000120022 001__ 120022
000120022 005__ 20180913054312.0
000120022 020__ $$a0029-5515
000120022 0247_ $$2doi$$a10.1088/0029-5515/43/11/021
000120022 022__ $$a0029-5515
000120022 02470 $$2ISI$$a000186819100022
000120022 037__ $$aARTICLE
000120022 245__ $$aAn ITER-relevant evacuated waveguide transmission system for the JET-EP ECRH project
000120022 260__ $$c2003
000120022 269__ $$a2003
000120022 336__ $$aJournal Articles
000120022 520__ $$aAn over-moded evacuated waveguide line was chosen for use in the transmission system for the proposed JET enhanced performance project (JET-EP) electron cyclotron resonance heating (ECRH) system. A comparison between the quasi-optical, atmospheric waveguide and evacuated waveguide systems was performed for the project with a strong emphasis placed on the technical and financial aspects. The evacuated waveguide line was chosen as the optimal system in light of the above criteria. The system includes six lines of 63.5 mm waveguide for transmitting 6.0 MW(10 s) at 113.3 GHz from the gyrotrons to the launching antenna. The designed lines are on average 72 m in length and consist of nine mitre bends, for an estimated transmission efficiency of similar to90%. Each line is designed to include an evacuated switch leading to a calorimetric load, two do breaks, two gate valves, one pumpout tee, a power monitor mitre bend and a double-disc CVD window near the torus. The location of waveguide support is positioned to minimize the power converted to higher-order modes from waveguide sagging and misalignment. The two gate valves and CVD window are designed to be used as tritium barriers at the tot-us and between the J1T and J1D buildings. The last leg of the waveguide leading to the torus has to be designed to accommodate the torus movement during disruptions and thermal cycles. All lines are also designed to be compatible with the ITER ECRH system operating at 170 GHz.
000120022 6531_ $$aJET
000120022 6531_ $$aITER
000120022 700__ $$0241148$$aHenderson, M. A.$$g105385
000120022 700__ $$0240100$$aAlberti, S.$$g104368
000120022 700__ $$aBird, J.
000120022 700__ $$aDoane, J.
000120022 700__ $$aElzendoorn, B.
000120022 700__ $$aFlemming, C.
000120022 700__ $$0240803$$aGoodman, T. P.$$g105282
000120022 700__ $$aHoekzema, F.
000120022 700__ $$0240099$$aHogge, J. P.$$g112367
000120022 700__ $$aMacMillan, G.
000120022 700__ $$0241162$$aMagnin, J. C.$$g105732
000120022 700__ $$aPioscyk, B.
000120022 700__ $$0240101$$aPorte, L.$$g146272
000120022 700__ $$0241171$$aTran, M. Q.$$g106568
000120022 700__ $$aVerhoeven, A. G. A.
000120022 773__ $$j43$$k11$$q1487-1500$$tNuclear Fusion
000120022 909C0 $$pCRPP
000120022 909C0 $$0252028$$pSPC
000120022 909CO $$ooai:infoscience.tind.io:120022$$pSB$$particle
000120022 937__ $$aCRPP-ARTICLE-2003-068
000120022 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000120022 980__ $$aARTICLE