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J. Vaclavik b, L. Villard b
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Abstract

A new code is presented here, named Gyrokinetic SEmi-LAgragian (GYSELA) code, which solves 4D drift-kinetic
equations for ion temperature gradient driven turbulence in a cylinder (r,h,z). The code validation is performed with
the slab ITG mode that only depends on the parallel velocity. This code uses a semi-Lagrangian numerical scheme, which
exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales.
The code has been validated in the linear and non-linear regimes. The GYSELA code is found to be stable over long
simulation times (more than 20 times the linear growth rate of the most unstable mode), including for cases with a high
resolution mesh (dr � 0.1 Larmor radius, dz � 10 Larmor radius).
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The
thermal confinement of a magnetized fusion plasma is essentially determined by turbulent heat conduction
across the equilibrium magnetic field. In practice, the study of plasma turbulence requires to solve the Maxwell
equations coupled to the calculation of the plasma response to the perturbed electromagnetic field. This
response can be computed by using either a fluid or a kinetic description of the plasma. Solving 3D fluid equa-
tions is certainly the most convenient and fastest way to solve the problem given the set of well established
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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numerical techniques and the wealth of results obtained in the domain of fluid turbulence. However, it is
known that the stability threshold given by fluid equations is lower than the actual (kinetic) value [1]. Also
a fluid description usually overestimates turbulent fluxes [1]. This discrepancy comes partly from the resonant
interactions between waves and particles (Landau resonances), which cannot be fully described with fluid
equations. Also, the behavior of zonal flows, which play an important role in regulating turbulence, is not
properly described by fluid equations in a weakly collisional regime. A first solution to overcome this difficulty
is to introduce improved closure schemes in the set of fluid equations in order to recover the actual stability
threshold and turbulent flux [2–4]. Comparing fluid and kinetic simulations provides a test of this closure
scheme. In fact this task has proved to be much more difficult than expected [1]. The second solution is to solve
the kinetic problem in order to compute accurately the turbulence in nearly collisionless plasmas. This is a
formidable challenge. In principle, one has to solve a 6D kinetic equation (3D in space and 3D in velocity)
to determine a distribution function, which yields current and charge densities once integrated over the veloc-
ity space. For strongly magnetized plasmas, averaging the kinetic equation over the cyclotron motion, which is
faster than turbulent motion, reduces the dimensionality. The new kinetic equation, called ‘‘gyrokinetic’’,
describes the distribution function in the 5D phase space (3D in space and 2D in velocity, namely vi and v^)
associated to the guiding center motion. In this case, the adiabatic invariant, l ¼ mv2

?=2B the action
variable associated to the gyrophase, acts as a parameter. This 5D gyrokinetic problem is still very demanding
in terms of numerics.

Two methods have been used up to now to investigate turbulence in the gyrokinetic regime. The first
method is based on a Lagrangian approach. Particles in cell (PIC) codes, which are the most widely used
in this category [5–11], consists in describing the plasma with a finite number of macro-particles. The trajec-
tories of these particles are the characteristics of the Vlasov equation, whereas self-consistent fields are com-
puted by gathering the charge and current densities of the particles on a mesh of the physical space [12].
Although this method allows one to obtain satisfying results with a small number of particles, it is well
known that the reduction of the numerical noise inherent to the particle method requires a large number
of particles. In particular the slow convergence with increasing number of particles is inherent to the PIC
method, which is based on a statistical sampling of phase space. Improvements to the method have been
brought by reinitializing the distribution of marker particles so as to concentrate them in regions of phase
space where the perturbed part of the distribution function becomes large in absolute value [13–15]. Despite
this significant improvement, known under the concept of importance sampling, there appears an upper
bound in the simulation time, both due to the fact that ||df|| becomes of equal or even larger size than ||f||
and due to the filamentation in velocity space which is a general property of the solution of the collisionless
Vlasov equation hence effecting all numerical methods. The second method is Eulerian [16–22]. It consists in
discretizing the Vlasov equation on a mesh of the phase space that remains fixed in time. The flux balance
method (FBM) [23] uses a finite volume method for computing the average of the Vlasov equation on each
cell on a fixed grid. More recently, the positive flux conservative (PFC) method [24] have been improved by
introducing a slope limiter for the reconstruction of the distribution function to preserve the positivity and
the mass. However, the trade-off for these improved conservation properties is a significant increase in the
numerical dissipation.

The aim of this work is to use an intermediate method based on a semi-Lagrangian (SL) method [25]. This
method has already been applied to calculate a turbulence driven by passing ions in 2D (1D in space, 1D in
velocity) [26] and trapped ions in 3D (2D in space, 1D in velocity) [27]. In this paper a 4D model (3D in space
and vi (with l = 0)) for slab-ITG turbulence is used as a test bed. The purpose of the SL method is to take
advantage of both the Lagrangian and Eulerian approaches, to have a good description of the phase space,
in particular in regions where the density is low, as well as an enhanced numerical stability. In this approach,
the mesh grid is kept fixed in time in the phase space (Eulerian method) and the Vlasov equation is integrated
along the trajectories (Lagrangian method) using the invariance of the distribution function along the trajec-
tories. Cubic spline interpolations are performed to evaluate the new value of the distribution function on the
grid points. The integration along the trajectories is performed with a time-splitting algorithm, that allows to
split the 4D advection equation into a sequence of 2D and 1D advections. The global numerical scheme is
second order accurate in time by using a symmetrical time-splitting scheme and a leap-frog algorithm. Here,
the full distribution function f is calculated in contrast with PIC codes that only calculate the perturbed
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distribution function df = f � feq (where feq corresponds to a reference distribution function, usually Maxwell-
ian). The PIC-df codes have been recently revisited [14] so as to directly use the property of conservation of f

along characteristics and avoiding completely the time integration of the df equation but the information for f

is known on a randomly chosen points that move in time. Therefore, in the semi-Lagrangian method, there is
no constraint on the computation time related to the condition df 6 f. However, a difficulty is faced in the
numerics, namely the occurrence of negative values of the distribution function. Negative values may appear
in regions of the phase space where the equilibrium distribution function is small when strong resonant inter-
actions occur between waves and particles. This is due to the limitations in the interpolation procedures. This
difficulty can be overcome by increasing the number of grid points and/or by changing the interpolation pro-
cedure [28]. Another numerical issue is energy conservation. An exact law of energy conservation can be built
from the set of gyrokinetic equations. However this property of energy conservation is not always fulfilled dur-
ing the simulations (unless implemented in the numerics). It will be shown here that SL method ensures good
conservation properties if small scales are filtered.

The remainder of this paper is organized as follows. The physical model is described in Section 2. The
numerical method is addressed in Section 3. The parallelization of the code is developed in Section 4. The
numerical results are presented in Section 5 and improved schemes are analyzed in Section 6. Finally, a sum-
mary is given in Section 7.

2. Physical model

2.1. A drift-kinetic system in cylindrical geometry

The code presented in this paper is applied to a cylinder geometry with a reduction of the phase space to
4D. The goal of this work is to investigate turbulent transport in 5D in a realistic tokamak geometry together
with the relevant physics of low frequency turbulent activity. A family of codes has been developed with
increasing dimensionality 2D, 3D and 4D to assess the numerics that will be the backbone of the full 5D code.
In the 4D version, a periodic cylindrical plasma of radius a and length 2pR is considered as a limit case of a
stretched torus. The plasma is confined by a strong magnetic field which is uniform ~B ¼ B~ez where~ez stand for
the unit vector in the toroidal direction z. In this collisionless plasma the electrons are assumed to respond
adiabatically to the low frequency fluctuations. Concerning the ions, finite Larmor radius effects are neglected
so that the trajectories are governed by the guiding-center (GC) trajectories
dr
dt
¼ vGCr ; r

dh
dt
¼ vGCh

;
dz
dt
¼ vk; _vk ¼

q
mi

Ez ð1Þ
where vGCr and vGCh
are the radial and poloidal components of the E · B drift velocity~vGC ¼ ð~E �~BÞ=B2. ~E

being the electric field, q = Ze the ion charge and mi the ion mass. vi corresponds to the velocity along the
magnetic field lines. Finally, it is assumed that fluctuations of the magnetic field are negligible. Thus the elec-
trostatic approximation is used to compute the electric field, i.e., ~E ¼ � ~rU, where the scalar U represents the
electric potential. This simplified cylinder configuration does not take into account the toroidal effects but
allows one to study slab ion temperature gradients driven modes (ITG). Given these assumptions, the distribu-
tion function f is a 4D phase space function that depends on the three cylindrical coordinates (r,h,z) and on
the parallel velocity vi. The evolution of this distribution function f(r,h,z,vi, t) is described by the drift-kinetic
Vlasov equation
of
ot
þ~vGC � ~r?f þ vk

of
oz
þ _vk

of
ovk
¼ 0 ð2Þ
where ~r? ¼ ðo�or ;
1
r

o�
ohÞ. This equation couples the ~E �~B motion across the magnetic field to the motion parallel

to the magnetic field. Self-consistency is ensured by the quasi-neutrality equation that relates the electric po-
tential U to the first moment of the distribution function. Upon linearization, the quasi-neutrality reads
�r? �
n0ðrÞ
BX0

r?U
� �

þ en0ðrÞ
T eðrÞ

ðU� hUiÞ ¼ ni � n0 ð3Þ
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where X0 = qiB0/mi is the ion cyclotron frequency, and Te and n0 are, respectively, the electron temperature
and density profiles. The ion density profile is given by ni(r,h,z, t) = �dvi f(r,h,z,vi, t) and Æ Æ æ represents the
average on the magnetic field lines (Æ Æ æ = (1/Lz)� Æ dz with Lz the cylinder length). The first term on the left hand
side corresponds to the linearized polarization term. The second term comes from the adiabatic response of
the electrons. The expression (U � ÆUæ) is due to the fact that the electron density fluctuations vanish for zonal
modes [29].

