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Abstract
Stability limits against external kink modes driven by large current density and
pressure gradient values in the pedestal region are investigated for tokamak
plasmas with separatrix. Stability diagrams for modes with different toroidal
wave numbers under variations of pressure gradient and current density in the
pedestal region are presented for several equilibrium configurations related to
TCV. A scaling for the toroidal wave number of the most unstable mode is
proposed. The influence of the plasma cross-section geometry on the stability
limits is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The stability limits of the pedestal or edge region of tokamak plasmas is an important issue for
understanding the edge localized mode (ELM) behaviour and optimization of large tokamaks
like ITER. The corresponding stability limits provide an input to nonlinear models of ELM
dynamics and useful insights for the integrated modelling of ELMs and their control in
tokamaks.

The ideal MHD theory identifies the instabilities that trigger the ELMs as coupled peeling–
ballooning modes or, more generally, current and pressure driven modes due to the large values
of current density and pressure gradient in the pedestal region [1, 2].

The differences between limiter and separatrix geometries relevant to the peeling mode
stability analysis were listed in [1]; because the safety factor goes to infinity at the separatrix,
there are resonant surfaces inside the plasma for any mode number. Moreover, there is a
non-negligible variation of q across the mode width. The question of the applicability of the
localized peeling mode criterion [3, 4] to the ideal divertor plasma still needs to be answered.
Plasma outside the separatrix and the possible transition of the peeling mode into resistive
tearing mode should also be taken into account. The edge kink/ballooning mode is a more
robust pressure-driven instability which can set the stability limit lower than the n = ∞
0741-3335/06/070927+12$30.00 © 2006 IOP Publishing Ltd Printed in the UK 927
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ballooning modes due to coupling with current driven external modes. It decouples from the
localized peeling mode in a limiter plasma when the closest resonant surface in vacuum is far
from the plasma so that the edge value of m − nq ∼ 1. With the separatrix at the plasma
boundary the edge kink/ballooning mode gives stability limits which do not depend on small
variations of the safety factor. As a result, a clearer picture of the edge instabilities arises. In
particular, clarifying scalings and stability limits can be established [5].

The infinite safety factor at the plasma boundary is an essential difficulty also for numerical
modelling of the separatrix plasma. However, in finite element codes like KINX [6] there is a
possibility of modelling the separatrix stabilizing influence without excessive resolution near
the plasma boundary. It is based on the ideal stability formulation using ξ · ∇ψ as one of the
unknown projections of the plasma displacement ξ . Taking into account that the equilibrium
poloidal flux gradient ∇ψ vanishes at the x-point gives a regularity condition there: ξ ·∇ψ = 0.

A useful option for edge stability analysis is setting the plasma displacement to zero inside
a prescribed magnetic surface and solving only for displacements in the rest of the plasma. It
provides the possibility of increasing the radial resolution near the plasma edge.

The last version of the KINX stability code was also upgraded to compute high-n mode
stability. A new variant of the ballooning factor extraction is applicable to equilibria with
separatrix and significantly enhances the grid convergence in the case of high toroidal wave
numbers especially for large q variations. The details of the implementation are given in the
appendices.

2. A w × n × q95 = const scaling for edge instabilities

A scaling for the toroidal mode numbers of the current driven edge instabilities was proposed
in [5]. In the parametric plane given by the values of pressure gradient and current density in
the pedestal, the stability boundaries for modes with the same product w × n of the pedestal
width w and toroidal mode number n were found to be very close to each other. The scaling
can be generalized to the form w×n×q95 = const under variations of the total plasma current,
where q95 is the value of the safety factor at 95% of the poloidal flux inside the separatrix. Let
us note that the scaling is applicable to the modes localized in the edge region, i.e. of radial
extent that is comparable to or slightly larger than the pedestal width. The intermediate-n
mode localization near the plasma edge (typically 0.7 < ψ/ψedge < 1 that corresponds to
0.84 <

