000120262 001__ 120262
000120262 005__ 20180128005615.0
000120262 020__ $$a0041-1450
000120262 0247_ $$2doi$$a10.1080/00411450500274451
000120262 022__ $$a0041-1450
000120262 02470 $$2DAR$$a7758
000120262 02470 $$2ISI$$a000233716700006
000120262 037__ $$aARTICLE
000120262 245__ $$aFine-scale structures and negative-density regions: Comparison of numerical methods for solving the advection equation
000120262 260__ $$c2005
000120262 269__ $$a2005
000120262 336__ $$aJournal Articles
000120262 520__ $$aA common feature of the Vlasov equation is that it develops fine-scale filamentation as time evolves, as observed, for example, in global nonlinear simulations of the ion-temperature-gradient instability. From a numerical point of view, it is not trivial to simulate nonlinear regimes characterized by increasingly smaller scales, which eventually become smaller than the (finite) grid size. When very small structures occur, higher order interpolation schemes have a tendency to produce overshoots and negative-density regions unless some additional dissipative procedure is applied. Different interpolation schemes for the distribution function are compared and discussed.
000120262 700__ $$0240806$$aBrunetti, M.$$g146709
000120262 700__ $$0240136$$aGrandgirard, V.$$g134471
000120262 700__ $$aBertrand, P.
000120262 700__ $$0240094$$aSauter, O.$$g106355
000120262 700__ $$0240132$$aVaclavik, J.$$g106604
000120262 700__ $$0240104$$aVillard, L.$$g106653
000120262 773__ $$j34$$k3-5$$q261-274$$tTransport Theory and Statistical Physics
000120262 909C0 $$pCRPP
000120262 909C0 $$0252028$$pSPC
000120262 909CO $$ooai:infoscience.tind.io:120262$$particle$$pSB
000120262 937__ $$aCRPP-ARTICLE-2005-104
000120262 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000120262 980__ $$aARTICLE