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bstract

Several methods and algorithms have recently been proposed that allow for the systematic evaluation of simple neuron models from intracellular
r extracellular recordings. Models built in this way generate good quantitative predictions of the future activity of neurons under temporally

tructured current injection. It is, however, difficult to compare the advantages of various models and algorithms since each model is designed
or a different set of data. Here, we report about one of the first attempts to establish a benchmark test that permits a systematic comparison of
ethods and performances in predicting the activity of rat cortical pyramidal neurons. We present early submissions to the benchmark test and

iscuss implications for the design of future tests and simple neurons models.
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. Introduction

Neurons communicate by generating action potentials that
re transmitted to other neurons in the network. Action potentials
re generated in response to transmembrane currents elicited by
resynaptic activation of various receptor types. Despite years
f research, the exact nature of the neural code, that is how
resynaptic activity is processed and encoded in outgoing action
otentials, is still unknown. Is the neuronal firing rate sufficient
o describe neural activity or does the timing of spikes on a

illisecond timescale matter as well? Following the seminal
ork of Hodgkin and Huxley (1952), a lot of effort has been

pent to build and study biophysically detailed models of sin-

le neuron electrical activity. These models can reproduce a
arge variety of neuronal behaviors as observed in experiments
y a suitable combination of different ion currents (Bower and
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eeman, 1995). However, only few studies have focused on the
ethodology of designing algorithms for automatic fitting of

uch models to data, so as to arrive at models with a quantitative
redictive power (Druckmann et al., 2007; Huys et al., 2006;
arkram, 2006; Prinz et al., 2003, 2004).
In contrast to detailed Hodgkin–Huxley models, very sim-

le models only have a small number of parameters which can
e automatically and easily extracted from electrophysiological
ecordings. As early as the 1970s and 1980s, neuroscientists
ave tried to develop methods for the evaluation of simple
euron models from neural data. Brillinger and Segundo, in
articular, have used maximum-likelihood and optimal filtering
echniques to evaluate the linear response curve and firing prob-
bility of neuronal membranes thus laying down the foundations
or more modern approaches (Brillinger, 1988a,b; Brillinger and
egundo, 1979). More recently, different groups tried to extract
ot only parameters of interest from data but also to build neuron
odels with a true quantitative predictive power. More specifi-
ally, Rauch, La Camera and colleagues have demonstrated that
he output frequency of cortical pyramidal neurons and interneu-
ons recorded in vitro can be fitted by integrate-and-fire neurons
La Camera et al., 2004; Rauch et al., 2003). Beyond the output
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ring rate, Keat et al. have shown that the precise spike time
f neurons recorded extracellularly in the visual pathway can
e predicted almost exactly with a very simple model neuron
Keat et al., 2001). Similar results have been obtained on retinal
anglion cells by Pillow et al. (2005). Several techniques have
een successfully applied to predict the membrane voltage and
pike timing of cortical pyramidal neurons recorded intracellu-
arly in vitro (Clopath et al., 2007; Jolivet et al., 2006; Paninski
t al., 2005) and in vivo (Lansky et al., 2006). Finally, alterna-
ive methods have been proposed that still wait to be tested on
xperimental recordings (Jolivet and Gerstner, 2004; Kobayashi
nd Shinomoto, 2007).

While simple models can, at least qualitatively, reproduce a
road range of observed neuronal behaviors (Izhikevich, 2004),
heir simplicity also permits to mathematically analyze ques-
ions of neural coding (Arcas et al., 2003; Brunel et al., 2003;
eat et al., 2001; Pillow et al., 2005). Developing efficient

imple models with quantitative predictive power is also of
mportance for implementation in neural prostheses where such

odels could be simulated at low cost or built in silico [see e.g.
Marmarelis and Berger, 2005; Song et al., 2007)].

Despite this intense activity, the community still lacks a
enchmark test that could be used as a reference to compare
ost and performances of different methods. Here, we describe
uch a benchmark test and report the first results from an interna-
ional competition1. In short, the goal is to predict the spike times
f a layer-5 pyramidal neuron recorded from the rat somatosen-
ory cortex under current injection in various discharge regimes.

first set of spike trains was made publicly available together
ith the corresponding stimuli for model evaluation. Partici-
ants had to predict the spike times with a precision of ±2 ms
or a different dataset for which only the stimuli were pro-
ided. Note that this initiative differs from the recent Neural
rediction Challenge2 in the sense that the goal is to design
model that predicts spike times in response to a fluctuating

urrent while the goal in the Neural Prediction Challenge is to
esign a model that predicts the responses of neurons to “natu-
al” sensory stimuli in vivo. The benchmark test is described
n the next section. A summary of results and submissions
s then presented in section 3 and discussed in the last sec-
ion.