2.2. Boundary and initial conditions

The distribution function is periodic in the h and z directions, i.e.,
f ðr; h; z; vkÞ ¼ f ðr; hþ 2p; z; vkÞ 8h and f ðr; h; z; vkÞ ¼ f ðr; h; zþ Lz; vkÞ 8z
Besides, we assume that there is no perturbation at the boundary in the non-periodic directions (r and vi). In
the absence of buffer regions at the edge such boundary conditions prevent very long simulation times when
the turbulence spreads till the center [30]. The plasma can be initialized by exciting a single ITG mode (m,n)
(where m is a poloidal mode and n a toroidal mode) or by exciting a set of ITG modes with random amplitudes
and phases. The distribution function is thus considered at the initial time as the sum of an equilibrium and a
perturbated part: f = feq + df. The equilibrium part feq is chosen as a local Maxwellian
feqðr; vkÞ ¼
n0ðrÞ

ð2pT iðrÞ=miÞ
1
2

exp �
miv2

k

2T iðrÞ

 !
ð4Þ
while the perturbation df is determined as
df ¼ feqgðrÞhðvkÞdpðz; hÞ ð5Þ
where g(r) and h(vi) are exponential functions such that g(r = rmin) � g(r = rmax) � 0 and h(vi = vimin) �
h(vi = vimax) � 0. The perturbation dp can be initialized with a cosine function with a single poloidal mode
m and a single toroidal mode n as
dpðz; hÞ ¼ � cos
2pn
Lz

zþ mh

� �

or with a bath of modes
dpðz; hÞ ¼
X
m;n

�mn cos
2pn
Lz

zþ mhþ /mn

� �

where �mn and /mn represent, respectively, a random amplitude and a random phase for the mode (m,n). The
radial profiles of the ion and electron temperature (respectively, Ti(r) and Te(r)), as well as the radial density
profile n0(r), are fixed in time and deduced by numerical integration of their gradient profiles given by the three
parameters j, Dr and rp. For example,
1

T iðrÞ
dT iðrÞ

dr
¼ �jT i

cosh�2 r � rp

DrT i

� �
2.3. Energy conservation law

The kinetic energy, in fact the variation of the kinetic energy with respect to the equilibrium kinetic energy,
is defined as
dekin ¼
Z

mi

v2
k

2
ðf � feqÞdV dvk with dV ¼ r dr dhdz ð6Þ
Then according to Eqs. (2) and (3), the potential energy which satisfies odekin

ot þ
odepot

ot ¼ 0 is given by (cf. Appen-
dix A for more details)
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depot ¼
qi

2

Z
ðni � n0ÞUdV ð7Þ
A challenge for non-linear codes is the conservation of the total energy detot = dekin + depot = constant, a ma-
jor property of the Vlasov equation. Errors in the energy conservation is used here as a measure of the code
accuracy.

3. Numerical method

3.1. Discretization of the quasi-neutrality equation

The discretization of the quasi-neutrality equation (3) is performed by projecting in Fourier space along the
two periodic directions (h and z) and by using finite differences in the radial direction. Indeed, let U and ni be
represented in terms of the Fourier expansion as:
Uðr; h; zÞ ¼
P
m

P
n

Um;nðrÞ expðimhÞ expðinzÞ

niðr; h; zÞ ¼
P
m

P
n

nm;n
i ðrÞ expðimhÞ expðinzÞ

8<:

then Eq. (3) is rewritten in the wave number representation, for each poloidal and toroidal mode (m and n), as
the following differential equation:
� o2Um;nðrÞ
or2

� 1

r
þ 1

n0ðrÞ
dn0ðrÞ

dr

� �
oUm;nðrÞ

or
þ m2

r2
Um;nðrÞ þ X0e

T eðrÞ
½Um;nðrÞ � Um;0ðrÞ� ¼ X0

n0ðrÞ
½nm;n

i ðrÞ � n0ðrÞ�

ð8Þ
It should be noticed that the (m,n) = (0,0) mode is included in the simulation, thus allowing for the generation
of zonal flows. To avoid the difficulties raised by the divergence of 1

r for r! 0, the problem is solved within a
ring rmin 6 r 6 a, with rmin = 10�5. The boundary conditions are Dirichlet conditions on the axis (Um, n(rmin)
= 0 for all m and n). Although such a condition looks somewhat artificial for the equilibrium mode
(m,n) = (0, 0) (one should rather expect d

dr UðrminÞ ¼ 0, i.e., no poloidal rotation), it does not impact the numer-
ical results we wish to emphasize in this paper. The plasma is considered like a conductor on the outer bound-
ary, i.e., ~Etg ¼ 0, which means in Fourier space: imUm,n(a) = 0 and inUm,n(a) = 0. So if m 6¼ 0 or n 6¼ 0,
Um,n(a) = 0 and U0,0(a) is assumed equal to 0 too. Let Nr be the number of radial points. Given the boundary
conditions afore mentioned and up to the second order in Dr, Eq. (8) leads to the tridiagonal
(Nr � 2) · (Nr � 2) system
br2
cr2

0

ar3
br3

cr3
0

. .
. . .

. . .
.

0 arNr�2
brNr�2

crNr�2

0 arNr�1
brNr�1

0BBBBBBB@

1CCCCCCCA

Um;n
2

Um;n
3

..

.

Um;n
Nr�2

Um;n
Nr�1

0BBBBBBB@

1CCCCCCCA ¼
qm;n

2 � ar2
Um;n

1

qm;n
3

..

.

qm;n
Nr�2

qm;n
Nr�1 � crNr�1

Um;n
Nr

0BBBBBBB@

1CCCCCCCA

with
ari ¼ � 1
Dr2 � aðriÞ

2Dr

� �
where aðriÞ ¼ 1

r þ 1
n0ðriÞ

dn0ðriÞ
dr

bri ¼ 2
Dr2 þ m2

r2
i
þ ð1� dn¼0Þ X0e

T eðriÞ with d the Kronecker symbol

cri ¼ � 1
Dr2 þ aðriÞ

2Dr

� �
qm;n

i ¼ 1
n0ðriÞ ðn

m;n
i ðriÞ � n0ðriÞÞ

8>>>>>>><>>>>>>>:

This tridiagonal system is solved by using a LU decomposition [31,32]. The projections in Fourier space are
performed by FFT.
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3.2. Solution of the Vlasov equation

3.2.1. Time-splitting

In this uniform field case, the Liouville theorem is verified, i.e., ~r? �~vGC þ
ovk
oz þ

o _vk
ovk
¼ 0. This property char-

acterizes the incompressibility of the gyro-center orbits. With this property the Vlasov equation (2) can be
written in its conservative form
of
ot
þ ~r � ð~vGCf Þ þ o

oz
ðvkf Þ þ

o

ovk
ð _vkf Þ ¼ 0
Therefore this equation can be solved (cf. proof in Ref. [33]) by splitting between space and velocity coordi-
nates into three conservative equations:
of
ot
þ ~r? � ð~vGCf Þ ¼ 0

of
ot
þ oðvkf Þ

oz
¼ 0

of
ot
þ oð _vkf Þ

ovk
¼ 0
All the Eulerian methods based on finite volume methods work on conservative form of equations while using
a semi-Lagrangian method requires to work directly on advection equations. Since ~r �~vGC ¼ 0,

ovk
oz ¼ 0 and

o_vk
ovk
¼ 0 the previous system is equivalent to:
of
ot
þ~vGC � ~r?f ¼ 0 ð9Þ

of
ot
þ vk

of
oz
¼ 0 ð10Þ

of
ot
þ _vk

of
ovk
¼ 0 ð11Þ
So as to solve these three advection equations the following numerical scheme is adopted. Let brh denotes the
shift operator in (r,h) direction over a time step Dt, associated to the advection term in Eq. (9). Similarly, ẑ and
v̂k denote the shift operators, respectively, in the z (Eq. (10)) and vi directions (Eq. (11)). A splitting of Strang
[34] is applied to keep a scheme of second order accuracy (cf. proof in Appendix B). Second order accuracy is
obtained by imposing a symmetry in the application of the different shifts. In our case the most efficient se-

quence is ðv̂k=2; ẑ=2; brh=2; brh=2; ẑ=2; v̂k=2Þ (where factor 1/2 corresponds to a shift over a Dt/2) because with

this sequence the two (r,h) shifts in 2D can be connected. So that the algorithm time step can be summarized
by ðv̂k=2; ẑ=2; brh; ẑ=2; v̂k=2; Q̂Þ, where Q̂ denotes symbolically that at this point the quasi-neutrality equation is
solved to compute the electric potential and thereby the electric field. The shifts in the z and vi directions are
straightforward, but the one in the (r,h) direction requires more attention. Indeed, if we consider the action of

the brh operator between times t � Dt and t + Dt, the value of the electric field E at time t is required to keep a
time scheme of second order. This value is calculated by using a leap-frog method, which involves the use of
two distribution functions shifted in time by one time step.

3.2.2. Semi-Lagrangian concept

Let ~C be a position vector in the phase space such that ~C ¼ ðr; h; z; vkÞ and let ~Ci be a position vector which
corresponds to a node of the mesh. The semi-Lagrangian method is based on the invariance of the distribution
function f along its characteristics Eq. (1) because,
df
dt
ð~CðtÞ; tÞ ¼ of

ot
þ dr

dt
of
or
þ r

dh
dt

1

r
of
oh
þ dz

dt
of
oz
þ dvk

dt
of
ovk
¼ of

ot
þ~vGC � ~rf þ vk

of
oz
þ _vk

of
ovk
¼ 0
according to the Vlasov equation (2). Therefore, the distribution function can be computed at each time step
on the same fixed grid, by using
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f ð~Ciðtn þ DtÞ; tn þ DtÞ ¼ f ð~Cðtn; ~Ci; tn þ DtÞ; tnÞ

where ~Cðtn; ~Ci; tn þ DtÞ represents the solution of the characteristic at time step tn is equal to ~Ci at time tn + Dt.
The method consists first in finding the foot of the characteristic at the time tn: ~Cðtn; ~Ci; tn þ DtÞ. The second
step is to compute f ð~Cðtn; ~Ci; tn þ DtÞ; tnÞ by interpolation, because at this time, the distribution function is
known over the whole fixed grid. This scheme is summarized in Fig. 1.

