A two-point correlation function measurement of the ion density fluctuations is presented. Using two laser-induced fluorescence (LIF) detection systems, the density fluctuation is resolved in time, ion parallel velocity, and space (along the magnetic field). The measurements reveal two components of the density fluctuations, one of which is explained by fluid theory. The other component is ion-velocity-dependent and is newly identified. In addition to the density fluctuation measurements, a velocity-resolved estimate of the fluctuation-induced transport flux using correlations between a Langmuir probe and LIF is reported. (c) 2006 American Institute of Physics.