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units are used except where MKS units are explicitely indioat@d)
As the field progresses from the surface towards the interior, it
decreases exponentially, the depth of penetration 5‘being given by

57 - Me (iws)” (2)

Consider now a plasma in which the ion motion is neglected, Let u
be the mean thermal speed of the electrons, Y their collision fre-

quency and €= C(/V thelr mean free path. Further denote by

d = u/w the distance travelled by the average electron in 1/2n
period of the applied field, and define the quantities J A

P
$ 5, by the relations
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If either the distance d or the mean free path is small, compared

o the scale of spacial variation, that is, if
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then the relation between current and electric field is no longer
local., "If the mean free path of the electrons is comparable with
the depth of penetration of the field, an electron during one
free path will be moving through regions of varying field and the
drift velccity which it acquires will be related to the field

strength at all points along its path™ (2). Hence the current at
any one point In the plasma is determined by all the field wvalues

within a certain distance.

We shall consider a semi-infinite plasma with a sharp boundary at
% = 0 and extending to+o00 . For the propagation of a transverse

wave in the x-direction the relation between current and field

has the forn

8

Joa = wi | K(w, x=x) Eodyex

o
The form of the kernel depends on the type of reflection which
the electrons suffer at the surface, and on the unperturbed velo-

city distribution.

we assume that the electrong are specularly reflec-

in this paper
*
ted a2t x = 0 . An arbitrary velocity distribution will be assumed

for the derivation of +the principal equations. The problem will
¥ S

be solved explicitely for a Maxwellian distribution using the

(P

Boltzmann equation with a relaxation term and Maxwell's equations

pa w

without displacement curresnt. The solution E (X) will be obtained

* The much more difficult case of diffuse reflection will he

treated in a subsequent report.
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if ;\€<1aioes the well known formula (2) apply.

for the collision freguency
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Vo = 3 T, A% (MKS)
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one can express (3) as follows

k = /g T(V\/Cu)
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Z agrees up to a constant factor with the one

found by Reuter and Yondheimer (5) for a degeneraste Fermi distri-

bution. If one takes for u the speed st the Fermi surface then

their value of 7 is 12.8 tinmes larger than ours. We have not found

the reason for this difference.

In the extreme ancmalous case AP?{ neither skin depth S nor the
surface impedance depend on the collision frequency. The dissi
pation of energy is independent of ¥ and present even if V=0

D

A better approximation to 8 and Z is given in section 8.

@

The analysis was completed by numerical calculations carried out
on the IBM 1040 computer of the Rcole Polytechnique de Lausanne.
Figs. 8 and 9 show E as a function of distance from the surface,
or various values of » and s. The curves for the absolute value
of T are not monotonic, which is quite unexpected. The incresse
in amplitude which occurs at a certain depth in all cases where
A> | is a property of the model which nas been investigated, and
not due to any error of computation*. Pnysically this effect can
be explained by electrons which carry momentum acquired near the

surface into deeper layers where they are out of phase with the

Mathemztically it can be traced to rference of the ternm

the boundary and the terms that are also

infinite medium. While the ratio of s 2 maxXimum can be

guite large, the effect is le in terms of the

tace and probably uncbservable.

€s were computed by two entirely independent methods

with identical results.



II Prior Work

In his famous paper on "the vibrations of an electron plasma™
L. Landau (1) treats also the problem of the penetration of a
longitudinal field into a semi infinite plasma, with Y=0 and
for specular reflection. In this case L satisfies an integral
equation with a kernel that is different from ours, but which
has the same asymptotic behaviour. Only this asymptotic form

of E (x) is given, which is similar to the behaviour of the
transverse field, but not identical. From a practical point of
view it is useless, since it applies only at distances where E
has decreased to a tiny fraction of its value at the surface.
The case of wsnear wp is treated in detail. From a formal point
of view the theory is marred by the use of a macroscopic concept,
the dielectric constant of the plasma, where as it ought to be

developped entirely from Boltzmann's equation.

The following papers discuss the skin effect in metals, and

for a degenerate fermi distribution.

