000120451 001__ 120451
000120451 005__ 20181203021222.0
000120451 022__ $$a0306-4549
000120451 02470 $$2DAR$$a10658
000120451 02470 $$2ISI$$a000246715800004
000120451 020__ $$a0306-4549
000120451 0247_ $$2doi$$a10.1016/j.anucene.2006.12.005
000120451 037__ $$aARTICLE
000120451 245__ $$aInterpretation of in-phase and out-of-phase BWR oscillations using an extended reduced order model and semi-analytical bifurcation analysis
000120451 269__ $$a2007
000120451 260__ $$bElsevier$$c2007
000120451 336__ $$aJournal Articles
000120451 490__ $$aAnn. Nucl. Energy (UK)
000120451 500__ $$aLab. for Reactor Phys. Syst. Behavior, Paul Scherrer Inst., Villigen, Switzerland
000120451 520__ $$aAn extended reduced order model is presented and applied to analyze global and regional oscillations in BWRs. Stability and semianalytical bifurcation analyses are performed using this model in conjunction with the bifurcation code BIFDD to determine the stability limits for both in-phase and out-of-phase oscillation modes and the nature of Poincare-Andronov-Hopf bifurcation. The results obtained show that both sub- and supercritical PAH bifurcations are encountered in different regions of the parameter space. An in-depth investigation of the properties of the elements of the eigenvectors associated with these two modes of oscillation is carried out. Results show that these eigenvectors provide information as regards the corresponding oscillation mode (in-phase or out-of-phase) without solving the set of system ODEs. The analysis clearly brings out the fact that in-phase and out-of-phase oscillations are whole-system mechanisms. A clear distinction is thereby made between these oscillation modes, on the one hand, and the fundamental and first azimuthal neutronics modes on the other hand. (c) 2007 Published by Elsevier Ltd.
000120451 6531_ $$abifurcation
000120451 6531_ $$aeigenvalues and eigenfunctions
000120451 6531_ $$afission reactor cooling
000120451 6531_ $$afission reactor kinetics
000120451 6531_ $$aneutron flux
000120451 6531_ $$anonlinear differential equations
000120451 6531_ $$anuclear engineering computing
000120451 6531_ $$aoscillations
000120451 700__ $$aDokhane, A.
000120451 700__ $$aHennig, D.
000120451 700__ $$aRizwan, uddin
000120451 700__ $$0241150$$aChawla, R.$$g104755
000120451 773__ $$j34$$k4$$q271-87$$tAnnals of Nuclear Energy
000120451 909C0 $$pCRPP
000120451 909C0 $$0252028$$pSPC
000120451 909C0 $$0252305$$pLRS$$xU10135
000120451 909CO $$ooai:infoscience.tind.io:120451$$pSB$$particle
000120451 937__ $$aCRPP-ARTICLE-2007-075
000120451 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000120451 980__ $$aARTICLE