Correlation of simulated TEM images with irradiation induced damage

Crystal damage induced by irradiation is investigated using transmission electron microscopy (TEM) coupled to molecular dynamics (MD) calculations. The displacement cascades are simulated for energies ranging from 10 to 50 keV in Al, Ni and Cu and for times of up to a few tens of picoseconds. Samples are then used to perform simulations of the TEM images that one could observe experimentally. Diffraction contrast is simulated using a method based on the multislice technique. It appears that the cascade induced damage in Al imaged in weak beam exhibits little contrast, which is too low to be experimentally visible, while in Ni and Cu a good contrast is observed. The number of visible clusters is always lower than the actual one. Conversely, high resolution TEM (HRTEM) imaging allows most of the defects contained in the sample to be observed, although experimental difficulties arise due to the low contrast intensity of the smallest defects. Single point defects give rise in HTREM to a contrast that is similar to that of cavities. TEM imaging of the defects is discussed in relation to the actual size of the defects and to the number of clusters deduced from MD simulations. (C) 2000 Elsevier Science B.V. All rights reserved.

Published in:
Journal of Nuclear Materials, 283, 205-209
Part A

 Record created 2008-04-16, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)