Constitutive behavior and fracture toughness properties of the F82H ferritic/martensitic steel

A detailed investigation of the constitutive behavior of the International Energy Agency (IEA) program heat of 8 Cr unirradiated F82H ferritic-martensitic steel has been undertaken in the temperature range of 80-723 K. The overall tensile flow stress is decomposed into temperature-dependent and athermal yield stress contributions plus a mildly temperature-dependent strain-hardening component. The fitting forms are based on a phenomenological dislocation mechanics model. This formulation provides a more accurate and physically based representation of the dow stress as a function of the key variables of test temperature, strain and stain rate compared to simple power law treatments. Fracture toughness measurements from small compact tension specimens are also reported and analyzed in terms of a critical stress-critical area local fracture model. (C) 2000 Elsevier Science B.V. All rights reserved.


Published in:
Journal of Nuclear Materials, 283, 721-726
Year:
2000
ISSN:
0022-3115
ISBN:
0022-3115
Note:
Part A
Other identifiers:
DAR: 2056
Laboratories:
SPC
CRPP




 Record created 2008-04-16, last modified 2018-12-03


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)