√
ψ/ψedge < 1) was also demonstrated in [7]. A coupling to the plasma core can

significantly change the stability boundaries for the global modes, especially for n = 1.
The scaling can provide a prediction of the most unstable mode number once the

stability boundaries are known for specific pedestal shape and equilibrium profiles. Another
important parameter that can be predicted is the critical value of the current density in the
pedestal region. The ratio of the maximal parallel current density in the pedestal region
J|| = maxpedestal 〈jB〉ψ/〈|B|〉ψ (where 〈·〉ψ = (d/dψ)

∫
Vψ

·dV /(d/dψ)Vψ is the flux surface
average over the volume between magnetic surfaces, with Vψ being the volume inside the
surface with the poloidal flux ψ) to the averaged plasma current density 〈J 〉 = Ip/Sp (Ip and
Sp being the plasma current and toroidal cross-section) provides a suitable measure for that.
J||/〈J 〉 ∼ 1 is a good estimate for the limit against current driven (not peeling!) modes almost
independent of the pedestal width w. The pedestal width w determines the most unstable
toroidal mode number n according to the scaling w × n = const.

The current limit with the separatrix at the boundary, appears to have a close relation
to the instability condition J||/〈J 〉 > 1 [1] for the circular plasma with m − nq = 1 at the
boundary, i.e. when the resonant surface in vacuum is far from the plasma. High values of
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J||/〈J 〉 result in shear reversal near the plasma edge. For a large aspect ratio and circular cross
section plasma J||/〈J 〉 = (2 − S)/2, where S = (r/q)dq/dr is the shear, so the shear reversal
and current limits coincide. Shaping of the plasma cross section, in particular the triangularity,
increases the threshold value of J||/〈J 〉 necessary to reach the shear reversal. The presence
of the separatrix at the plasma boundary further increases the threshold, especially when the
local maximum of the parallel current density in the pedestal is located at the separatrix. So
the edge current limit J||/〈J 〉 = 1 is not directly connected to the shear reversal. However,
non-monotonic safety factor profile leads to coupling of external kink modes to infernal-type
modes strongly destabilized by finite pressure gradient in the low shear region.

There is also a dependence on the value of the parallel current density at the plasma
vacuum interface Jedge/〈J 〉 that is chosen as an analogous critical parameter in [8] (with the
ratio Jedge/J|| ∼ 1/6 nearly fixed). The ratio J||/〈J 〉, with J|| being the maximal value of
pedestal parallel current density, better quantifies the stability boundaries: critical values of
J||/〈J 〉 vary moderately under quite strong variations of the ratio Jedge/J||. Moreover, the
shear reversal is related to the maximal value of the current density rather than to the edge
value. Destabilization of coupled external kink/infernal modes due to non-monotonic safety
factor profile in the pedestal sets the current limit corresponding to the shear reversal even for
Jedge = 0. The change in the Jedge/J|| value can lead also to a shift in the most unstable toroidal
wave numbers [5]. In other words, the value of the constant in the scaling w×n×q95 = const
depends on the Jedge/J|| ratio. Of course the coupling to ballooning modes can reduce the
stability threshold J||/〈J 〉.

In the TCV tokamak, stationary ELMy H-modes are routinely obtained, without additional
heating, in single null diverted plasmas with Ip > 400 kA and q95 ∼ 2.5. A magnetic
perturbation was applied to the plasma vertical position control feedback loop to induce a
vertical excursion. These movements led to changes in the edge current density which in
turn destabilize the ELMs. Since ELMs were found to synchronize on the perturbation,
ELM frequency was then controllable over a range around the natural ELM frequency [9].
The reconstructed equilibrium of one discharge (#20333) used in these experiments, with the
separatrix at the boundary, was a starting point for the stability analysis.

The following procedure was proposed for the stability diagram generation.

• Use experimental data to reconstruct an equilibrium. Note that the accuracy of the profiles
in the pedestal region is unfortunately not always sufficient.