A.B. Pippard (2) observed disagreement of measured surface
impedance in metals at low temperature with classical skin
effect formulae. He gives an intuitive solution by assuming
that only those electrons which traverse a whole mean free
path within the depth of field penetration contribute to the
impedance. These "effective electrons make angle with the
surface of equal or less than arcsin(Sye) y 1 being the mean
free path and $ the yet undetermined skin depth". Using this
effectiveness concept he obtains expressions for the skin depth
and surface impedance which are qualitatively correct. It does
not appear to be easy to obtain a Justification of Pippard's
concept on the basis of the exact treatment. TIn later papers

(5), (4) the "ineffectivness" concept is further developed.
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lteuter and Sondheimer (5) treat the anomalous skin effect for
metals with a degenerate Fermi distribution and including a
collision frequency. Propagation of the transverse wave 18 normal
to the metal surface. Both diffuse and specular reflection of
electrons are treated. Theanalytic behaviour of the kernel and

of B(x) is quite different from our case of a plasma with a
Maxwellian velocity distribution. Lxpressions for the surface

impedance are given, but not for the skin depth.

Smith (6) gives a comprehensive list of references on the ano-

malous skin effect and surface impedance in anisotropic metals.

Demirkhanov, Kadysh and Khodyrev (7) have measured the anomalous
skin effect in a plasma at 9, 5.6 ang 4.6 Mc and densities of

n_= 1011 to 10150m“5 and electron temperatures of 2 to 10 x 104 OK.
R. Keller (8) observed the anomalous skin effect in a plasma at

4.8 Mc, n_= .5 to 3 10%en™? and Te - 5 to 20 104 k.

ITT Analysis

1. The perturbation of the velocity distribution

The plasma occupies the half space X>0 . The equilibrium velocity

distribution is assumed to have the form

,ﬁ(y") = I(v: , v;‘+v;)

An electromagnetic wave travels in the Xx-direction such that B
and E are parallel to the ¥y and 3 axes respectively. Let all fields
depend on time as exp (iwt). Then they obey the equations
oL E 2 .o
— fw
dx* +w' E - 4
i oE (4)

T v e

W x



The distribution function shall be governed by the Boltzmann
equation with a collision term of the form~$¥ where f is the

perturbation. Thus

G f + 2 =2 (g+yxp) 2%

i

e~ [Va RE + R A (ﬁ'ﬁ.):{%] 7

(44

Here F. and E.‘L denote the derivatives BF<Y.'Z)/35 and

BF(?,?)/B;? respectively. The general solution of (5) is

- X
I3 *
w+Vv ey : !
fs exp (- v x> f%p(—-—vx X)(R(X,x,)dx+q’(y~)
o
The functionﬁf(v) is determined by the boundary conditions.
For X=» 00 f must remain finite. At x = O the particles
are reflected. Two extrem cases are specular reflection and

diffuse reflection.

In the latter case the electrons are reemitted from the
boundary into the unperturbed distribution. The boundary

condition has the form
i(xgo,gv) = zf(x-.-o} Vv¥) V, >0

where v™ is obtained form v by changing the sign of v

For specular reflection ¢ = 1, for diffuse reflection & = Q.
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Thus
X
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2. The current density

The current density is
J'(X)'e“ JVi f(x‘g)ot\/xo(v%o(va (6)
It is convenient to express F as
F(tg) = 94 (T §)/ofF* = G (Ti5)
with

d)(Q3°9) - q5§(T}ao) =0

The field E(x) is of interest only for X0 . It can be conbi-

eful definition 1is

6]

nued at will into X<O . The most u

E(-x) = E) (7)



Performing the integraticns of (6) one obtains
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If one whishes to study the skin effect for anisotropic 4ie-
tributions (for beams of particls in the x direction, for

instance) one must take into acount 1 which arises from the

term (Y:( E)Qfo/ax .

59
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For isotropic distributions one has

P2 9)= $(R+s)
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Por a completely degenerate Fermi distribution one must take
o~ S
T

P'cery=
o

from which one obtains the kernel of Sondheimer and Reuter (5)

For a Maxwellian distribution one must take

exp(—f/u*)
T W

o) = -

and one obtains

i -000“i‘§1
= — 9
Ho O = @) e “8 7 g /g -
o
One notices that
|
JHu(o()olo( = 3
[o

and that

j@(d) H(2) old = 4 ¢ (o) (10)

so that Huﬁﬂ) tends to a Dirac deltsa function azs 1 tends to ZEero.

5. The integrodifferential equation for E

Combining equations (4), (8) and (9) and neglecting the displace-
ment current, one obtains the integrodifferential equation for B :
o0
Jt’ = (Ww? . ) i
dxt P H ((wev)ix=x{) EC) elx (11)
niw



~11-

de lwwp
- - Iy m———
A x* itV

by virtue of (10). This equation describes the ordinary skin

effect g8 discussed in the introduction.

