February 1966 LRP 22/66

LABORATOIRE DE RECHERCHES SUR LA PHYSIQUE DES PLASMAS

FINANCE PAR LE FONDS NATIONAL SUISSE DE LA RECHERCHE SCIENTIFIQUE

ON THE DESIGN OF A ROTATING FIELD PINCHED DISCHARGE

E.S. Weibel

R. Keller

LAUSANNE



February 1966 LRP 22/66

ON THE DESIGN OF A ROTATING FIELD PINCHED DISCHARGE

E.S. Weibel

. Keller

Abstract

The dynamics of a rotating field pinch is described in terms of
the macroscopic gquantities temperature, pressure, plasma radius
and magnetic field strength. The amplitude program necessary for
maintaining the pinch is established and heating rates are given.
The energy transfer between generator and plasma is examined and
the condition for maximum efficiency is derived. These are the

relations upon which the design of an experiment should be based.

Lausanne



I INTRODUCTION

A plasma column which is confined by a rotating magnetic field is
heated at the same time by the current induced in the boundary layer.
Thus the field amplitude must increase in time to balance the rising

plasma pressure.

This report established a relation between the magnetic field ampli-
tude and the plasma radius, on the basis of a simple model. The
plasma is considered as uniform in density and temperature at all
times. The rate of heating is calculated in accordance with the

theory of the skin effect, both normal and anomalous 1).

Tnertia and heat losses are neglected. The former because the plasma
contracts only slowly, the latter because the rate of heating is far

greater than any loss by radiation.

In this connection it must be pointed out, that by neglecting energy
losses we obtain conservative estimates of generator performance.

This is so because the main problem encountered in alternating field
confinement is due to the rapid heating of the plasma which necessi-
tates a very rapid increase in field strength, and hence in power.

If energy is lost from the plasma its pressure will rise more slowly
and the power requirements on the generator will be easier to satisfy.

Thus we believe to be on the safe side with our power estimates.

Pressure balance and conservation of energy lead then to a first
order differential equation with respect to time relating the field
amplitude and the plasma radius. This equation can be integrated
and yields an explicit description of the dynamics of the pinched
discharge. One may, for instance, prescribe the initial plasma para-

meters and the plasma radius as a function of time. The analysis then

1) E.S, Weibel, The anomalous skin effect in a plasma LRP 18/65.



gives the required field amplitude as a function of time, that is,

the necessary amplitude program.

As a matter of great practical importance, the transfer of energy
from a generator to the experiment is also considered. The genera-
tor is characterized by its internal resistance and by its open
circuit voltage. The plasma offers an impedance that is mainly in-
ductive with a small resistive component. To obtain an efficient
power transfer it is clear that the plasma inductance must be com-

bined with a capacity to form a resonant circuit.

The conditions for total energy transfer are well known for resonant
circuits with constant elements and for the steady state. But the
necessity of a programmed increase of the field amplitude precludes

any steady state.

Under these conditions good energy transfer appears impossible.
It is not generally realized that this need not be so. It is
theoretically possible to obtain total energy transfer from a
generator to a re sonant circuit even during a transient (of a
particular form). In practice energy transfer from generator to
the experiment of more than 90 per cent is possible during the
type of transients that are useful for the production of a pinch.
Of this energy about half is stored in the circuit and the rest

is transformed into thermal plasma energy.

This report does not intend to give a detailed description of the
phenomena taking place in a plasma when it is confined by a rota-
ting field. As the title implies it gives macroscopic relations

which permit the design of an experiment.



II PINCH DYNAMICS

Consider a cylindrical plasma of electron density n and temperature
T which is confined by a magnetic field of the form /5\%(t) sin (wt).
Let [ be the length, a the radius of the plasma column and designate
the volume, total number of electrons and total energy by Qp’ N and

Wp respectively. Then the following relations hold

% = nla
D
¥ = nla‘n (1)
W_ = fkTni_ = fkTN (2)
D D

where f is the number of degrees of freedom per particle. The ba-

lance of pressure requires

%2
p = 2kTn = EE; <3>

Conservation of energy requires
W = -p&¢ + Q
p - TP (4)

where ( 1s the rate of heating due to the alternating current in the

plasma boundary layer.