• Change independently the current density and pressure gradient profiles in the pedestal
region by adding the following function multiplied by a constant to the original
reconstructed ones (parallel current density 〈jB〉ψ/〈B∇φ〉ψ and pressure gradient p′ =
dp/dψ) (figure 1): 1−tanh2

(
x0 − s

w

)
, where s is the square root of normalized poloidal

flux, keeping the normalized current IN = Ip[MA]/(a[m]Bc[T ]) fixed. Recompute
consistent equilibria.

• Compute the stability boundaries for different mode numbers n for the obtained equilibria.

The width of the pedestal w and the location of the pedestal x0 (leading to different current
density values at the separatrix) are independent parameters in the study.

The first series of computations with x0 = 1 corresponds to the maxima of pressure
gradient p′ and current density J|| located at the separatrix. The results are summarized in
figure 2. Here the stability boundaries are given for three values of the pedestal width w

and different toroidal wave numbers n. The marginally stable value of edge current density
is almost constant with increasing edge pressure gradient up to the ballooning limit in the
first stability region at the separatrix p′ = p′

c and then decreases with increasing p′. There
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Figure 1. Profiles of the TCV shot #20333 reconstructed equilibria (a) and zoomed region near the
boundary with different pedestal profiles corresponding to prescribed (b) (p′/p′

c = 2.22, J||/〈J 〉 =
1.05) and self-consistent bootstrap (c),(d) (p′/p′

c = 2.22) current density. The bootstrap current
and marginally ballooning stable pressure gradients are shown by dashed lines.

are no signs of second stability access with increasing n up to 60; the stability region in the
(p′/p′

c, J||/〈J 〉) plane just slightly shrinks with increasing toroidal wave number. One can
also notice that the stability boundaries for different pedestal width w and different n but with
the same product w × n are close to each other. The dashed line in figure 2 indicates the edge
bootstrap current density computed in the collisionless limit [10]. The dotted line in figure 2
indicates the stability limit given by the peeling mode criterion [3, 4], which is very clearly
different from the stability boundaries consistently computed with the separatrix at the plasma
boundary. The structure of a typical current driven kink mode is shown in figure 3.

The situation changes when the pedestal is inside the plasma (x0 < 1) and Jedge is lower
than its maximal value in the pedestal region near x0. There is a second stability access for
the modes with n � 20 in the case with x0 = 0.98, w = 0.02 (figure 4). The structure of
the coupled kink–ballooning mode is shown in figure 5. Another consequence of moving
the pedestal position inside the plasma is the occurrence of shear reversal for lower values of
normalized current density in the pedestal leading to coupled current driven and infernal mode
destabilisation; the corresponding line above which this happens is indicated in figure 4.

The shape of the pedestal can be defined by the ratio of the edge current density and
pressure gradient to their maximums in the pedestal. The tables below illustrate the w × n =
const scaling under variations of the pedestal width for different pedestal shapes that determine
a value of the constant in the scaling. Series of equilibria with self-consistent bootstrap current
in the collisionless limit [10] were used to demonstrate this. Marginal values of the pedestal
pressure gradientp′/p′

c with the corresponding values ofJ||/〈J 〉 are given for different values of
toroidal mode number n for p′

edge/p
′ = 0.42 and two values of the pedestal width parameter w.

x0 = 0.98, w = 0.02 x0 = 0.99, w = 0.01

n p′/p′
c J||/〈J 〉 n p′/p′

c J||/〈J 〉
10 1.8056 0.91 20 1.7959 0.91
15 1.7413 0.88 30 1.7448 0.89
20 1.7393 0.88 40 1.7778 0.90
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Figure 2. Stability diagrams for the case with the pedestal at the separatrix for the TCV shot
#20333. Colours of the curves correspond to different pedestal widths w: 0.01 (green), 0.02 (blue),
and 0.04 (red). The curves are labelled by toroidal modes numbers and the w values (1e-2 and
1e-4). The thick line shows n = ∞ ballooning mode stability boundaries. Dashed line—bootstrap
current density, dotted line—localized peeling mode stability boundary. The modes are stable
below the corresponding curves (to the left in the case of second stability access).