This sequence of operations can be applied separately on each advection equation appearing in the
time-splitting algorithm. The computation of the foot of the characteristic for the 1D equations in the z

and vi directions are trivial unlike that for the 2D equation in (r,h). This 2D equation cannot be divided into
two 1D equations because

ovGCr
or 6¼ 0 and

ovGCh
oh 6¼ 0.

3.2.3. Discretization of the (r,h) motion equation

The 2D characteristic equation in the (r,h) cross-section is performed in Cartesian coordinates to improve
the numerical stability close to the axis. So computing the 2D trajectories is equivalent to solving the two
following differential equations at first order:
dx
dt
¼ vGCx and

dy
dt
¼ vGCy
where vGCx ¼ Exðx; y; zÞ=Bz and vGCy ¼ Eyðx; y; zÞ=Bz represent the components of the E · B drift velocity in
Cartesian coordinates. This system
d~X
dt
¼~vGCX ð~X ; z; tÞ ð12Þ
is solved by using the parabolic assumption developed in [26]. Let ~X ij be the position of ~X ðtn þ DtÞ at time
tn + Dt, then there exists a displacement ~dij tangent to the parabola such that (see Fig. 2)
~X ðtnÞ ¼ ~X ij �~dij

~X ðtn � DtÞ ¼ ~X ij � 2~dij

(

Since the solution at second order of Eq. (12) can be written as
~X ij � ~X ðtn � DtÞ
2Dt

¼~vGCX ð~X ðtnÞ; zk; tnÞ
where
~X ðtnÞ ¼
~X ðtn þ DtÞ þ ~X ðtn � DtÞ

2
¼
~X ij þ ~X ðtn � DtÞ

2

the displacement ~dij can be calculated by solving the implicit equation
~d ¼ Dt~v ð~X �~d ; t Þ ð13Þ
ij GCX ij ij n



Fig. 2. Parabolic trajectory.
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This implicit equation can be solved iteratively using a Newton–Raphson algorithm. Let the function g be de-
fined by gð~dijÞ ¼~dij � Dt~vGCX ð~X ij �~dij; tnÞ, then the Newton iterate is given by
Fig. 3.
and th
~dmþ1
ij ¼~dm

ij � J�1
g ð~dm

ijÞgð~dm
ijÞ ð14Þ
where Jg is the Jacobian matrix of g. So if we denote (aij,bij) the coordinates of~dij at the mesh knot (ri,hj,zk,vil)
then assuming that~vGCX is linear in each grid cell, the Newton iterate yields:
amþ1
ij ¼ am

ij �
1

D
½ðam

ij � DtvGCxÞð1þ DtoyvGCy Þ � ðbm
ij � DtvGCy ÞðDtoyvGCxÞ�

bmþ1
ij ¼ bm

ij þ
1

D
½ðam

ij � DtvGCxÞðDtoxvGCy Þ � ðbm
ij � DtvGCy Þð1þ DtoxvGCxÞ�
where D corresponds to the determinant of Jg. This algorithm gives a good description of the trajectories.
Fig. 3 shows the trajectories of 3 test-particles in a constant electric potential U(r,h), which follow the isopo-
tential as predicted by the theory with a relative error of 0.1%.

The drawback of this method is that it requires the interpolation of vGCxðxi � am
ij ; yj � bm

ij ; zkÞ and
vGCy ðxi � am

ij ; yj � bm
ij ; zkÞ. An another possibility to avoid this interpolation, performed with cubic splines, is

to use a Taylor expansion. The first idea is to write Eq. (13) under the explicit form ~dmþ1
ij ¼ Dt~vGCX

ð~X ij �~dm
ij ; tnÞ. So if ~d0

ij is initialized at 0, then:
Closed trajectories of 3 test-particles in a time-independent electric potential U(r,h) for Dt = 0.5/X0 and 50,000 iterations. The cross
e circle represent, respectively, the beginning and the end of the trajectories.
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~d1
ij ¼Dt~vGCX ð~X ij �~d0

ij; tnÞ ¼ Dt~vGCX ð~X ij; tnÞ
~d2

ij ¼Dt~vGCX ð~X ij �~d1
ij; tnÞ ¼ Dt~vGCX ð~X ij � Dt~vGCX ð~X ij; tnÞ; tnÞ

¼Dt~vGCX ð~X ij; tnÞ � DtJ vð~X ijÞ~d1
ij þ OððDtÞ3Þ (Taylor expansion at first order)
then ~d2
ij ¼ Dt~vGCX ð~X ij; tnÞ � Dt2J vð~X ijÞ~vGCX ð~X ij; tnÞ, where J vð~X ijÞ is the Jacobian matrix
ovGCx ð~X ijÞ
ox

ovGCx ð~X ijÞ
oy

ovGCy ð~X ijÞ
ox

ovGCy ð~X ijÞ
oy

0@ 1A

This simpler method is equivalent at second order to the Newton algorithm. Indeed, if J�1

g ð~dijÞ ¼
½I þ DtJ~vGCX ð~X ij �~dij; tnÞ��1 is expanded at second order as J�1

g ð~dijÞ ¼ I � DtJ~vGCX ð~X ij �~dij; tnÞ þ OððDtÞ2Þ, then
according to Eq. (14)
~dmþ1
ij ¼ Dt~vGCX ð~X ij �~dm

ij ; tnÞ þ DtJ~vGCX ð~X ij �~dm
ij ; tnÞ~dm

ij � Dt2J~vGCX ð~X ij �~dm
ij ; tnÞ~vGCX ð~X ij �~dm

ij ; tnÞ þ OððDtÞ2Þ
so if~d0
ij taylor ¼~d0

ij newton ¼ 0 then ~d2
ij taylor ¼~d1

ij newton. The advantage of this Taylor method is that it requires the
computation of the derivatives at first order of~vGCX on nodes of the mesh and not on arbitrary points of space.
3.2.4. Cubic spline interpolation

When the characteristic foot is computed with the Taylor method, we need to compute f(rw,hw,zk,vil, tn �
Dt) where rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � aijÞ2 þ ðyj � bijÞ

2
q

and hH ¼ arctanðyj�bij

xi�aij
Þ are no longer grid points. Thus an interpola-

tion is needed. In this case, a 2D interpolation (r,h) is required, where zk and vil are considered as parameters.
For the resolution of Eqs. (10) and (11), 1D interpolations in the z direction (respectively, vi direction) are
required with ri,hj and vi (respectively, ri, hj and zk) fixed. So according to the advections, the 4D distribution
function is interpolated on a 1D or 2D cubic spline basis. Let Nr, Nh, Nz and Nvi

be the number of points,
respectively, in r, h, z and vi directions. Then, for instance in the z advection, f(ri,hj,z,vil) is approximated by
g1ðzÞ ¼ f ðri; hj; z; vklÞ ¼
XNzþ1

m¼�1

cmKmðzÞ 8ri; hj; vkl
where K are piecewise cubic polynomials (cf. [35]). In the case of an advection in (r,h), f is defined as a 2D
tensor product of cubic B-splines, as
g2ðr; hÞ ¼ f ðr; h; zk; vklÞ ¼
XNrþ1

a¼�1

XNhþ1

b¼�1

ca;bKaðrÞKbðhÞ 8zk; vkl
The piecewise cubic polynomials K are twice continuously differentiable. For more details on the computation
of the cubic spline coefficients see Appendix C.
3.3. Global algorithm

Taking into account all the previous steps, the global algorithm in time used to solve the 4D non-linear
system (4D Vlasov equation + 3D quasi-neutrality equation) is summarized by the following sequence. Let
the notations n � 1 and n + 1, respectively, correspond to the time tn � Dt and tn + Dt. Given the distribution
function at two times t = tn�1 and t = tn, then:

1. Computation of E(tn) with f(tn) by solving the quasi-neutrality equation.
2. Computation of f n+1 = f(tn + Dt) with f n�1 = f(tn � Dt) by using the centered electric field E(tn). This

means using an algorithm of time-splitting on 2Dt according to the sequences v̂kẑ2 ^ðr; hÞẑv̂k, i.e.:
(a) f w(r,h,z,vi)=f n(r,h,z,vi�DtEz(tn)),
(b) f ww(r,h,z,vi) = f w(r,h,z�Dtvi,vi),
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(c) f www(r,h,z,vi) = f ww(r�2aij,h�2bij,z,vi) with ~dij ¼ ðaij; bijÞ
t where the implicit equation ~dij ¼ Dt~vGCX

ð~X ij �~dij; tnÞ is solved by a Newton algorithm or by a Taylor method,
(d) f 4w(r,h,z,vi) = f www(r,h,z�Dt,vi),
(e) f n+1 = f 4w(r,h,z,vi � DtEz(tn)).