These equations can be considered to hold if the quantities involved
vary sufficiently slowly in time. It shall be assumed that this is
always the case and the plasma properties are considered uniform

throughout its volume.

The rate of heating can be calculated from the theory of the skin
effect. For a plasma the theory of the normal skin effect applies
only up to a certain temperature T which is a function of the density

and the frequency. We shall consider the two limiting cases of normal



and extreme anomalous skin effect which are characterized by the

following inequalities

2 2 1 normal
uw w
czliw +vl5 1 anomalous
where
2
u® = 2kT/m (5)
2 2
wp = e n/gom (6)
4
y = 1zA e’n 2)

Ignoring details we treat 1lgA as a constant and set it equal to 8.

As the plasma is heated up it will pass continuously from the normal
condition (regarding skin effect) to the anomalous condition. In the
following sections a) and b) we shall assume for simplicity that the
transition occurs abruptly. In the normal and the anomalous domain
the simple limiting formulas will be used which are valid, strictly
speaking, only for A& 1l and A3»1. The transition is assumed to take
place where the surface resistance calculated according to the two

formulas has the same value.

a) First heating phase : Normal Skin Bffect.

The theory of the normal skin effect gives an expression for the

surface resistance which can be used to obtain Q

w2 ez co (k1)

20 T 1gA L2 172 (7)

2) L. Spitzer, Physics of fully ionized gases, Interscience 1962.

Definition of A on p. 128.



Hence

Q - zntanﬁz/ui

The analysis becomes most transparent if one introduces dimension-

less ratios to express a(t) and B(t)
a :‘g(t) 2 B = B(t) B (8)

The guantities a, and BO are arbitrary. We further choose reference
values TO and n which are not entirely arbitrary but must satisfy

equations (1} and (3), that is
f.2 _
ngao n, o= N

and

2
4“okTono - Bo

With this preparation equation (4) assumes the simple form

= ()"

a
“OO

o

d 2 2 2 .24 2.
Fre {3 B7) + £ 8° 3 (5 ) =
The symbol 4% designates K for T = T

o

The differential equation (9) can be solved readily

gh@&—#ﬂ(u

1%
with a
b - 2+f FoBo
o 5 21%
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o
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This equation could just as easily have been solved for 8(t) in
terms ofj’(t). A fortunate coincidence simplifies the solution

even more for a plasma with f = 3, that is &= 5/3 :
(t/to+1)2/3
) S5f5

In this last eguation the integration constant t* has been chosen
such that for t = 0, B =Lf = 1. Therefore the quantities with

subscript zero such as BO have, here, the meaning of initial values.

It is curious to note that to is just the +time required for a static

magnetic field to diffuse into the plasma for the initial conditions,

The time for heating the plasma from To to T becomes

o Y020

- or(T) T znﬁfg) (10)

It will be seen that the expression poa/Z?% equals the time constant
of the electrical circuit up to a constant factor of order of unity
which depends on the geometry of the experiment. Bquation (10) can
also be written in the form

2R () 1

uoa t+to

showing how H decreases with time.



b) Second heating phase : Anomalous Skin Effect.

The analysis for the heating due to the anomalous skin effect
runs quite similarly to the one of the preceeding section. One

must use the surface resistance

(= (11)

where u and wp have been defined previously in equation (5) and (6).

Thus the power dissipated in the plasma surface becomes

&
it

2n8a7@32/u§

i

2nu;2 ﬂaoBig@(To, n_) 61/5 gz (12)

where [ and S have the analogous meaning as before, equations (8},
but BO, To’ n and a, describe now the plasma conditions at the

beginning of the second heating phase.

By introducing (12) into (4) one obtains the differential equation
relating B and S

-1/3) _ 4%(Tov no)

b2

(e2)p7? & (1) - 30 & (o

0]

This equation can be solved for B, assuming j prescribed :

5=1/3 i § 7 @) aw (13)

1%



Since the initial contraction of the plasma can be made to occur
during the first phase it suffices to examine (13) for constant

5 = 1. Taking £ = 3 and requiring B(o) = 1 one obtains

where

Thus the heating is explosive, reaching infinite temperature in a
finite time and the magnetic amplitude must follow by increasing
with time according to the inverse third power. The time required

to heat a plasma from temperature ‘I‘1 to T is simply

Thus the resistance increases as the inverse first power of time

!