By 2 simple change of scale

u
[T + V]

X = 2

one can cast equation (ll) into the standard form

OE}_E = iA | H(sl2-21) E@)d?
Vi

< o

(12)

where tf@*) is the function Hqu) for u = 1

From now on we specialise further to the case of specular reflec-
tion : & = 1. In this case equation (12) can be solved formally

by means of Fourier transformation. It is important to keep in mind
that the function continued symmetrically on to X<O by (7) has

discontinuous derivatives. The second derivative contains a delta

funciion ZE'(O) S(?-) which must be subtracted s
(> -]
A ~lk2
E(k) = |e E@@) oz
~00

é\"(k): ~Kk* E(x) — 2 EC)



Pefining

Puk) - g < Hernola

equation (12) becomes

A 2 ECo)
KZ + i A R(K)

and the inverse transform gives

. o2 ;ka
E (o) e oli (13)
T K +iAR(R)

—

E(2) = -
This is the formal solution of the problem.

To extract information about the behaviour of E(z) from (1%)

one must first investigate h(k).

4. The Fourier transform h(k)

Let

and for \2-‘ > , MNez >0 behaves like

2/3
K ~ exp —3(2/2)
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Hence the Fourier transform h(k) is, at first only defined

for real values of k

Here %l(?) is the plasma dispersion function as defined and
tabulated by Fried and Conte (9). Obviously there is no analytic
function representing h(k) on the whole real axis. But it 1s
possible to extend each representation analytically into the
upper half plane. It will be convenient to divide the upper

half plane into two regions separated by the straight line passing
from O through £6 to infinity. The domain adjoining the positive
axis will be called domain I, the other domain II. Thus one can

define

’E\,(\() = ;‘Ti Z (‘%) Domain I

Dky =~ r:( Z(. .‘% Domain TT

5. Deformation of path of integration

Moving the path of integration from the real axis into the upper
nalf plane allows o split the integral (13) into three contri-
butions : a) the residues from domain I, b) the residues from
domain II, and C) the integral along the boundary of T and II

(= the "cut"). It will be shown that there is at most one residue

in each domain :

o A; exp(ing2)
Ezy =-i2 E'C0) TZ_: D, )

7 (14)
4_;\)_% E(o) A | exp (=T —8T2) ot
i T D 0D,

o
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where A, are either zero or one and
+

.4 .
Do=krERAREL) , T=kis
2z

Use was made of the relation
2(s)+ 2(-5) = 2/7 ‘Z/Xto(*?z)

Eguation (14) shows that the spectrum of the Vliasov operator (5)
with the present boundary conditions has a discrete and a

continuous part.

6. The residues

One must first establish the number of zeros of the functions Dl(k)
and Dz(k). The simplest method is provided by Nygquist. The functions
are analytic every where except at k = 0. Thus the number of zeros
of Dj in the domain j equals the number of times Dj<k> turns around
zero as k moves once completely around the domain. Instead of cons-

tructing the Nyquist diagrams for each value of A and s we draw

L2(+
p ik 2(‘ K)

by using the tables of Fried and Conte (9) for a few values of s as

those of

shown in TFigs 2 to 6. The effect of adding the term kz/A can be
inferred by inspection. In this manner one convinces oneself that

there is one root or none of (14) in each domain.



Actually there i1s always one root for each function D. and D
W N 1 2

and these are the only ones that may

U

in the second guadrant,

fall into the

3

respective domains. ing the expansions 01’2(5)

for small and large argument one obtains approximate values

for the roots of (14)
ey Y 2A
A kK= CTEA® = =
1 Iy t/ L
Kom oxp(E)TEN 4 22
]

A< K

e—1

\

K

2

t . \
< onp(( L))t = Cerp @ BVT

Depending on whether the cut passes above, between or below the

two roots, one has the three cases A, B, C
A Al = 0 A2 = 1
B:A =1 A, =1 (16)
C = A1 =1 A2 = 0

Aj being the number of roots in the domain j. For <<l there is
a root in I for OK s< Vg and none for W6 <gs Ve and the
reverse applies for domain II. For larger values of A the situation
I A>i

increases from zeroto n/2 then the cut crosses

depends 1n detail on the values of A and s. and 1f ¢

over k. for

=
V=

s ZKBT?” X3

£

domain II,

cut for = n/4 and the

= n/}-al the cut crosses over the root k

going thereby from case B to case C.

1

, going thereby from case A to case B. At

and excludes it from

Fig. 7 shows the

2

X

Ay

roots for various values of

For the residues one can give simple approximate expressions in

the limiting cases A<<|

4D
d k‘

ALK

—
—

and X >

2K

4
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7. The integral along the cut.

