Abstract

Recent experiments at the Joint European Torus [Rebut , Fusion Eng. Des. 22, 7 (1993)] aim to improve confinement quality in high-confinement-mode (H-mode) plasmas at high densities. Energy confinement time as predicted by the International Thermonuclear Experimental Reactor ITER-H98(y,2) scaling at densities near or in excess of 85% of the Greenwald density limit scaling has been obtained by (i) strong plasma shaping (triangularity 0.35<δ<0.5), or (ii) impurity seeding, or (iii) high-field side pellet injection. Slow peaking of central density without confinement degradation is observed. Loss of sawteeth and core impurity accumulation is prevented by central ion cyclotron resonance heating. In high triangularity and impurity seeded plasmas, reduction of average power loss associated with type I edge localized modes (ELMs) is found which is attributed to the occurrence of additional losses in between ELMs. Broad band magnetic fluctuations are seen which are reminiscent of regimes with small ELMs in other tokamaks. Plasma configurations have been varied to find best combinations of edge pedestal parameters and small ELM losses. (C) 2002 American Institute of Physics.

Details

Actions