3. Leap-frog algorithm:
(a) f(tn�1) becomes equal to f(tn),
(b) f(tn) becomes equal to f(tn+1).
4. Parallel 4D code description

The 4D code is developed in Fortran 90 and parallelized with the MPI message passing library. It runs on
SUN and ALPHA parallel computers as well as on PC cluster under Linux. At the moment only the 4D dis-
tribution function and Eq. (2) are parallelized. The discretization and the solution of the 3D quasi-neutrality
equation is performed on each processor. As mentioned before the 4D Vlasov equation is solved by time-
splitting. Hence the 4D discretization is replaced by a succession of discretizations of 2D advections in the
(r,h) direction and 1D advections in the z and vi directions. To take advantage of this property, the 4D dis-
tribution function is saved in a 2D array where the first dimension corresponds to the directions (r,h) and the
second dimension corresponds to the 2 others directions (z,vi). At each time, this 2D array is shared on pro-
cessors according to the first or second dimension depending on the advection that is performed. Indeed, to
resolve the 2D advection, each processor needs to know all the information on (r,h). Therefore the 2D array is
parallelized according to the second dimension. On the other hand, to solve the two 1D advections, each pro-
cessor needs to know all the information on z or vi. So the 2D array must be transposed to be parallelized
according to the first dimension. The advantage of this kind of parallelization is that the only communication
between processors appears during the transposition of the 2D array and all the operations are fully local. The
transposition is optimized for a number of processors which is a power of 2.

4.1. Speed-up

The performance of the parallel code is summarized in Table 1 for two different typical mesh sizes in
(r,h,z,vi): (64 · 128 · 64 · 64) and (128 · 64 · 64 · 128). All the tests have been performed on the parallel
computer of the CEA (Commissariat à l’Energie Atomique) made of 180 quadri-processors. Each processor
is an ALPHA EV68-1250 MHz with a power of 2.5 GFlops/s and a memory size of 1 GBytes.

As seen in Fig. 4, the speed-up (speed-up = monoprocessor time/CPU time) is poor for more than 64
processors. This is due to the fact that the computational time of the not parallelized 3D operations become
non-negligible. The performance of the code will be improved in the future by parallelizing the resolution of
the 3D quasi-neutrality equation.

5. Numerical results

The cylinder ITG instabilities correspond to small scale instabilities, which grow and saturate to a state of
developed turbulence. In the following, the exponential increase of the amplitude of the initial perturbation
will be called the linear phase. Due to the existence of energy invariants (like the number of particles for
instance) and the self-consistent evolution, these perturbed modes cannot grow unbounded and a saturation
Table 1
CPU time in seconds for 1 global iteration for 2 different meshes: mesh1 = (64 · 128 · 64 · 64) and mesh2 = (128 · 64 · 64 · 128)

Nb processors 1 2 4 8 16 32 64 128 256

Mesh1 309 155 85 50 30 21 16 15 14
Mesh2 · 313 167 94 52 31 21 17 16

The cross-symbol corresponds to a problem of insufficient virtual memory.



Fig. 4. Speed-up for two different meshes (64 · 128 · 64 · 64) and (128 · 64 · 64 · 128).
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is reached. We will see that the GYSELA code is well adapted to compute this non-linear phase, which is obvi-
ously the most demanding and relevant part of the simulation.

5.1. Normalization

The numerical solution is performed using the normalized equations. In our case, the temperature is
normalized to Te0, where Te0 is defined such that Te(r0)/Te0 = 1 (where r0 is a reference point). The time is
normalized to X�1

0 , where X0 = qiB0/mi is the ion cyclotron frequency. The velocity is normalized to the sound

speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T e0=mi

p
and the normalization of the electric potential is defined by Te0/qi. Therefore, all the nor-

malized quantities needed (represented with hat symbol) can be deduced and are summarized in Table 2.

5.2. Linear study

5.2.1. Computation of the growth rate and the instability threshold

The linearized Vlasov equation is obtained by separating the equilibrium distribution function from its per-
turbation in the Vlasov equation (2) and by keeping only the perturbations at first order. In this linear study,
the equilibrium part feq is given by Eq. (4) and the perturbations are projected on a Fourier basis in h and z

directions as:
Table
Norma

t̂ ¼ X0

v̂ ¼ v=
T̂ ¼ T=
Û ¼ ðq
B̂ ¼ B=
df ¼
X
mnx

dfmnxðr; vkÞ exp½iðmhþ nz� xtÞ�

U ¼
X
mnx

UmnxðrÞ exp½iðmhþ nz� xtÞ�
According to these assumptions the linearized Vlasov equation is
dnimnx

n0

¼ � 1� x� x�i
x� kkvk

	 
� �
q

T iðrÞ
Umnx with h�i ¼ 1

n0

Z
�feq dvk
where the diamagnetic frequency x�i is given by
2
lized quantities

t l̂ ¼ ðX0=csÞl ¼ l=qs

cs
bE ¼ ð1=csB0ÞE

T e0 ) n̂ ¼ ðqsÞ3n

i=T e0ÞU f̂ ¼ ðqsÞ3csf
B0
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x�i ¼
miv2

k

2T iðrÞ
� 1

2

" #
x�T i
þ x�ni
with
x�T i
¼ T i

qB
d log T iðrÞ

dr
kh and x�ni

¼ 1

g
x�T i

g ¼ d ln T i

d ln n0

� �

The Fourier wave numbers kh and ki are, respectively, defined as kh = m/r and ki = 2pn/Lz. Let us remain here
that we only consider particles with l = 0. In this case, the velocity space has one degree of freedom, hence
leading to the coefficient 1/2 (instead of the usual 3/2 value) in the definition of x�i .

The linearized quasi-neutrality equation is then
�q2
s

o
2UmnxðrÞ

or2
þ 1

r
þ 1

n0ðrÞ
dn0ðrÞ

dr

� �
oUmnxðrÞ

or

� �
þ q2

s

m2

r2
þ 1

Z i

� �
UmnxðrÞ ¼

T e

eZ i

dnimnxðrÞ
n0ðrÞ
Instead of solving the full differential equation, we use a test function of the form Umnx(r) = /mnxexp[g(r)],
then the previous equation can be written as
q2
s jðrÞ þ m2

r2

� �
þ 1

Z i

� �
UmnxðrÞ ¼

T e

eZ i

dnimnxðrÞ
n0ðrÞ
where j(r) is defined by
jðrÞ ¼ � o
2gðrÞ
or2

þ ogðrÞ
or

� �2

þ 1

r
þ 1

n0ðrÞ
dn0ðrÞ

dr

� �
ogðrÞ
or

" #
For the linear stability analysis, exp{g(r)} is chosen such that the profile of U is close to the numerical solution.
Finally, the linearized dispersion relation can be deduced from the two previous relations
DðxÞ ¼ q2
s jðrÞ þ m2

r2

� �
þ 1

Z i

þ 1� x� x�i
x� kkvk

	 
� �
T e

T i

¼ 0 ð15Þ
This local dispersion relation gives for each mode a relation between the real part of the frequency (temporal
periodicity) and the wave number (spatial periodicity). This phase velocity characterizes the kind of waves that
propagate in the plasma. The behavior of the linear growth rate c (imaginary part of x), with the Fourier wave
number m and n, is given by the zeros of the linear dispersion relation D(x) = 0 where x = xr + ic and xr

is the real part of the frequency. The instability threshold corresponds to the case Im(x) = c = 0. limc!0þ

DðxÞ ¼ 0 is equivalent to the system of equations:
er ¼ 1þ AðrÞ � PP
xr � x�i
xr � kkvk

	 
� �
¼ 0

ei ¼ p xr � x�ni
� x�T i

v2
k

v2
T i

� 1

2

" # !
dðxr � kkvkÞ

* +
¼ 0
with vT i
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
T i=mi

p
the thermal velocity, where PP denotes the principal part and where
AðrÞ ¼ sq2
s jðrÞ þ m2

r2

� �
þ s

Z i
Thus using the relation
lim
c!0þ

1

x� ic
¼ PP

1

x

� �
	 ipdðxÞ
The relation between the ion temperature gradient and the density gradient is given by the following analytical
expression:
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x�T i
¼ x�ni

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2ni
þ 2x2

ksðsþ AðrÞÞ
q

ð16Þ
where xk ¼ kkvT i
. The dependence of x�T i

on x�ni
at the threshold is shown in Fig. 5. The distance to the thresh-

old of the pair ðx�T i
;x�ni
Þ for our numerical simulation is also shown in Fig. 5. In the limit x�ni


 xk, the thresh-
old is g ¼ x�T i

=x�ni
¼ 2.

According to Eq. (15) D(x) is defined by
DðxÞ ¼ s q2
s jðrÞ þ m2

r2

� �
þ 1

Z i

� �
þ 1� zZðzÞ �1þ

x�ni

x
þ

x�T i

x
� 1

2
þ z

ZðzÞ þ z2

� �� �
ð17Þ
with s = Ti/Te, z ¼ x
kk

ffiffiffiffiffi
mi

2T i

q
and where Z(z) represents the Fried and Conte function [36], i.e.,
ZðzÞ ¼ 1ffiffiffi
p
p

Z þ1

�1

expð�x2Þ
x� z

dx
The local dispersion relation (17) is solved for r = rpeak and the zeros are found using a Davies method [37,38]
coupled to a Newton algorithm. This spectral approach, which is clearly less time consuming than a global
non-linear simulation, is currently used for microinstabilities analysis (code KINEZERO [39]). In our case this
preliminary study is performed to check the validity of the physical input parameters. The results for a stan-
dard case are presented here. This numerical case corresponds to a 4D phase space (r,h,z,vi) defined by the
following lengths: Lr = 14.5qs, Lh = 2p, Lz = 1508qs and vk 2 ½�6vT i

; 6vT i
�. The electron temperature is

assumed uniform. The density and the ion temperature profiles are, respectively, defined by the following
parameters jn0

¼ 0:8, Drn0
¼ 0:2, jT i

¼ 4 and DrT i
¼ 0:1, which correspond to values of g larger than 2 in a

sufficiently large region to study instabilities (cf. Fig. 6).
In this case the radial profile of the electric potential is approximated by
UmnxðrÞ ’
jT i

jn0

exp
�ðr � rpeakÞ2

Drn0

DrT i

264
375
This analytical expression gives a good representation of the numerical solution. A comparison is shown in
Fig. 7 at the time t = 600/X0 which corresponds to a time long enough for the development of the most unsta-
ble mode in the linear phase.

