Cost reduction constraints for microcrystalline silicon thin film photovoltaic solar cells require high deposition rates and high silane gas utilization efficiencies. If the requirements in deposition rate have sometimes been fulfilled, it is generally not the case for the silane utilization. In this work, a reactor-independent methodology has been developed to determine the optimum plasma parameters in terms of deposition rate, silane utilization, and material microstructure. Using this optimization method, a microcrystalline layer has been deposited over a large area at a rate of 10.9 angstrom/s, with a silane utilization efficiency above 80%. (c) 2007 American Vacuum Society.