Magnetic and mechanical AC loss of the ITER CS1 model coil conductor under transverse cyclic loading

The magnetic field in a coil results in a transverse force on the strands pushing the cable towards one side of the jacket. A special cryogenic press has been built to study in a unique way the mechanical and electrical properties of full-size ITER Cable-in-Conduit (CIC) samples under a transverse, mechanical load. The press can transmit a variable (cyclic) force of at least 650 kN/m to a cable section of 400 mm at 4.2 K. The jacket around the cable is partly opened in order to transmit the transverse force directly onto the cable. A superconducting dipole coil provides the AC magnetic field required to perform magnetisation measurements with pick-up coils. In addition the interstrand resistance (R-c) between various strands selected from topologically different positions inside the cable is measured, The force on the cable as well as the displacement are monitored simultaneously in order to determine the effective cable Young's modulus and the mechanical heat generation due to friction and deformation as the force is cycled, The mechanical heat generation, the coupling loss time constant n tau and R-c of a full-size ITER conductor have been studied under load for the first time. An important result is the significant decrease of n tau, after cyclic loading. It is also observed that the mechanical heat generation decreases with cycling. (C) 1998 Elsevier Science B.V, All rights reserved.

Published in:
Physica C-Superconductivity and Its Applications, 310, 1-4, 253-257

 Record created 2008-04-16, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)