Analyzing the dependence of the linear growth rate c on the poloidal mode number m for four different
toroidal mode numbers (n = 1, 2, 3, 4) shows (cf. Fig. 8(a)) that the most unstable mode has an helicity
(m,n) = (11, 3) and that all the large wave numbers (m > 10) are unstable. The numerical problem caused
Ωω 0

Ω
ω

0

∗

∗ ←

Fig. 5. Dependence of x�T i
on x�ni

at the threshold. The cross indicates the pair ðx�T i
;x�ni
Þ in the numerical simulation.
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Fig. 6. Initial radial profiles: (a) density, (b) ion temperature and (c) g profiles.
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by the growing of small scale poloidal structures, which are not compatible with the mesh grid, is alleviated by
using filters. This point will be discussed in Section 6. On the other hand, as observed in Fig. 8(b) the small
scale structures are damped in the z-direction. Indeed, as emphasize in Eq. (16), the critical temperature
gradient increases with ki = kz.
Φ

ρ

Fig. 7. Comparison between the numerical electric potential (solid line with cross-points) and the analytical one (solid line).

γ 
/Ω

0

γ 
/Ω

0

a b

Fig. 8. Linear growth rate c: (a) versus poloidal Fourier modes m for four different values of toroidal Fourier modes n = 1, 2, 3, 4; (b)
versus toroidal Fourier modes n for four of the most unstable poloidal Fourier modes m = 8, 9, 10, 11.
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5.2.2. Validation of the linear phase

The perturbation can be initialized with a single mode (m,n) as was done already in PIC-df code [40]. This
property is interesting for the study of specific modes. Besides, in this paper, this possibility is used to validate
the linear phase of the non-linear code (see [41]). This validation is performed with the mode (m,n) = (11,3) for
which the analytical growth rate is equal to c = 6.259 · 10�3X0. As seen before, the analytical approach is
based on the approximation of the electric potential by a fixed profile close to the numerical one. The corre-
sponding numerical simulation (for a mesh of 64 points in each directions and a time step of Dt = 0.5/X0)
shows (cf. Fig. 9) that this assumption is valid for t 6 500/X0. The numerical growth rate cnum is computed

with a linear fit between t = 0 and t = 500/X0 as cnum ¼ ½logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

U2ðrpeak; h; zÞdhdz
q

Þ � b�=t. In this case cnum

is equal to 6.15 · 10�3X0, which gives a good agreement with the analytical value (relative error of 2%).

A second study has been performed by comparing the numerical growth rate obtained for superimposed
ITG modes with different time steps and two different mesh sizes. This comparison, indicates that (cf.
Fig. 10) the relative error is smaller than 1%, that validate the linear phase of the computation. Besides, bench-
marks with two PIC codes (the linear code LORB5 [9] and the non-linear code ORB5 [8]) reveal good agree-
ment (cf. [42]).

Tests have been performed for time steps larger than 20/X0 for the mesh with 64 points in each directions.
In this case the linear phase is no more properly described. Indeed, with this mesh Dr = 0.23qs, Dh = 0.0982qs,
Dz = 23.56qs and Dvi = 0.2326cs while maxEh = 3.3 · 10�2 · B0cs, maxEr = 3 · 10�2 · B0cs, vimax=7.32cs and
Fig. 9. Contour plot of the time evolution of the radial g profile.

γ 

/Ω0×

× × ×
×××

Δ

Fig. 10. Linear growth rate for two different mesh sizes (64 · 64 · 64 · 64) and (128 · 256 · 128 · 64) and for different time steps.
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maxEz = 3.25 · 10�4 · B0cs. So a time step Dt of 20/X0 corresponds to displacements greater than two cells in
the radial direction and larger than six cells in h and z directions. This seems to be a limit of the numerical
method which should be investigate in the future.

5.3. Non-linear phase

5.3.1. Accuracy of the global semi-Lagrangian scheme

In this non-linear Vlasov system the Lp-norms �|f(t)|p dVdvi, the kinetic entropy S(t) = ��f(t) ln|f(t)| dVdvi
and the total energy defined by Eqs. (6) and (7) should be conserved. This comes directly from the Hamilto-
nian structure of the equation. Anticipating that the conservation of the total energy is the most difficult to
satisfy, we have considered this criterion as the key point for the validation of the code. Fig. 11 shows (for
the previous mesh of 64 points in each directions) the dependence on the time step of the relative error R
on the total energy
Fig. 11
of the

Table
Maxim
energy

Dt/X0

max(R
max(R
max(R
max(R
RðdetotÞ ¼ ðdetot � detotðt0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½ðdekin � dekinðt0ÞÞ2 þ ðdepot � depotðt0ÞÞ2�

r,

In the early and fully developed non-linear phase (Fig. 11(a) and (b)) the order of the global scheme appears to
be between 1 and 2. The numerical scheme is expected to be of order 2. The discrepancy is not understood yet
and requires further investigations. However note that these tests have been performed with a low resolution
(64 · 64 · 64 · 64).

5.3.2. Laws of conservation and physical results

Results, Table 3, show that the present semi-Lagrangian code conserves the invariants of the system with
good accuracy. For a time step Dt = 0.1/X0 the L1-norm (which corresponds to the total particle number), the
/Ω0

Ω0 Ω0

× /Ω0×a b

. Comparison of the order of the numerical scheme in time with the scaling of first and second order schemes at two different points
non-linear phase: (a) t = 1000/X0 and (b) t = 2000/X0.

3
um values between t = 0 and t = 3000/X0 of the relative error in percents on the L1 and L2 norms, the entropy S and the total

0.1 0.5 2 8 10

(L1)) in % 1.7 · 10�4 7.9 · 10�4 2.7 · 10�3 3.1 · 10�3 3.4 · 10�3

(L2)) in % 2.6 · 10�1 1.8 · 10�2 2.5 · 10�4 2.2 · 10�5 2.2 · 10�5

(S)) in % 1.8 · 10�7 9.0 · 10�5 4.5 · 10�4 5.4 · 10�4 6.0 · 10�4

(detot)) in % 1.76 13.3 60 93.5 97
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L2-norm and the entropy are conserved with an error smaller than 0.3%. The relative error on the total energy
remains below 2% all along the non-linear simulation. The maximum values (taken between t = 0 and
t = 3000/X0) of the relative errors, reported in Table 3, prove that the tests on the conservation of the Lp-norm
(p = 1,2) and the entropy are necessary for validation of non-linear codes but not sufficient. Indeed, for
instance, for a time step Dt = 10/X0 these three entities remain conserved with an accuracy better than
0.004% while the relative error on the total energy approaches the unacceptable value of 97%. The energy con-
servation test appears as the most sensitive validation test. The time evolution of the heat flux
Fig. 12
Dt = 0

Fig. 13
128 · 6
QðtÞ ¼ 1

2

Z
fv2
kvGCr

dh
2p

dz
Lz

dvk
at the radial position r = rpeak and the potential energy depot Eq. (7) for the four previous time steps (Dt =
0.1/X0, Dt = 0.5/X0, Dt = 2/X0 and Dt = 8/X0) is plotted in Fig. 12. Simulations at Dt = 4.0/X0 (not plotted)
have also been performed and exhibit no significant difference with the case Dt = 2.0/X0. This figure shows
that an error on the total energy of 93% generates a significant modification of the physical results. Conversely
an error on the energy conservation of a couple of tens percent only lead to small differences in the computed
heat flux and potential energy. So as to quantify the fine dynamics in such regimes, one can compute the larg-
est spatial excursion of the distribution function in a single time step. This corresponds to vErDt (respectively,
vEhDt) in the radial (respectively, poloidal) direction. Here, vE corresponds to the E · B drift velocity. It turns
out that, in both directions, the code starts failing in the non-linear regime when the excursion reaches about
one grid cell, which is obtained for Dt � 8/X0.
Ω0×Ω0×

Δ
Δ
Δ
Δ

Δ
Δ
Δ
Δ

a b

. Time evolution of (a) the heat flux Q at the radial position r = rpeak and (b) the potential energy, for four different time steps
.1/X0, Dt = 0.5/X0, Dt = 2/X0 and Dt = 8/X0.

×Ω

. Time evolution of the kinetic (dashed line), potential (dotted line) and total (solid line) energies for a mesh of (128 · 256 ·
4) in (r,h,z,vi) directions and a time step Dt = 0.5/X0.
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5.3.3. A robust scheme

The GYSELA code is not only able to conserve the total energy with an error smaller than 2% (for
Dt = 0.1/X0) but permits also to simulate turbulence well into the non-linear regime. In Fig. 13 is presented
the evolution of the kinetic, potential and total energies up to t = 9500/X0 for the refined mesh of
(128 · 256 · 128 · 64) in (r,h,z,vi) directions and a time step Dt = 0.5/X0.
Fig. 14. (r,h) cross-section of the distribution function at 6 different times: (a) initial time, (b) middle of the linear phase, (c) end of the
linear phase, (d) beginning of the non-linear phase, (e, f) two times in the non-linear phase.
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Another characteristic of this code is that it directly computes the evolution of the total distribution func-
tion f. The evolution of the distribution function in a (r,h)-cross-section is represented in Fig. 14.