. Methods

.1. Electrophysiological recordings

Data used for the challenge have been extensively described
n Refs. (Jolivet et al., 2006; La Camera et al., 2006; Rauch et al.,
003) and we refer interested readers to these publications for

etails of the experimental protocol. In short, parasagittal slices
f rat somatosensory cortex (300 �m thick) were prepared from
5- to 40-day-old female and male Wistar rats according to the
nstitutional guidelines. We recorded in current-clamp whole

1 http://icwww.epfl.ch/QuantNeuronMod2007/.
2 http://neuralprediction.berkeley.edu/.
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ell configuration from the soma of layer 5 regular spiking pyra-
idal cells (McCormick et al., 1985). Four cells were recorded

nd trial repetitions of the input were performed (N = 4 repe-
itions). The input was generated with an Ornstein–Uhlenbeck
rocess (Tuckwell, 1988). The total injected current I(t) is given
y

(t + dt) = I(t) − I(t)

τI

dt + mI dt + sIξ(t)
√

dt (1)

here mI and sI are parameters and ξ(t) is a zero-mean, unit-
ariance Gaussian random variable, updated at every time step.
he process was generated and injected at a rate of 5 kHz

dt = 0.2 ms) and the correlation length τI was 1 ms. The result-
ng current I(t) has a stationary Gaussian distribution with mean

I = mIτI and variance σ2
I = s2

I τI/2 (Cox and Miller, 1965). μI

nd σI were varied as follows: the total range 0 < μI < 650 pA
nd 0 < σI < 350 pA was discretized and then explored in ran-
om order to prevent correlations over time. The duration of the
timulation was 6.8 s long for each pair of parameters μI, σI. The
ntervals between successive stimulations were 50–60 s long.

.2. Measuring the similarity between two spike trains

In order to measure the similarity or dissimilarity between
wo spike trains and assess the quality of the predictions of
imple models, we need a measure to compare spike trains as
redicted by the model to spike trains as generated by the origi-
al cell. One possibility consists of comparing output firing rates
Hansel and Mato, 2003; Rauch et al., 2003). This is a very effec-
ive method but it misses all temporal structure in spike trains.
everal measures exist that go beyond firing rates and consider
recise firing times. Some measures are based on binning of the
pike trains (Geisler et al., 1991; Kistler et al., 1997; MacLeod
t al., 1998) or on cost functions (Aronov and Victor, 2004; van
ossum, 2001; Victor and Purpura, 1997, 1996). In precedent

eports, some of us have consistently used the coincidence
actor Γ as defined in Refs. (Clopath et al., 2007; Jolivet and
erstner, 2004; Jolivet et al., 2004, 2006; Kistler et al., 1997).
he coincidence factor can be computed quickly and easily. It is
ritten

k = Ncoinc − 〈Ncoinc〉
1/2(Nk

data + Nmodel)

1

N
(2)

here Nk
data is the number of spikes in the kth reference spike

rain Sdata, Nmodel is the number of spikes in the predicted spike
rain Smodel that is compared with the reference spike train,

coinc is the number of coincidences with precision � between
he two spike trains, and 〈Ncoinc〉 = 2f�Nk

data is the expected
umber of coincidences generated by a homogeneous Poisson
rocess with the same rate f as the spike train Smodel. The factor
=[ 1 − 2f�] normalizes Γ to a maximum value of one which

s reached if and only if the spike train of the model reproduces
xactly that of the cell. A homogeneous Poisson process with

he same number of spikes as the minimal model would yield

= 0, which is, therefore, the chance level.
The sole free parameter in the estimation of Γ is the coin-

idence window ±�. Γ is relatively independent of the exact

http://icwww.epfl.ch/QuantNeuronMod2007/
http://neuralprediction.berkeley.edu/
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Fig. 1. Robustness and limitations of the coincidence factor Γ . (A) The coin-
cidence factor Γ does not significantly depend on the width of the coincidence
window �. Γ (�) is plotted for a comparison between a spike train from a layer
5 pyramidal neuron and the spike train predicted by a simple neuron model fit-
ted with parameters to this specific neuron following the method presented in
Ref. (Jolivet et al., 2006). In this specific example, the pyramidal neuron dis-
charges at approximately 21 Hz and the model reaches a performance of Γ = 0.77
for � = 2 ms. (B) The maximal theoretical value of Γ that one can reach with
� = 2 ms is plotted versus n defined as the ratio between the predicted number of
spikes and the correct number of spikes n = Nmodel/Ndata. For example, the value
Γ for n = 2 was calculated from Eq. (3) by assuming that the model predicts all
Ndata spikes correctly, but places as many additional spikes at random locations
in between the “correct” ones. The penalty in case of an incorrect prediction of
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predicted spike trains [see Eq. (2)] and the sum running over the
he target frequency is asymmetric: predicting twice as many spikes as the real
euron gives a higher value of Γ than predicting only half of its spikes.