The next table corresponds to p′
edge/p

′ = 0.18 and shows that the range of most unstable
modes shifts to lower values of n with the pedestal moving deeper into the plasma (in other
words, the second stability access takes place for lower values of n).

x0 = 0.97, w = 0.02 x0 = 0.985, w = 0.01

n p′/p′
c J||/〈J 〉 n p′/p′

c J||/〈J 〉
5 2.4111 1.17 10 2.3320 1.13
10 2.1725 1.07 20 2.2222 1.09
15 2.2222 1.09 30 2.3597 1.15

The stability diagrams for the cases with narrower pedestal and lower current density
at the separatrix are presented in figure 6. A comparison of diagrams in figures 6(a) and
figure 4 shows the applicability of the scaling w × n = const to the stability boundaries
in the parametric space for modes with corresponding wave numbers. Besides the shift to
lower values of the toroidal wave numbers mentioned above, the lower edge current density
significantly increases the maximal attainable pressure gradient in the pedestal due to the
enhanced access to the second stability region (figure 6(b)). Due to lower current density at
the separatrix current driven modes become unstable at higher values of J||/〈J 〉 which give
shear reversal near the edge. Figure 7 shows the structure of the current driven mode n = 1
for the equilibrium with the value of J||/〈J 〉 = 1.35 near the stability margin at low values
of pressure gradient in the pedestal (shear reversal takes place at J||/〈J 〉 = 1.3). The profile
of the m = 3 poloidal harmonic exhibits a maximum in the region with low shear close to
the local q extremums close to the rational surface q = 3 that is typical of infernal mode
structure.
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Figure 3. Current driven mode structure. Amplitudes of harmonics in straight magnetic field line
poloidal angle and contour plot for the normal displacement of the unstable eigenfunction. The
q-profile is shown in bold line. Equilibrium corresponding to the TCV shot #20333 with current
density spike at the separatrix (x0 = 1.0, w = 0.02, p′/p′

c = 0, J||/〈J 〉 = 1.0). Toroidal wave
number n = 5.
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n=5
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Figure 4. Stability diagrams for the case with the pedestal inside the plasma for TCV#20333. An
example of the corresponding profiles is given in figure 1(d).

A higher-q equilibrium with the same boundary and profiles of parallel current density and
pressure gradient was obtained by increasing the toroidal magnetic field to get a normalized
toroidal current value IN = 0.58 twice as low as that in the reconstructed equilibrium. The
stability diagrams for that case are presented in figure 8(a). From the comparison with the
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Figure 5. Kink/ballooning mode structure. Equilibrium corresponding to TCV #20333 with
pedestal inside the plasma (x0 = 0.98, w = 0.02, p′/p′

c = 1.8, J||/〈J 〉 = 0.9). Toroidal wave
number n = 15.
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Figure 6. Stability diagrams for the case of narrower pedestal width ((a) left) and for the case of
lower current density at the separatrix ((b) right). High-n ballooning unstable region is marked by
crosses.

diagrams from figure 4 one can note that the scaling w×n×q95 = const holds for the toroidal
wave number of the most unstable mode limiting the pressure gradient: in particular, n = 10
and n = 20 modes, respectively, limit the access to high p′ for equilibria with different q95 with
nearly bootstrap aligned current density in the pedestal. An important trend is the increased
distance between the bootstrap line and the high-n ballooning mode stability boundary in the
parametric plane. This is due to the lower current density needed for second stability access
at higher q. The value of p′

c at the separatrix is higher for the configuration with higher
q95. Higher li equilibrium with different profiles but with the same normalized current value
IN = 0.58 and q0 = 1.1 close to the value in the reconstructed equilibrium was also considered
(the corresponding value of the q95 increased from 2.75 to 5.5). The stability diagrams are
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Figure 8. Stability diagrams for the high-q ((a) left) and high-q higher li ((b) right) cases.

close to the previous high-q case, at least for medium n < 15 (figure 8(b)). The value of p′
c at

the separatrix is somewhat lower for this configuration with a higher boundary shear but the
second stability access takes place for lower values of normalized current. That behaviour is
reflected by the n = 20 mode stable for lower values of J||/〈J 〉.