6. Improved schemes

6.1. Positivity of the distribution function

The semi-Lagrangian method does not ensure that the distribution function will remain positive. Indeed,
negative values of the distribution function can appear in the non-linear phase. In the present runs, the domain
where the distribution function is found negative does not increase indefinitely. It is of the order of 5–6% of the
whole phase space all along the simulation. The apparition of these negative values is due to the interpolation
step, and therefore depends on the refinement of the mesh. The first negative values appear at time t = 1190/X0

for a mesh of (64 · 64 · 64 · 64) and at time t = 1450/X0 for a mesh of (128 · 256 · 128 · 64). Besides, the first
negative values appear for a parallel velocity of 6 times the thermal velocity ðvk ¼ 6vT i

Þ which corresponds to
the region where the Maxwellian function is close to 0. Then, and whatever the mesh, the negative values do
not propagate beyond vk ¼ 2:5vT i

(cf. Fig. 15). Therefore, the existence of negative values does not seem to be
a real problem in the cases we have run since the distribution function remains positive in the region of phys-
ical importance.

One can think of typically two classes of solutions to get rid of these negative values, in case they would
become a serious limitation of the code. The first one would be to include collisions in the problem. This would
Fig. 15. (z,vi) cross-section of the distribution function at four different times: (a) t = 1450/X0, (b) t = 2000/X0, (c) t = 3000/X0 and (d)
t = 3500/X0. Cross-points represent negative values of the distribution function.
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dissipate small scales in the velocity space. In this case, one expects that the cubic spline interpolation should
not generate spurious negative values of the distribution function. Such a collisional operator will be incorpo-
rated in the future. The second one is based on alternative numerical schemes. Two ideas have been tested on
the present 4D model. The first possibility is to use a positive flux conservative (PFC) method [24] based on a
finite volume method, that ensures by construction the conservation of the number of particles and preserves
the positivity via a good choice of slope correctors. In this case, as since the equations are solved in their
conservative form (finite volume principle), the 4D Vlasov equation (2) is replaced by the solution of the four
following equations:
of
ot
þ o

or
ðvGCr f Þ ¼ 0 ð18Þ

of
ot
þ 1

r
o

oh
ðvGCh

f Þ ¼ 0 ð19Þ

of
ot
þ oðvkf Þ

oz
¼ 0 ð20Þ

of
ot
þ oð _vkf Þ

ovk
¼ 0 ð21Þ
The associated time-splitting scheme over two time steps is defined symmetrically by the sequence ð �vk;�z;
�r; 2�h;�r;�z; �vkÞ where �r, �h, �z and �vk represent the operators, respectively, associated with Eqs. (18)–(21). The
drawback of this PFC method is that it is dissipative and leads to a loss of conservation of the total energy.
A less dissipative solution which simply consists in replacing the cubic spline interpolation of the distribution
function by the cubic spline interpolation of the logarithm of this distribution function is developed and com-
pared to the PFC method in [28] for the 2D standard Landau damping case. However it requires an increase of
the mesh refinement to treat correctly the small scales [42]. Given that a simulation with a mesh of
(128 · 256 · 128 · 64) needs more than 7 GBytes of memory and 25 s of CPU time for each iteration on
128 processors, more refined meshes are difficult to use given the present resources. The use of a non-equidis-
tant mesh can reduce the number of points that are needed by a factor 2 [42].

6.2. Treatment of small scales

As discussed in the linear study (Fig. 8), all the poloidal modes (m > 10) are unstable. A refinement of the
mesh in the poloidal direction will thus improve the treatment of the small scales but will not be sufficient. A
way to limit this filamentation (cf. Fig. 14) is to cut off the small scales. This can be done by adding a numer-
ical dissipation (white noise for instance). The drawback of this kind of dissipation is that its impact during the
non-linear regime is difficult to control. For the moment a filter on the electric potential U is used in GYSELA,
where all the poloidal Fourier modes larger than 16 are artificially set to 0. This numerical filter is temporary
and will be replaced in the next version by a physical filter which consists in taking into account the finite Lar-
mor radius effects. In this case, the numerical model will be governed by the following gyroaveraged equations:
o�f
ot
þ 1

rB
oðJ 0UÞ

or
o�f
oh
� 1

rB
oðJ 0UÞ

oh
o�f
or
þ vk

o�f
oz
� q

mi

oðJ 0UÞ
oz

o�f
ovk
¼ 0

�r? �
n0ðrÞ
BX0

r?U
� �

þ en0ðrÞ
T eðrÞ

ðU� hUizÞ ¼ 2p
Z

v? dv?

Z
dvkJ 0 � �f � J 0n0
where J0 is an operator that takes the form of multiplication by the Bessel function of first order J 0ðk?v?
X Þ in the

Fourier space. �f ¼ feq þ d�f is the gyroaveraged distribution function where d�f is the perturbed part and where
the equilibrium function feq is now defined by the following local Maxwellian:
feq ¼
n0ðrÞ

ð2pT iðrÞ=miÞ
3
2

exp �
miðv2

k þ v2
?Þ

2T iðrÞ

" #
chosen such that
R1

0 2pv? dv?
Rþ1
�1 dvkfeq ¼ n0.
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Fig. 16. Linear growth rate c by taking into account the gyroaverage effects: (a) versus poloidal Fourier modes m for four different values
of toroidal Fourier modes n = 1, 2, 3, 4; (b) versus toroidal Fourier modes n for fourth of the most unstable poloidal Fourier modes m = 8,
9, 10, 11.
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In the limit qs � Lni
, LT i

the linearized dispersion relation associated to this 5D model is given by
s
C0ðbÞ

q2
s jðrÞ þ m2

r2

� �
þ 1

Z i

� �
þ 1� z2

x�T i

x
þ zZðzÞ 1�

x�ni

x
�

x�T i

x
z2 � 1

gi0ðbÞ

� �� �
¼ 0
with b ¼ k2
?q

2
i =2, gi0(b) = 2C0(b)/[C0(b) + 2b(C0(b) � C1(b))] and Cj(b) = exp(�b)Ij(b) where I0 (respectively,

I1) represents the modified Bessel function of first (respectively, second) kind. Then the gyroaverage effects
on the small scales can already be seen by comparing Fig. 8 to Fig. 16. In this case the high m modes are stable
so that a fixed mesh size will be appropriate without the use of filtering.

As far as the velocity space is concerned, small scales are present in the bulk of the distribution function,
although they are not highlighted in Fig. 15. However, the cubic spline interpolation generates some dissipa-
tion in the velocity space, which appears to be sufficient to damp the smallest scales. As a result, the distribu-
tion function does not exhibit strong filamentation features in velocity, in contrast with those reported in Ref.
[43].

7. Conclusion

A new gyrokinetic 4D code, named GYSELA, has been developed to compute ion temperature gradient
driven turbulence in a cylinder. This code uses a semi-Lagrangian numerical scheme, which is second order
accurate in time. The Vlasov equation is solved with a time splitting of the advection, thus allowing an
efficient parallelization. The GYSELA code has been validated in the linear phase by comparing the cal-
culated growth rates and eigenmodes to the analytical values. Simulations in non-linear regime have been
benchmarked against the ORB5 gyrokinetic code [42]. Also energy conservation is found to be respected
provided small spatial scales are filtered. The massively parallel GYSELA code is found to be stable over
long simulation times, even for high spatial resolution. This result is very promising. Three limitations have
been encountered. First it is found that the speed-up performance saturates for a large number of proces-
sors. This saturation comes from the implementation of the quasi-neutrality condition, which is not par-
allelized. Second the error on energy conservation, although satisfactory, is consistent with an accuracy
that ranges between expectations for first and second order accuracy. Third, the distribution function
exhibits negative values in the domain of high velocities, i.e., in a domain where the equilibrium distribu-
tion function vanishes. The latter drawback originates from the development of small scales in the velocity
space. It has been found to be quite benign in the simulations presented in this paper, since it only affects a
very limited part of the phase space. In the future, a collisional operator should be added. In this case,
small velocity scales should be dissipated and the specific problem of negative values should be overcome.
Furthermore, the code will be subject to other improvements. Finite Larmor radius effects will be imple-
mented, so that numerical filtering of small scales should no longer be necessary. The quasi-neutrality
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condition will be parallelized, to improve the speed-up performance when the number of processors is
large. Finally toroidal geometry and poloidal magnetic field will be implemented, in order to simulate a
toroidal ion turbulence in a tokamak.
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Appendix A. Expression of the energy conservation law

The kinetic energy is given by definition by
dekin ¼
Z

mi

v2
k

2
ðf � fMÞdV dvk with dV ¼ r dr dhdz
while the corresponding potential energy is deduced from the expression of the Vlasov equation (2) and the
quasi-neutrality Eq. (3). The computation of the potential energy is presented in this appendix.

The 4D Vlasov equation (2) can be written in its Hamiltonian form as
of
ot
� ½H ; f � ¼ 0 ð22Þ
where H is the Hamiltonian of the guiding center trajectories
H ¼ 1

2
mv2
k þ eUðr; h; zÞ ð23Þ
and where the symbol [.,.] represents the generalized Poisson brackets with the generalized Poisson operator
corresponding to
1
eBz

0 0 0

0 � 1
eBz

0 0

0 0 � 1
m 0

0 0 0 1
m

0BBBB@
1CCCCA
So let Eq. (22) be multiplied by the Hamiltonian H and integrated on the phase space, then
Z
of
ot

H dV dvk �
Z

H ½H ; f �dV dvk ¼ 0
which, according to the Hamiltonian expression Eq. (23), yields
Z
1

2
mv2
k
of
ot

H dV dvk þ
Z

eU
of
ot

dV dvk ¼
Z

H ½H ; f �dV dvk ¼
Z
½H ;H �f dV dvk ¼ 0
So using
R

f dvk ¼ ni, for the density of guiding centers
o

ot

Z
1

2
mv2
kf dV dvk ¼ �

Z
eU

of
ot

dV dvk ¼ �e
Z

U
oni

ot
dV
and replacing ni in the previous equation by its expression deduced from the quasi-neutrality equation
ni ¼ n0 �r? �
n0ðrÞ
BX0

r?U
� �

þ en0ðrÞ
T eðrÞ

U� hUið Þ
then
odekin

ot
¼ e

BX0

c2 � e2c3
with
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c2 ¼
Z

U
o

ot
ðr? � ½n0ðrÞr?U�ÞdV and c3 ¼

Z
n0ðrÞ
T eðrÞ

U
o

ot
ðU� hUiÞdV
Integrating by part and taking into account the fact that the electric potential U is equal to 0 on the boundaries
in the radial direction and periodic in the h and z directions, then the expressions of c2 and c3 become
c2 ¼
1