9poao to—t

Fig. 3



c) The standard amplitude program, general case.

In sections a) and b) we treated the normal and anomalous case
separately for the sake of simplicity. Thus the essential features

of plasma heating and confinement could be clearly exhibited.

In reality, of course, there is a smooth transition between the
two extreme cases. It so happens, that the surface resistance of the
plasma is very accurately given by the sum of the normal and anomalous

resistance. Thus
%-n(m) Lpla)
Where'RKn) and}@<a) are given by the formulas (7) and (11) respectively.

We now introduce new reference values 8o 0y TO, BO in the following
manner. Starting from a radius a, the plasma is assumed to contract
initially to a radius a - Thereafter this radius is held constant.
The density n. corresponds to this radius. TO is defined as the
transition temperature associated with n , that is, the temperature
at WhiCh/%Kn) and n(a) are equal. Finall§ BO is chosen such that

B 2 = 4p kT n

o} o oo

Thus the pressure balance is satisfied for the reference values.

Putting again
a=p(t)a, B = p(t) B

one can write the basic equation (4) in the form

v

£ - 2 Bzf};+ Béjz Y {Bl/Zf—l/Z . g1/3 fz} (14)

a
o}
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A%

9
0 3#0

and ﬁb is the value of ¢b<n) = ﬁ&a) at the temperature TO. Unfortuna-

tely this last differential equation (14) 1s not even separable *).

We arrange the program such that the initial contraction takes place
in the low temperature, normal regime. This allows us to use the
simple explicit formulas of section a). The heating thereafter takes

place at constant radius ao,-f:l. Integration of equ. (14) for‘f: 1

gives
aO
b= (8) (15)
o}
B
ag ,
T = (16)
8'1/2+ B4/3
(6]

The integral represents, implicitly, an universal amplitude program
8(t) which has the same form in all possible cases except for changes

in scale.

The heating power Q can also be expressed in terms of a normalized

function of B

Q- bad p(p) (17)
where
p - pL/2 . p7/3
5. -1/6
*) Taking x =p 18 B this equation assumes the form

X = vo(xloﬁf_5/9x_l)/6ao, so that forJo: const. it can be integrated
exactly, resulting in a complex sum of eleven logarithms. In practice

it is much easier to integrate the original equation numerically.
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and
q, = (Bnk/po) T, 1, Ry,

Fig. 1 represents graphically the reference values Ay s B

V~l
o b

TO as functions of ng and f, the frequency of the applied field.

Fig. 2 shows 1 and p as functions of B.

ITT POWER TRANSFER FROM GIENERATOR TO PLASMA

a) Circuit Bquations.

Two circuits of the type shown in Fig. 3 are required to produce

the rotating field : one for the Bz and another for the B

The generator is assumed to have an internal resistance Rg

develop the open ecircuit voltage

Vg = /E‘Vg exp (iwt)

component.

and

during a finite time interval O‘(t<:t2. The maximum power that can

be taken from this generator is
o

=V R
g/ 4 g

max

and the maximum energy during the entire pulse is

t2
— 72 (s1) ast
max AR &
g
o

(18)

The plasma is represented by the inductance T and the resistance 1.

The values of the circuit elements T and R are as follows

-
-
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for the 6 circuit :

R = g%@ x (19.1)
L = ni? (b2 - a2) (19.2)
L 1 ,.2,2 Hod
fe (/e o (19:3)
p I
B = —=— .
7 (19.4)

for the 2 circuit :

¢

R o= 5= n (20.1)
uO
L= 5= £1og v/a (20.2)
v oa
%: log (b/a) —%— (20.3)
.t
T 2na (20.4)

In these formulas R, is the surface impedance defined earlier for
both normal and anomalous skin effect. The dimension b must he
chosen such as to take account of all external self inductance
of the circuit. B is the magnetic field at the plasma surface

in terms of the current in the circuit.

