000120282 001__ 120282
000120282 005__ 20180128005618.0
000120282 020__ $$a0029-5515
000120282 0247_ $$2doi$$a10.1088/0029-5515/46/5/008
000120282 022__ $$a0029-5515
000120282 02470 $$2DAR$$a8710
000120282 02470 $$2ISI$$a000238158400008
000120282 037__ $$aARTICLE
000120282 245__ $$aThe role of the radial electric field for the transition to high confinement regimes
000120282 260__ $$c2006
000120282 269__ $$a2006
000120282 336__ $$aJournal Articles
000120282 520__ $$aThe radial electric field E-r(x, t), and particularly its gradient, has been invoked by various theories and empirical models as a crucial parameter 'per se' for determining the transition to high confinement regimes, such as the onset of an internal transport barrier (ITB) in the plasma core and of the H-mode pedestal at the plasma edge. This idea, however, does not consider the basic fact that in most experiments the transition to a steady-state higher confinement regimes is produced by applying sufficient additional heating onto a given target density and current profile. In order to test this ansatz on a more routine basis, we have developed here an analytical approximation to the neoclassical calculation of the radial electric field, adapted for the 2D toroidal geometry of JET to describe all collisionality regimes (banana, banana-plateau, Pfirsch-Schluter) and to include averaging over the potato orbits. An analytic calculation of the error bars on E-r (x, t) has also been developed, which has allowed us to compare and successfully benchmark our calculations with the results of neoclassical codes such as JETTO and NCLASS. We are then able to demonstrate a striking similarity in the shape of E-r (x, t) in steady-state L-mode, H-mode and ITB plasmas when normalizing E-r (x, t) with respect to the total heating power flux. This clearly indicates that, experimentally, there is no direct causality relation between changes in E-r (x, t) and steady-state improved confinement, as these are brought about together by changes in the power deposition profile. Only two cases do not satisfy this general rule. First, localized and rapid transients (i.e. occurring on time scales much shorter than the momentum and energy confinement time) could be linked to non-neoclassical changes in E-r (x, t), possibly due to turbulence suppression mechanisms. Second, when comparing H-mode plasmas with forward and reversed ion del B-drift direction, we demonstrate the role of prompt fast ion losses in affecting E-r(x, t), most likely due to the different edge flows and their cascading effect onto the core plasma.
000120282 6531_ $$aJET
000120282 700__ $$0240814$$aTesta, D.$$g153200
000120282 700__ $$aGarzotti, L.
000120282 700__ $$aGiroud, C.
000120282 773__ $$j46$$k5$$q562-579$$tNuclear Fusion
000120282 909C0 $$pCRPP
000120282 909C0 $$0252028$$pSPC
000120282 909CO $$ooai:infoscience.tind.io:120282$$particle$$pSB
000120282 937__ $$aCRPP-ARTICLE-2006-010
000120282 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000120282 980__ $$aARTICLE