2

o

ot

Z
Ur? � ½n0ðrÞr?U�dV and c3 ¼

1

2

o

ot

Z
n0ðrÞ
T eðrÞ

UðU� hUiÞdV
so that the evolution of the kinetic energy is given by
odekin

ot
¼ 1

2

o

ot

Z
eU

en0ðrÞ
T eðrÞ

ðU� hUiÞ � r? �
n0ðrÞ
BX0

r?U
� �� �

dV

¼ 1

2

o

ot

Z
eUðni � n0ÞdV according to the quasi-neutrality equation.
And finally the previous equation can be expressed as odekin

ot þ
odepot

ot ¼ 0 where the potential energy is defined
as
depot ¼
1

2

Z
eUðni � n0ÞdV
and satisfies the energy conservation law dekin + depot = constant.
Appendix B. Time-splitting scheme of second order in time

As explained in the paper, the Vlasov equation (2) is solved with the following time-splitting scheme:
ðv̂k=2; ẑ=2; brh=2; brh=2; ẑ=2; v̂k=2Þ ð24Þ
(where the coefficients 1/2 correspond to shifts on Dt/2). brh denotes the shift operator in the (r,h) plane in Dt,
associated to the advection term in Eq. (9). Similarly, ẑ and v̂k denote the shift operators, respectively, in the z
(Eq. (10)) and vi directions (Eq. (11)). In this appendix, a formal proof is presented, showing that such a choice
in the sequence of the time-splitting ensures that the numerical scheme is of second order in time. This result is
true regardless of the fact that the operators commute or not.

Formal proof: Formally, the Vlasov equation (2) can be written as follows:
of
ot
þ ðAþ Bþ CÞf ¼ 0 ð25Þ
where A, B and C are the formal operators, respectively, defined by A ¼~vGC
~r�, B ¼ vk o�

oz and C ¼ _vk o�
ovk

. The
solutions of Eq. (25) are given by
f ¼ f0 exp½ð�Aþ Bþ CÞt� ð26Þ

The formal expression associated to the time-splitting scheme Eq. (24) reads as follows:
f ¼ f0 exp �At
2

� �
exp �Bt

2

� �
expð�CtÞ exp �Bt

2

� �
exp �At

2

� �
ð27Þ
In the following, we will prove that both expressions, Eqs. (26) and (27), are equivalent at second order.
Computation of I = exp[(�A + B + C)t]:
The Taylor expansion at second order of exp[(�A + B + C)t] yields
I ¼ exp½ð�Aþ Bþ CÞt� ¼ 1� ðAþ Bþ CÞt þ ðAþ Bþ CÞ2

2
t2 þ Oðt3Þ

¼ 1� ðAþ Bþ CÞt þ t2

2
ðA2 þ B2 þ C2 þ ABþ BAþ AC þ CAþ BC þ CBÞ þ Oðt3Þ ð28Þ



418 V. Grandgirard et al. / Journal of Computational Physics 217 (2006) 395–423
Computation of J ¼ expð� At
2
Þ expð� Bt

2
Þ expð�CtÞ expð� Bt

2
Þ expð� At

2
Þ:

Similarly,
exp �Bt
2

� �
exp �At

2

� �
¼ 1� Bt

2
þ B2t2

8
þ Oðt3Þ

� �
1� At

2
þ A2t2

8
þ Oðt3Þ

� �
¼ 1� B

2
þ A

2

� �
t þ t2 B2

8
þ A2

8
þ BA

4

� �� �
þ Oðt3Þ
where
J 1 ¼ expð�CtÞ exp �Bt
2

� �
exp �At

2

� �
¼ 1� Ct þ C2t2

2

� �
� 1� B

2
þ A

2

� �
t þ t2 B2

8
þ A2

8
þ BA

4

� �� �
þ Oðt3Þ

¼ 1� A
2
þ Bþ C

� �
t þ t2 C2

2
þ B2

8
þ A2

8
þ BA

4
þ CA

2
þ CB

2

� �� �
þ Oðt3Þ
Hence
J 2 ¼ exp �Bt
2

� �
� J 1

¼ 1� Bt
2
þ B2t2

8

� �
� 1� A

2
þ Bþ C

� �
t þ t2 C2

2
þ B2

8
þ A2

8
þ BA

4
þ CA

2
þ CB

2

� �� �
¼ 1� A

2
þ Bþ C

� �
t þ t2 C2

2
þ B2

2
þ A2

8
þ BA

2
þ CA

2
þ CB

2
þ BC

2

� �� �
þ Oðt3Þ
and
J ¼ exp �At
2

� �
� J 2

¼ 1� At
2
þ A2t2

8

� �
� 1� A

2
þ Bþ C

� �
t þ t2 C2

2
þ B2

2
þ A2

8
þ BA

2
þ CA

2
þ CB

2
þ BC

2

� �� �
þ Oðt3Þ

¼ 1� ðAþ Bþ CÞt þ t2 C2

2
þ B2

2
þ A2

4
þ BA

2
þ CA

2
þ CB

2
þ BC

2
þ A2

4
þ AB

2
þ AC

2

� �
þ Oðt3Þ

¼ 1� ðAþ Bþ CÞt þ t2 C2

2
þ B2

2
þ A2

2
þ ABþ BA

2
þ AC þ CA

2
þ BC þ CB

2

� �
þ Oðt3Þ ð29Þ
This shows that Eq. (29) is equivalent to Eq. (28), which proves that Eqs. (26) and (27) are equivalent at sec-
ond order. h

In conclusion, the time-splitting scheme Eq. (24) used in our global algorithm is of second order in time.
Appendix C. Cubic spline interpolation

The 4D Vlasov equation is solved by splitting in (r,h), z and vi directions. This requires interpolations of the
distribution function f(r,h,z,vi), 1D interpolations in the z and vi directions and 2D interpolations in the (r,h)
plane. The description of these interpolations by using cubic splines and by taking into account the boundary
conditions which are periodic in h and z, and non-periodic in r and vi directions is addressed here.

C.1. Cubic spline interpolation in 1D

Let g(x) be a function defined in the x-direction with x 2 ½x0; xNx � where Nx represents the number of points
in x (the step h being constant). Using a cubic spline for the interpolation of g consists in representing this
function in terms of piecewise cubic polynomials Ka, twice continuously differentiable [35] as



Table
Values

x

Ka(x)
K0aðxÞ
K00aðxÞ
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gðxÞ ¼
XNxþ1

a¼�1

caKaðxÞ
where
KaðxÞ ¼
1

6h3

ðx� xa�2Þ3 if xa�2 6 x 6 xa�1

h3 þ 3h2ðx� xa�1Þ þ 3hðx� xa�1Þ2 � 3ðx� xa�1Þ3 if xa�1 6 x 6 xa

h3 þ 3h2ðxaþ1 � xÞ þ 3hðxaþ1 � xÞ2 � 3ðxaþ1 � xÞ3 if xa 6 x 6 xaþ1

ðxaþ2 � xÞ3 if xaþ1 6 x 6 xaþ2

0 otherwise

8>>>>>>><>>>>>>>:

with h ¼ jxNx � x0j=Nx.

Then the ca coefficients are computed like the solution of the following system of equations:
gðxiÞ ¼
XNxþ1

a¼�1

caKaðxiÞ; i ¼ 0; . . . ;Nx
This system contains (Nx + 1) equations and (Nx + 3) unknowns, so 2 other equations which depend on the
boundary conditions are mandatory. According to Table 4, the (Nx + 3,Nx + 3) matrix system to be solved
becomes
~A
u

v

� �
¼

b

c

� �
with

u ¼ ðc0; . . . ; cNxÞ
t

v ¼ ðcNxþ1; c�1Þt

b ¼ ðgðx0Þ; . . . ; gðxNxÞÞ
t

c ¼ ðr1; r2Þt

8>>><>>>: and ~A ¼
A c

k d

� �
where
A is the ðN r þ 1Þ � ðN r þ 1Þ tridiagonal symmetric matrix:

4 1

1 4 1

. .
. . .

. . .
.

1 4 1

1 4

0BBBBBB@

1CCCCCCA;

k is equal to the 2� ðN r þ 1Þ matrix:
0 � � � 0 �3=h 0

0 3=h 0 � � � 0

� �
;

c is equal to the ðN r þ 1Þ � 2 matrix:
1 0 � � � 0

0 � � � 0 1

� �t

and

d ¼
n1 n2

n3 n4

� �
¼

3=h 0

0 �3=h

� �

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

The terms of the matrices c, k, c and d are modified according to the boundary conditions but the res-
olution of the system is always the same and takes advantage of the fact that Ã can be factorized in a LU
form, like:
4
of the cubic spline function Ka(x) and its first and second derivative

xa�2 xa�1 xa xa+1 xa+2

0 1 4 1 0
0 3/h 0 �3/h 0
0 6/h2 �12/h2 6/h2 0
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~A ¼
A 0

k �d

� �
� I A�1c

0 I

 !
with �d ¼ d� kA�1c
With this LU factorization the matrix system is solved by forward and backward substitutions with the two
successive sequences
A 0

k �d

� �
�

u0

v0

� �
¼

b

c

� �
and then

I A�1c

0 I

 !
�

u

v

� �
¼

u0

v0

� �

So computation of the interpolation coefficients~c ¼ c�1 c0 � � � cNx cNxþ1ð Þ can be summarized in the fol-
lowing steps:

1. Initialization:
(a) Factorize and store A in a LDLt form.
(b) Compute and store A�1c using the previous factorization.
(c) Assemble the (2 · 2) matrix �d ¼ d� kA�1c.

