Abstract

Large-scale molecular dynamics of cascade production of the primary damage state are performed in fcc nanocrystalline Ni of average grain diameters of 5 and 12 nm. Primary knock-on atom kinetic energies of 5-30 keV are simulated. During the thermal spike phase, significant atomic motion towards the surrounding grain boundary structure is observed, characterized by many replacement-collision sequences. Upon resolidification, the excess volume condenses to form vacancy dominated defects with a complex partial dislocation network forming at higher energies.

Details