3. Plasma shape influence

Higher-order moments of the plasma cross-section—triangularity and squareness—play
an important role in defining the limits for both high-n ballooning and kink/ballooning
modes [12].
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Figure 9. Magnetic surfaces for TCV shots #20333 (red, solid lines) and #8856 (blue, dashed
lines) and the TCV vacuum chamber.

In TCV, allowing an extreme flexibility in the plasma shaping [13], ELMs are obtained in
a wide variety of plasma shapes. For instance, discharge #8856 also showed ELMs although
at a less regular frequency. In this discharge, the plasma elongation was much reduced while
the triangularity was increased (δ = 0.58) in such a way that the configuration became double
null (figure 9). This discharge was then chosen for the comparison.

The first unexpected feature for this configuration is the proximity of the bootstrap line
and high-n ballooning stability limit in the parametric plane (figure 10(a)). The reason for
this can be the lower elongation (E = 1.6) and lower squareness of the plasma cross section
that affects the high-n ballooning mode stability, especially near the separatrix. Probably the
same is true for medium-n kink/ballooning stability boundaries: despite the larger value of
triangularity the stability diagrams resemble those for the shot #20333 (δup = 0.36) with the
mode n = 20 closing the way to high p′/p′

c � 1.5 and being marginal for the second stability
access. A quite low stable value of J||/〈J 〉 < 0.9 limited by the global n = 1 kink mode is due
to the lower value of internal inductance li = 0.6 (li = 0.76 for the #20333 configuration).
The structure of unstable modes in the region J|| < Jbootstrap is dominated by the ballooning
component (figure 11).

Increasing the elongation by stretching the cross-section to E = 2 makes it closer to the
ITER configuration [11] but having the x-point at the plasma top with the corresponding shift
in the medium-n kink/ballooning limit to p′/p′

c ∼ 2.5 (figure 10(b)).
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Figure 10. Stability diagrams for the TCV shot #8856 case. The original elongation E = 1.6 ((a)
left) and the increased elongation E = 2 ((b) right).
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Figure 11. Ballooning dominated mode structure. Equilibrium corresponding to TCV #8856 with
the pedestal inside the plasma (x0 = 0.98, w = 0.02, p′/p′

c = 1.6 J||/〈J 〉 = 0.4). Toroidal wave
number n = 40.

4. Conclusions

• For fixed plasma boundary and pedestal shape the edge stability boundaries are close to
each other in the parametric plane (p′/p′

c, J||/〈J 〉) for modes with toroidal mode numbers
n following the scaling w × n× q95 = const under variations of the pedestal width w and
the value of q95.

• The value of J||/〈J 〉 ∼ 1 is a good approximation for the limit against edge current driven
modes. The limit for pressure gradient p′/p′

c set by coupled current driven kink/ballooning
modes is sensitive to the shape of the plasma boundary. High values of triangularity
δ > 0.5 combined with a sufficient elongation E � 2 and/or cross-section squareness are
favourable for the second stability access giving larger values of stable pressure gradients
in the pedestal.
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• We note that w ×n× q95 = const corresponds to having approximately the same number
of rational surfaces in the pedestal region for a given value of shear S. It could be
sufficient to give the same leading order (in powers of n) contribution into the perturbed
magnetic energy functional; fixing a point in the parametric plane (p′/p′

c, J||/〈J 〉) leads
to approximately the same driving terms in the potential energy functional and the same
shear in the pedestal.