alue of �. As illustrated in Fig. 1A, the value is approximately
onstant for values 2 ≤ � ≤ 12 ms. By convention, we chose

= 2 ms which is about the temporal width of an action poten-
ial in cortical neurons. Therefore, two spikes are considered
oincident while they overlap. The coincidence measure Γ is a
elatively robust measure of spike train similarity (Jolivet and
erstner, 2004; Jolivet et al., 2004; Jolivet et al., 2006; Kistler

t al., 1997). It should be emphasized, however, that it imposes
n asymmetric penalty when the predicted number of spikes dif-
ers from the true one (Fig. 1B). In particular, a high value of

(say Γ = 0.8) can be reached even if the predicted frequency
ignificantly exceeds the target frequency. It is, therefore, neces-

ary to control that the predicted frequency does not differ from
he target frequency by a significant fraction (Clopath et al.,
007).

K
n
m

ig. 2. (Top) Eight fluctuating currents injected to a target neuron. The y-axis
anges from −500 pA to 1500 pA. (Bottom) Spike sequences evoked by the
uctuating currents. Four trials were carried out for each identical current.

.3. Benchmark test

As it is typical for this type of tests, the dataset that consists
f all recordings for one pyramidal neuron was split in two parts
ith about two third being made available for model evaluation

“training set” containing stimuli and neuronal responses) and
he remaining data being used for performance measure (“test
et” containing the test stimuli only). In total, the training set con-
ained eight different stimuli [current traces generated by Eq. (1),
ee Fig. 2A] and for each stimulus, four neuronal voltage traces
corresponding to four repetitions of the stimulus) were given.
he test set consisted of other stimuli. To evaluate and rank the
odels, we use the global performance Γ A defined as follows

A = 1

K

K∑
k=1

Γk

Γ̂k

(3)

ith Γ k being measured between the target spike train and the
stimuli of the test dataset. Γ̂k is the intrinsic reliability of the
euron. It is measured using Γ [Eq. (2)] evaluated not between a
odel and the experimental trains but between all possible pairs
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We obtained an empirical rule that describes how the param-
eters A and B depend on the mean μI and variance σ2

I of
the input current. In estimating the hidden potential for a
test input current, we iterated the AR model, Eq. (4), whose
ig. 3. Two regimes of activity of the pyramidal neuron. (A) A strongly fluctuat
races). In this example, all spikes are repeated in all four trial repetitions (aste
he opposite, a constant or quasi-constant input tends to generate regular but un

f the four trial repetitions corresponding to a specific stimulus.
e find different discharge regimes, since neurons elicit action

otentials with different reliability depending on the nature of
nput (Mainen and Sejnowski, 1995). Strongly fluctuating inputs
end to generate very irregular but highly reliable spiking. In
ontrast to this, constant or slow stimuli tend to generate regular
ut unreliable spiking (Fig. 3). It is, therefore, necessary to mea-
ure the spike time predictions of models relative to the intrinsic
eproducibility of spikes by the neuron itself. In the reliable
egime (Γ̂k > 0.7, Fig. 3A), we expect very good predictions
f the spike times while in the unreliable regime (Fig. 3B), we
nly expect the overall firing frequency to be correct.

.4. Model fitting methods

In the following, we present and compare four different
nd independent methods for spike time prediction, all used
n the benchmark data mentioned above: (1) we estimated the
embrane potential with the autoregressive (AR) model and

redicted the spike occurrences using a dynamic threshold; (2)
e simply carbon-copied (CC) and pasted the spike times of

nother experiment, based on our observation that fluctuating
urrents of similar temporal structures tend to evoke similar
pike sequences; (3) we estimated the membrane potential with
he Spike response model (SRM) and predicted spike times with
dynamic threshold and (4) we did the same with an adaptive

xponential integrate-and-fire model (aEIF). A brief description
f these four methods follows. There is room for other mathe-
atical models for mimicking the membrane potential such as

he Hodgkin–Huxley model (Hodgkin and Huxley, 1952; Tsubo
t al., 2004) or the linear filter model (Westwick and Kearney,
003) but we focused on these four.