For small values of A the integral along the cut is negligible
and the residue (there is exactly one) yields the well known

formula of the ordinary skin effect.

For )\))( the integral along the cut can be approximatly eva-
luated : 1f z is very large, the method of the saddle point can

be used. If z is very small we calculate the integral and its

first few derivatives for z = 0. Introducing
% |\ A= (¥
A =TEA =

one may approximate the integral for

Qo
St - aT2
/s’?.

ASI1 2 I=- = je, AT/ T

5 (18)
and for

o~o0

-2 A

A3, 2 <<| T- oxp(—83%) § AS

Here the expansion for large and for small arguments of 2 (})

have been used.
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For the first integral (18) one finds a saddle point at
Y
T, = (2 /42)® in the 4th quadrant. The contribution to

I from this integral becomes

A
- AN
B m i Sl 2] . ()
cul V3 AN 2 \A2

This asymptotic expression 1s the same in all three cases A)B’C.
At large distance it dominates the contribution of the residues,
since 1t decays more slowly than exponentially. From a practical
point of view this expression is guite useless as it becomes

accurate enough only at a very large distance. (e.g. for A = 100
the error is still 20% at 100 =skin depths where the field ampli-
9

tude is down to 10 7 of its surface value).

From (19) one finds the derivatives of I(z) at z = 0 :

dv%w 2=0o ™ O(Hﬂm

AT -1 =" i é,’ 09 2 <3

>~ = et — 2 A/ (20)
d

where the tj are the six roots of the equation

L'~ - 26 =0

% "3

1
For large values of &= T tJ approximates exp (inj/}).

Taking the term A/ to first order into account one obtains

. = X | Ei - J_fL
éd P('3)+C)éo<

Substituting these values into (20) for m = 0 yields, after

laborious algebra, the values



&A% 3 A \3IJ3 3
(21)
w Lo A/t C)
= _g-w{\l’s'“ N «(3@ 3

S (t+ ﬁ>
303 « ¥ 34

The subscripts A,B,C designate the three possible cases in which

the cut passes above, between or below the two roots of D D2: 0.

1
By varying s one passes from case A to B and to C. One might think
at first, that E would be discontinuous in s. However the discon-
tinuities of the integral are just compensated by the residues
which are present or not according to (15). This must be so since

E is analytic as a function of Qv*-ﬂd).

Combining (14), (16), (17) and (21) gives the following expression
for B (0) :

' g 2A -t
E() = E(o){ﬁ (-l-t(v-i +q—°(—,_(t+‘-\}§>§

It is possible in principle to obtain the second and third deriva-
tives of B from (20). Calculating the first derivative provides a

check of the formula (20).

8. The surface impedance and depth of penetration

Defining the surface impedance

Z = E(o)/fjm&v = — iw E@/E)
o
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gives at once

A \ Y, y
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Since the electric field does not fall off exponentially, it
is not practical to define the skin depth as the depth at which

it assumes l/e of its surface value. Instead we define it simply

(g’
e \w2eo

. 2dx
oL £q (EE")

or

1
S~ _8 e \3
AT cu;cu

9. Numerical computations

The IBM 7040 computer of the Ecole Polytechnique de Lausanne,
was used to evaluate E(z) numerically using the formula (14}.

As a check, the original integral was also used for a few cases
with identical results. In particular the values of E(z) near
the "bumps" were all verified by direct integration of (15>. For
the plasma dispersion function 7 (g), a subprogram was used
which is due to F.Troyon. The results of these calculations are
shown in Figs 8, 9. From Fig. 9 it is clear that the contribu-
tions of the residues and of the integral along the cut are of

about equal importance near the surface.

(Mks)
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Figuregs :

1.

Aand A = 1 exp (-ie) as functions of density n, Temperature T

-~
and angular freguency w. & = (,‘3 (Viw)
Map of domain I for the function 7 (is/k) / ik, s = 1
Map of domain II for the function -7 (-is/k) / ik, s =1

Map of domain I for the function 2(05/‘() /fK , S= Jo

Map of domain II for the function‘a(_"'/’lk)/"k S~V

Map of domain I for the function 2(‘"3“‘) [ (« , S=¢

foots of D (K) D (K) = 0 for 4=Jy and for a - .1, .3, 1,
10, 100.

The field amplitude E as a function of normalized depth

Hw+v{ w for A=J¢  and A = .3, 1, 10, 100.
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lteal and imaginary parts of the integral along the cut, Cr’

C. and of the residues 1 , 1. and 2 s 2. for A = 100, A= Je
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