2. Time loop:
(a) Compute and store u 0 = A�1b using the stored factorization of A.
(b) Assemble c � kA�1b.
(c) Solve the (2 · 2) system �dv0 ¼ c� kA�1b using the Cramer formula for �d inverse computation

�d�1 ¼ 1
detð�dÞ

�n4 � �n2

� �n3
�n1

� �
.

(d) Compute u using the previous storage of A�1c by u = u 0 � A�1cv, where v is trivially equal to v 0.
C.1.1. Periodic boundary conditions

The 1D cubic spline interpolation with periodic boundary conditions is used for instance for the interpo-
lation of the distribution function needed in the z direction. Then,
f ðri; hj; z; vklÞ ¼ gðzÞ ¼
XNzþ1

l¼�1

clKlðzÞ 8ri; hj; vkl nodes of the mesh
The two necessary equations are obtained by using the first and second derivative continuity property of the
cubic splines:
g0ðz0Þ ¼ g0ðznÞ
g00ðz0Þ ¼ g00ðznÞ

�

which gives by using Table 4:
� 3
h c�1 þ 3

h c1 þ 3
h cNr�1 � 3

h cNrþ1 ¼ 0
6
h2 c�1 � 12

h2 c0 þ 6
h2 c1 � 6

h2 cNr�1 þ 12
h2 cNr � 6

h2 cNrþ1 ¼ 0

(

This two equations determines the missing terms in the previous matrix system as follows:
c ¼ ðr1; r2Þt ¼ ð0; 0Þt;

k ¼
0 3=h 0 � � � 0 3=h 0

�12=h2 6=h2 0 � � � 0 �6=h2 12=h2

� �
and

d ¼
n1 n2

n3 n4

� �
¼

�3=h �3=h

�6=h2 6=h2

� �
8>>>>><>>>>>:
C.1.2. Non-periodic boundary conditions
The interpolation of the distribution function in the vi direction is performed by using the following

formula:
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f ðri; hj; zk; vkÞ ¼ gðvkÞ ¼
XNvþ1

m¼�1

cmKmðvkÞ 8ri; hj; zk on the mesh
The first derivatives of f are approximated at the boundaries vi0 and vi Nv
(vi 2 [vi0,viNv

]) by a cubic Lagrange
polynomials fit of f and defined as:
kð3ÞðvkÞ ¼
X3

l¼0

gðvkÞLlðvkÞ with LlðvkÞ ¼
Y3

j¼0;j6¼l

vk � vkj
vkl � vkj

� �

Then the two boundary equations are:
k0ð3Þðvk0Þ ¼
PNvþ1

m¼�1

cmK
0
mðvk0Þ

k0ð3ÞðvkNvÞ ¼
PNvþ1

m¼�1

cmK
0
mðvkNvÞ

8>>><>>>:

which is equivalent to:
� 3
h c�1 þ 3

h c1 ¼ � 11
6h gðvk0Þ þ 3

h gðvk1Þ � 3
2h gðvk2Þ þ 1

3h gðvk3Þ
� 3

h cNv�1 þ 3
h cNvþ1 ¼ � 1

3h gðvkNv�3Þ þ 3
2h gðvkNv�2Þ � 3

h gðvkNv�1Þ þ 11
6h gðvkNvÞ

(

such that
r1 ¼ � 1
9
gðvkNv�3Þ þ 1

2
gðvkNv�2Þ � gðvkNv�1Þ þ 11

18
gðvkNvÞ;

r2 ¼ � 11
18

gðvk0Þ þ gðvk1Þ � 1
2
gðvk2Þ þ 1

9
gðvk3Þ;

k ¼
0 � � � 0 �1 0

0 1 0 � � � 0

� �
and

d ¼
n1 n2

n3 n4

� �
¼

1 0

0 �1

� �

8>>>>>>>><>>>>>>>>:

C.2. Cubic spline interpolation in 2D

The 2D advection requires the interpolation of f in the (r,h) plane. In this case, a cubic B-spline interpola-
tion method is used for all r 2 [r0, rNr

] and h 2 [h0,hNh
]

f ðr; h; zk; vklÞ ¼ gðr; hÞ ¼
XNrþ1

a¼�1

XNhþ1

b¼�1

cða; bÞKaðrÞKbðhÞ 8zk; vkl on the mesh
The interpolation coefficients can be computed by solving the (Nr + 3) · (Nh + 3) linear system:
gðri; hjÞ ¼
XNrþ1

a¼�1

cða; jÞKaðriÞ where cða; jÞ ¼
XNhþ1

b¼�1

cða; bÞKbðhjÞ
Then for each j between 0 and Nh, an unidimensional interpolation problem with non-periodic boundary
conditions has to be solved (same resolution than in the vi direction previously described). The second step
consists in the resolution for each ri (i = �1, . . . ,Nr + 1) of an unidimensional periodic system given by
XNhþ1

b¼�1

cða; bÞKbðhjÞ ¼ cða; jÞ 8j 2 ½0;N h�
In summary, the computation of the 2D interpolation coefficients is equivalent to:

 Nh resolutions of the 1D non-periodic interpolation problem and
 Nr + 3 resolutions of the 1D periodic interpolation problem.



422 V. Grandgirard et al. / Journal of Computational Physics 217 (2006) 395–423
References

[1] A.M. Dimits et al., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas 7 (3)
(2000) 969–983.

[2] G.W. Hammett, F.W. Perkins, Fluid models for Landau damping with application to the ion-temperature-gradient instability, Phys.
Rev. Lett. 64 (1990) 3019–3022.

[3] M.A. Beer, Gyrofluid Models of Turbulent Transport in Tokamaks, Ph.D. Thesis, Princeton University, 1995.
[4] R.E. Waltz, G.M. Staebler, W. Dorland, et al., A gyro-Landau-fluid transport model, Phys. Plasmas 4 (1997) 2482–2496.
[5] W.W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids 26 (2) (1983) 556.
[6] C.C. Kim, S.E. Parker, Massively Parallel three dimensional Toroidal gyrokinetic Flux-Tube turbulence Simulations, J. Comput.

Phys. 161 (2) (2000) 589–604.
[7] Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, R.B. White, Gyrokinetic simulations in general geometry and applications to collisional

damping of zonal flows, Phys. Plasmas 7 (5) (2000) 1857–1862.
[8] T.M. Tran, K. Appert, M. Fivaz, G. Jost, J. Vaclavik, L. Villard, Global gyrokinetic simulation of Ion-Temperature-Gradient driven

instabilities, Th. Fusion Plasmas, in: Proceedings of the International Workshop, Varenna, 1998, Ed. Compositori, Bologna, 1999,
pp. 45–49.

[9] A. Bottino, T.M. Tran, O. Sauter, J. Vaclavik, L. Villard, Linear gyrokinetic simulations using particles for small perpendicular
wavelength perturbations, Th. Fusion Plasmas, in: Proceedings of the International Workshop, Varenna, 2000, Ed. Compositori,
Bologna, 2001, pp. 327–332.

[10] Y. Idomura, S. Tokuda, Y. Kishimoto, Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using
a canonical Maxwellian distribution, Nucl. Fusion 43 (2003) 234–243.

[11] H. Sugama, T.H. Watanabe, W. Horton, Comparison between kinetic and fluid simulations of slab ion temperature gradient driven
turbulence, Phys. Plasmas 10 (3) (2003) 726–736.

[12] C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.
[13] R. Hatzky, T.M. Tran, A. Könies, et al., Energy conservation in a nonlinear gyrokinetic Particle-In-Cell code for ion-temperature-

gradient-driven modes in theta-pinch geometry, Phys. Plasmas 9 (3) (2002) 898–912.
[14] S.J. Allfrey, R. Hatzky, A revised delta f algorithm for nonlinear PIC simulations, Comp. Phys. Commun. 154 (2) (2003) 98–104.
[15] L. Villard, S.J. Allfrey, A. Bottino, M. Brunetti, G.L. Falchetto, V. Grandgirard, R. Hatzky, J. Nührenberg, A.G. Peeters, O. Sauter,

S. Sorge, J. Vaclavik, Full radius linear and non-linear gyrokinetic simulations for Tokamaks and Stellerators: zonal flows, applied
E · B flows, trapped electrons and finite beta, Nucl. Fusion 1 (2004) 172–180.

[16] E. Pohn, M. Shoucri, G. Kamelander, Eulerian Vlasov codes, Comp. Phys. Commun. 166 (2) (2005) 81–93.
[17] A. Ghizzo, P. Bertrand, E. Fijalkow, M.R. Feix, M. Shoucri, An Eulerian code for the study of drift-kinetic Vlasov equation, J.

Comput. Phys. 108 (1) (1993) 105–121.
[18] G. Manfredi, M. Shoucri, R.O. Dendy, A. Ghizzo, P. Bertrand, Vlasov gyrokinetic simulations of ion-temperature-gradient driven

instabilities, Phys. Plasmas 3 (1) (1996) 202–217.
[19] W. Dorland, F. Jenko, M. Kotschenreuther, B.N. Rogers, Electron temperature gradient turbulence, Phys. Rev. Lett. 85 (2000) 5579–

5582.
[20] F. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Massively parallel Vlasov simulation of electromagnetic drift-wave

turbulence, Comp. Phys. Commun. 125 (2000) 196–209.
[21] M. Shoucri, Numerical simulation of plasma edge turbulence due to E · B flow velocity shear, Czech. J. Phys. 51 (10) (2001) 1139–

1151.
[22] J. Candy, R.E. Waltz, An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys. 186 (2) (2003) 545–581.
[23] E. Fijalkow, A numerical solution of the Vlasov equation, Comp. Phys. Commun. 116 (1999) 319–328.
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