Taking into account the variation of the elements DI and L, the

equation for the current I in the plasma assumes the form :

IR

v - . . .
o= Lo, =) T+ (RC + LC + ) T + LT (21)
g g
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One is really interested in the (rms) amplitude of the current.
It is therefore convenient to derive an approximate equation of

first order for this amplitude. By substituting

1() = {2 1(t) ot¥?

into equation (21) and neglecting the terms R/L, l/RgC and L/L

against w one findsthe equation
- . a = - :
- n —_ o=
Vg = 12wLCng {‘dt T+ (8 1J) I} (22)

where

2\ o)
g
J': = <% + éié)///;0w2 -1
2 Lo
&

At resonance éﬂ— 0. The pinch dynamlcs of chapter IT leads to a
prescription of B and hence of I as a function of t. Equation

(22) now gives immediately the required generator voltage progran.

b) Energy relations.

The total energy contained in the experiment is the sum of the

plasma energy, Wp and of the circuit energy WC

W Wk
where

W, = 3 Ko (23)

W - L1° - %— ézuB (24)
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Equation (24) defines an equivalent magnetic volume, QB’ which is
according to (19.2), (19.4), (20.2) and (20.4) :
2 .
2nfa lg b/a for z-pinch
SZB = (25)

nf (b2 - a2) for @-pinch

As a consequence of the equilibrium of pressures (3) the ratio of
plasma energy and circuit energy is only a function of the geometry

of the experiment

— T (26)
WC 4MB

Consider now the power delivered to the experiment. It is the

sum of the powers delivered to the resistor

RI% = Q (27)

to the capacitor

d 1 2
77 (5 ¢a)
(q being the charge of the capacitor) and to the inductor

a d 1 .-.2y 1:2
I =5 (LI) = T (2 LI) + 5 LI

At resonance

I =vV2'1(%) cos (wt),

q =vV2'4(t) sin (wt),
and

cg° = L1
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By averaging over one period one obtains the total power delivered

to the experiment

d 02 1 t2
P = <3 (LI%) + (2 L +R)1I

(28)

The first term represents an increase of energy stored reversibly

in the circuit as electric and magnetic fields, the second equals

the mechanical work performed on the

plasma by compression and the

last term of course is the heating (27). It is perhaps useful to

verify by independent deduction that
1 52
5 LI

is really the mechanical work.

To this end we first note that

L _ _ L
g L

for both z- and 6-circuits. Hence
Aoe

1 ii2 ) LIT¢

2 2 MB

Eliminating % with the help of (24)
of (5) gives indeed

1

“n o .
5 LI = —p&p

~

and then replacing 82 by means

The power delivered to the experiment (28) can now be expressed

as follows

P =W, -pe +Q
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The last two terms of this equation can be eliminated by means of
equation (4) so that

P=WV +W
c D
This equation verifies that the energy delivered to the experiment
is shared between the circuit and the plasma. Equation (26) shows
in which proportion and permits one to eliminate WC H
45
P=(1+5=)W
( )W,

§¢
2 Y

.

t

If the plasma radius remains constant as it should for most of the

heating (except the initial contraction) then Mp = 0 and

By minimizing the stray inductances in the design of the experiment

it is possible without too much difficulty to make 4. about equal to

B

Qp or even a little smaller. If one takes, as an example, QB = Qp
then P = 2.3% Q. Thus the power which must be delivered to the expe-

riment is considerably larger than the rlasma heating power.

¢) Efficiency of Energy transfer

~ ~

Assume a prescribed program for I and hence for Vg such that L = Q
and that the circuit is always at resonance, J: 0.Then the maximum

availlable power from the generator is according to (18) and (22)

P - Iom (T° + 2§17 + °7°)
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A measure of the efficiency of ernerey transfer is the expression
J =%

- “ VA
Poax = F I + 91)2
P A A <29)
I +%I/
with
1 R 1
¥=3 (G -3 7
g
This last eguation shows as would be expected that Pf;PwaY' One

might not have expected, however, that total energy transfer is
possible, in principle, even for a transient, albeit of a very

special form
t

) 1 1 R 1
I = IO exXp 3 (Rgc - L) dt

The special case of the steady state is of course included : I is

constant for a "perfect match"

R C
g

1R
L

between generator and circuit.
For a given experiment all circuit elements and the program for I
and Vg are prescribed. The only parameter that is still free ig

impedance Rg of the generator.

