000120206 001__ 120206
000120206 005__ 20190102122029.0
000120206 0247_ $$2doi$$a10.1016/j.fusengdes.2005.06.186
000120206 022__ $$a0920-3796
000120206 02470 $$2DAR$$a7991
000120206 02470 $$2ISI$$a000234072100171
000120206 037__ $$aARTICLE
000120206 245__ $$aPresent development status of EUROFER and ODS-EUROFER for application in blanket concepts
000120206 269__ $$a2005
000120206 260__ $$c2005
000120206 336__ $$aJournal Articles
000120206 520__ $$aWithin the European Union, the two major breeding blanket concepts presently being developed are the helium cooled pebble bed (HCPB), and the helium cooled lithium lead (HCLL) blankets. For both concepts, different conceptual designs are being discussed with temperature windows in the range 250-550 degrees C for conservative approaches based on reduced activation ferritic-martensific (RAFM) steels, and in the range 250-650 degrees C for more advanced versions, taking into account oxide dispersion strengthened (ODS) steels. As a final result of a systematic development of RAFM-steels in Europe, the 9% CrWVTa alloy EUROFER was specified and produced in an industrial scale with a variety of product forms. A large characterisation program is being performed including irradiation in materials test reactors between 60 and 450 degrees C (<= 15 dpa), and in a fast breeder reactor at 330 degrees C up to 30 dpa. EUROFER is resistant to high temperature ageing, and the existing creep-rupture data (similar to 30,000 h, 450-600 degrees C) indicate long-term stability and predictability. The ODS variant of EUROFER shows superior tensile and creep properties compared to EUROFER. Applying a new production route has diminished the problem of lower ductility and inferior impact properties. A reliable joining technique for ODS and RAFM steels employing diffusion welding was successfully developed. (c) 2005 Published by Elsevier B.V.
000120206 6531_ $$aBreeding blankets
000120206 6531_ $$aCharpy
000120206 6531_ $$aCooling
000120206 6531_ $$aCreep testing
000120206 6531_ $$aCreep tests
000120206 6531_ $$aDuctility
000120206 6531_ $$aEUROFER
000120206 6531_ $$aHelium
000120206 6531_ $$aIrradiation
000120206 6531_ $$aIrradiation behaviour
000120206 6531_ $$aOxide dispersions strengthened (ODS)
000120206 6531_ $$aReduced activation ferritic-martensitic (RAFM)
000120206 6531_ $$aSteel
000120206 6531_ $$aTensile
000120206 700__ $$aLindau, R.
000120206 700__ $$aMoslang, A.
000120206 700__ $$aRieth, M.
000120206 700__ $$aKlimiankou, M.
000120206 700__ $$aMaterna-Morris, E.
000120206 700__ $$aAlamo, A.
000120206 700__ $$aTavassoli, A. A. F.
000120206 700__ $$0248450$$g112215$$aCayron, C.
000120206 700__ $$aLancha, A. M.
000120206 700__ $$aFernandez, P.
000120206 700__ $$0240520$$g104444$$aBaluc, N.
000120206 700__ $$0240066$$g109859$$aSchaeublin, R.
000120206 700__ $$aDiegele, E.
000120206 700__ $$aFilacchioni, G.
000120206 700__ $$aRensman, J. W.
000120206 700__ $$avan der Schaaf, B.
000120206 700__ $$aLucon, E.
000120206 700__ $$aDietz, W.
000120206 773__ $$j75-79$$tFusion Engineering and Design$$q989-996
000120206 909C0 $$xU12903$$0252516$$pLMTM
000120206 909C0 $$pSPC$$0252028
000120206 909CO $$pSB$$pSTI$$particle$$ooai:infoscience.tind.io:120206
000120206 917Z8 $$x148230
000120206 917Z8 $$x148230
000120206 937__ $$aCRPP-ARTICLE-2005-048
000120206 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000120206 980__ $$aARTICLE