to achieve
stability of all modes, it is of interest to find the growth-
rates of the instabilities at lower frequencies. Just by loo=-
king at the diagrams it is clear that the n = 1 parametric
instability must be the fastest growing mode since it is the
hardest to suppress, n = 2 being the next highest, Pig. §
shows the fastest growth-

107 e I N
¥l I o rate as a function of
| |
, / : 3 the applied frequency
. 8
/ { . @ for y = 1 in the two
/ I
; 6 regions n = 1 and n = 2,
: 5 j The mode n = 1 is by far
: 3 the fassest growing. The
I
,,,,,, ; 2 dotted line shows N(Q) =
I ! | X
o} & | 4n/(Qt,,.), that is the
growthtime of the worst
Fig., 5 Growthrates of the instability expressed in
m@st unstable moée? n the number of periods of the
first two parametric insta-
bility regions for y = 1. The applied field. This curve
curve a is for n = 1 and b ] o
for n = 2. The dotted curve shows that the growthtime
¢ is the growthtime of the is of the order of a pe-~
mode & in number of periods riod. This is a strong in
of the applied field. The y * g in-
ordinate for the curves a, b stability. Unless there is
is to the left., = is also
max a powerful non-linear mecha-
normalized to u/w. The right nism to stop the growth of

ordinate N refers to curve c,.
this instability, it appears

hopeless to try to use a fre-

quency appreciably below ,0lv

The results for v = 5/3 are almost identical and introduce nothing

new to the discussion.

*



Limits of validity of the caleulation

The use of the model is justifiedé if B ; % s where a ig the
plasma radius, =znd if o << a. For all fluid models B and Q
should be limited o By @ <<l, We found stability only at a fre-
quency £ > .15, Although there is rno doubt that the incresse

in damping as B approaches 1, which wakes it possible to obtain
stability, is resl, can this value of Q be reliable ? This con-
dition can be rewritten as 2f < .Oévi. The wavelength of the
last unstable mode is egual to * 65a, In this range of freguency

and wavelength the fluid model should 5t111 be valid,
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