One may wish to maximize the energy transfer at the end of the
heating when the power has reached its maximum. That is, we require

P =P for %
max

]

tz. According to (29) this is possible if and

only if

R C L

.
_..].'__ :(B_ -+ 2_JI.:
oy t=t2
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The generator impedance must be larger than for a "perfect match"
to the resistance R (t2). Using the formulas (19.5), (20.5), (19.4)
and (20.4), the reference values and the normalized (non dimen-

sional) field strength, this may be written

2,0 - 2 (2 0 g ) my(9) (50)
where

v (8) = p/% /2 (31)

kél - % (bg/ai -1) (32)

Kt % lg (b/a_) (33)

In other cases one may wish to maximize the efficiency, R of
!

energy transfer with respect to Rg :

Maximizing n is not only desirable for the sake of energy economy;
some generators 5) do not tolerate large reflections. They work
well only if the efficiency is close to one. The result of this
maximization can be presented most concisely by first defining

six definite integrals :

b 2 by
£2 . R o2
A = J I°dt B = I TIdt C =I T IIdt (34)
e} e} O

3) R. Keller, Helv. Phys. Acta 38, 328 (1965)
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dt

rzy
i
|

2
5 I7dt (34)

]

i
4
o
t
=

u

s

b

O
O
o]

These constants are fixed once the amplitude program is prescribed.

Thus

by

1

T P4t = RC (A +C+ F/4) + B+ B/2 + D/4RgC
O
b

L

L P dt = 2B + E

O

The maximum value of Q is obtalined for

1/2
<A + g + F/4> (35)

RC =
g

PO

and becomes

2B +
Tnax = B + E/2 + JD(A+CIE/A)

(36)

The amplitude programs which are useful for the production of pinches
yield usually efficiencies above 90 %. The efficiency of energy

transfer from generator to plasma becomes now according to (26)

342
", = T A
0 30+ 44 max
iy p B
We shall now apply the maximization procedure to the amplitude
program (16). We assume that the heating starts at T = 0. This
restriction is of no practical consequence, but it allows us to

give efficiency Dnax and generator impedance values Rg as



P20

functions of only one variable, the final normalized field strength B.
Using formulas (%4), (35), (36) together with (15) and (16) and
keeping in mind that I is proportional to B, one obtains without

much trouble

_ 2
Tmax = 7 (fzfz)l/g/ £,
RC==2(2+ kgz>_l r,(6) (37)

o
The functions fi(B) are defined by

1 .2
£=58

by - 262 4 3 g1/

2
B
f, = 4
3 B"l 2+ 54 5
o)
and
5, (8) = (r,/5,)1/? (36)

Fig. 4 shows Unax (8), rl(B) and rz(B) as functions of B.
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Summary

The determination of the design parameters for a particular
experiment is easily accomplished by means of the various

graphs. One can begin by fixing the density no and the radius

a, of the constricted plasma column as well as the applied
frequency f. Fronm Fig. 1 the reference values BO, TO, v;1 and

QO are then read off. They indicate the field, temperature,
"neating velocity", and power at the transition. Next one

decides what temperature Tf one wishes to reach and this gives
the final value of B = (Tf/To)l/z. Fig. 2 now gives the necessary

heating time (15)

o

t == 1(p)
o]

as well as the amplitude program and the maximum power (17)

Q=a €a p(p)

Finally, from Fig. 4 one can read off the values ri(B) which yield
according to (30) and (37)

< lom

RC=r.
g

-1
i <2 * k@z>

)

The geometrical quantities kQ and kz are given by (52) and (33).
Using r, one utilizes best the peak power of the generator. Using
r, one maximizes overall energy transfer and 7 (Fig. 4) gives the

efficiency.
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Captions to Figures

Fig. 1 The reference values as functions of frequency and
density. The units are : f in mega cycles, n in
10°t meter_B, 4, 1n mega watt / meter.centimeter,
BO in gauss, v in centimeter/microsecond, To in

104 degrees Kelvin.

Fig. 2 The standard amplitude program : normalized field
strength B versus normalized time tv and the normalized

plasma heating power p as a function of g.
Fig. 3 The circuit coupling the generator to the plasma.

Fig. 4 The normalized generator impedance r, for maximizing
peak power, T, for maximizing total energy transfer,
as functions of normalized final field strength 8,
and the efficiency of energy transfer, n, for the

second case.
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