000119671 001__ 119671
000119671 005__ 20180913054303.0
000119671 020__ $$a0741-3335
000119671 0247_ $$2doi$$a10.1088/0741-3335/41/12B/320
000119671 022__ $$a0741-3335
000119671 02470 $$2DAR$$a3013
000119671 02470 $$2ISI$$a000084829300021
000119671 037__ $$aARTICLE
000119671 245__ $$aPhysics design of a high-beta quasi-axisymmetric stellarator
000119671 260__ $$c1999
000119671 269__ $$a1999
000119671 336__ $$aJournal Articles
000119671 500__ $$aSuppl. 12B
000119671 520__ $$aKey physics issues in the design of a high-beta quasi-axisymmetric stellarator configuration are discussed. The goal of the design study is a compact stellarator configuration with aspect ratio comparable to that of tokamaks and good transport and stability properties. Quasi-axisymmetry has been used to provide good drift trajectories. Ballooning stabilization has been accomplished by strong axisymmetric shaping, yielding a stellarator configuration whose core is in the second stability regime for ballooning modes. A combination of externally generated shear and non-axisymmetric corrugation of the plasma boundary provides stability to external kink modes even in the absence of a conducting wall. The resulting configuration is also found to be robustly stable to vertical modes, increasing the freedom to perform axisymmetric shaping. Stability to neoclassical tearing modes is conferred by a monotonically increasing i profile. A gyrokinetic delta f code has been used to confirm the adequacy of the neoclassical confinement. Neutral beam losses have been evaluated with Monte Carlo codes.
000119671 700__ $$aReiman, A.
000119671 700__ $$aFu, G.
000119671 700__ $$aHirshman, S.
000119671 700__ $$aKu, L.
000119671 700__ $$aMonticello, D.
000119671 700__ $$aMynick, H.
000119671 700__ $$aRedi, M.
000119671 700__ $$aSpong, D.
000119671 700__ $$aZarnstorff, M.
000119671 700__ $$aBlackwell, B.
000119671 700__ $$aBoozer, A.
000119671 700__ $$aBrooks, A.
000119671 700__ $$0240516$$aCooper, W. A.$$g104815
000119671 700__ $$aDrevlak, M.
000119671 700__ $$aGoldston, R.
000119671 700__ $$aHarris, J.
000119671 700__ $$aIsaev, M.
000119671 700__ $$aKessel, C.
000119671 700__ $$aLin, Z.
000119671 700__ $$aLyon, J. F.
000119671 700__ $$aMerkel, P.
000119671 700__ $$aMikhailov, M.
000119671 700__ $$aMiner, W.
000119671 700__ $$aNakajima, N.
000119671 700__ $$aNeilson, G.
000119671 700__ $$aNuhrenberg, C.
000119671 700__ $$aOkamoto, M.
000119671 700__ $$aPomphrey, N.
000119671 700__ $$aReiersen, W.
000119671 700__ $$aSanchez, R.
000119671 700__ $$aSchmidt, J.
000119671 700__ $$aSubbotin, A.
000119671 700__ $$aValanju, P.
000119671 700__ $$aWatanabe, K. Y.
000119671 700__ $$aWhite, R.
000119671 773__ $$j41$$qB273-B283$$tPlasma Physics and Controlled Fusion
000119671 909C0 $$pCRPP
000119671 909C0 $$0252028$$pSPC
000119671 909CO $$ooai:infoscience.tind.io:119671$$pSB$$particle
000119671 937__ $$aCRPP-ARTICLE-1999-013
000119671 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000119671 980__ $$aARTICLE