• We have studied pedestal profile shapes differing in the position of maximum p′ and J||
with respect to the separatrix. The ratio of the edge current density to its maximum in
the pedestal determines the coupling of external kink modes to ballooning modes. This
affects the shape of the stability boundary in the parametric plane (p′/p′

c, J||/〈J 〉) and in
particular the access to the second stability region. Also, it affects the value of the constant
in the w × n × q95 = const scaling.

A more detailed analysis is required to compare these qualitative results with specific
experimental observations. TCV can now measure edge profiles more accurately thanks to
an upgrade of the Thomson scattering system [15]. The use of these measurements, with
self-consistent equilibria including the edge bootstrap current, will be used for a further
work dedicated to quantitative comparisons with experimental observations of the ELM’s
characteristics. In particular, the relation between the width, q95 and the value n of the most
unstable mode, as well as the effect of shape on the stability limits, need to be compared
specifically.

Acknowledgments

This work was partly supported by the Swiss National Science Foundation.

Appendix A. Ballooning factor extraction in the case of x-point

The ballooning factor extraction (BFX) is the use of the following displacement representation
[14]:

ξ = ξ̃ (ψ, θ)exp

(
inφ − in

∫ θ

θ0

ν(ψ, θ) dθ

)
, (A.1)

ν(ψ, θ) = B · ∇φ/B · ∇θ = −√
gF/r2,

√
g = (∇ψ × ∇θ · ∇φ)−1, B = ∇ψ × ∇φ + F(ψ)∇φ.

To ensure the displacement periodicity a jump condition should be set:

ξ̃ (ψ, θ0 + π) = exp

(
in

∫ 2π

0
ν(ψ, θ) dθ

)
ξ̃ (ψ, θ0 − π) (A.2)

At the x-point |∇ψ | = 0 and the value of ν goes to infinity. A straightforward way to treat
the arising singularity is to match the position of the jump with the x-point. It means that the
phase in (A.1) goes to infinity only at the x-point and the singularity introduced by the BFX
into the potential energy functional is the same as that at the x-point in the original functional.
In particular the ψ-derivative of ξψ = ξ · ∇ψ gives the following expression after the BFX
transformation:

∂ξ̃ψ/∂ψ − in

(∫ θ

θ0

∂ν/∂ψ dθ

)
ξ̃ψ . (A.3)
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The singularity in
∫ θ

θ0
ν dθ ∼ q is logarithmic in x = ψ − ψsx so the last term in (A.3) term

remains of the same order in x as the term αξψ/αψ due to the fact that ξψ ∼ √
x near the

x-point.

Appendix B. Ballooning factor extraction with multiple jumps

In the case of several x-points at the boundary (for example double null up-down symmetric
equilibrium) each of the x-points should be matched with the BFX jump. The multiple jump
option is also useful in increasing the efficiency of the BFX; the traditional choice of the jump at
the high field side together with the jump at the x-point can significantly improve convergence.
In the multiple jump option the integral in the phase of the BFX factor is chosen to be∫ θ

θj

ν(ψ, θ) dθ, θj − 
θj � θ � θj + 
θj , j = 1, ..., J. (B.1)

The jumps are in the points θj + 
θj and the integration ranges in θ cover the period such that
θj + 
θj = θj+1 − 
θj+1, j = 1, ..., J − 1 and θ1 + 
θ1 = θJ − 
θJ .

To ensure the displacement continuity the following jump conditions are set:

ξ̃ (ψ, θj + 
θj ) = exp

(
in

∫ θj+1

θj

ν(ψ, θ) dθ

)
ξ̃ (ψ, θj+1 − 
θj+1) (B.2)

The implementation of the BFX in the KINX code is invariant against the choice of poloidal
angle θ . The jump lines θ = θj + 
θj are defined just by picking up certain grid points at the
plasma boundary.

The proposed approach was validated for the equilibria with the x-point at the boundary
and is a standard option in the current version of the KINX code for single axis tokamak and
doublet cases.
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