.4.1. The autoregressive model (AR)

In our first strategy, we introduced a mathematical model

or mimicking training data that consist of both an input cur-
ent and the membrane potential. The model adjusted to training
ata was applied to a novel test input current for estimating the

F
A
t

put (red trace) tends to generate very irregular but highly reliable spiking (black
except one generated only once during the last repetition (unlabelled). (B) On
le spiking.

idden membrane potential of the neuron. Then, the spike times
ere predicted by applying a dynamic threshold to the estimated
embrane potential (Fig. 4).
We start with the autoregressive (AR) or the autoregressive

xogenous (ARX) model and write

(t + �t) = Au(t) + BI(t) (4)

here u(t) is the membrane potential measured with respect
o rest to be estimated and I(t) is the input current sampled at
n interval of �t. Given a training data set, the model param-
ters A and B can be determined by solving the Yule–Walker
quation (Chatfield, 2003). We expected the parameters A and
that characterize the integration mechanisms of a given neu-

on to be invariant with respect to various currents, but they
ere in practice dependent on the choice of input currents.
ig. 4. (Top) Membrane potential of the biological neuron (dashed line) and the
R model (solid line). (Bottom) Spike time prediction according to the dynamic

hreshold assumption.
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arameters A and B had been determined with the empirical
ule.

In predicting the spike times from the estimated membrane
otential, it would be worthwhile to implement the state space
ethod that estimates the probability of spike occurrence, max-

mally utilizing the information of not only the voltage but also
ts time derivative (Kobayashi and Shinomoto, 2007). In this
ontribution, we simply used a dynamic threshold (Geisler and
oldberg, 1966; Jolivet et al., 2004) to the estimated membrane
otential

dϑ

dt
= −ϑ − ϑ0

τϑ

ϑ → ϑ + Aϑ, when fired
(5)

he model parameters ϑ0, Aϑ and τϑ were determined as fol-
ows. First, ϑ0 was determined so that the model generates spikes
ith the rate of the hidden spikes that the test current would have
een evoking. For this purpose, we constructed an empirical rule
or estimating the spike rate from the mean and variance of an
nput current. Second, the other parameters α and τϑ were deter-

ined so that the coincidence score Γ would be maximized, as
mpirically confirmed by cross-validating the training data.

.4.2. The carbon-copy model (CC)
In our second strategy, we did not employ any mathemati-

al model, but simply copied and pasted spike times of some
raining data set. In the experiments, fluctuating currents were
enerated with identical random numbers, and only their means
nd variances were varied. It can be observed from Fig. 2 that
pikes evoked by different current amplitudes, but same time
equences coincided fairly often.

The similarity of the spike sequences greatly depends on the
eans and variances of the currents. Given a test input current,
e wish to select a spike sequence from training data that would

ttain the highest coincidence score Γ . For this purpose, we
nvented a similarity metric measuring a sort of (asymmetrical)
istance from a training current to a test, using their means and
ariances.

.4.3. The spike response model (SRM)
As a third method, we have used the spike response model

Gerstner and Kistler, 2002). It is written

(t) = η(t − t̂) +
∫ +∞

0
κ(s)I(t − s) ds (6)

ith u the membrane voltage of the neuron and I the external
riving current. The kernel κ models the integrative properties
f the membrane. The kernel η acts as a template for the shape
f spikes (usually highly stereotyped). Like in the integrate-and-
re model, the model neuron fires each time that the membrane
oltage u crosses the threshold ϑ from below
f u(t) ≥ ϑ(t) and
d

dt
u(t) ≥ d

dt
ϑ(t), then t̂ = t (7)

Here, the threshold includes a mechanism of spike-frequency
daptation. ϑ is given by Eq. (5) above. In other words, each time

i

u

nce Methods 169 (2008) 417–424 421

hat a spike is fired, the threshold ϑ is increased by a fixed amount
ϑ. It then decays back to its resting value ϑ0 with time constant
ϑ. During discharge at rate f, the threshold fluctuates around
he average value

¯ ≈ ϑ0 + αf (8)

here α = Aϑτϑ. This type of adaptation mechanism has been
hown to constitute a universal model for spike-frequency adap-
ation (Benda and Herz, 2003). During the model estimation
rocedure, we use a classic constant threshold ϑ(t) = ϑcte deter-
ined independently for each pair of parameters (μI, σI). The

esult is then transformed in the adaptive threshold of Eq. (5) by
he procedure detailed now.

Details of the mapping technique have been extensively
escribed in Jolivet et al. (2006). In short, it is a systematic
tep-by-step evaluation and optimization procedure based on
ntracellular recordings. It consists in sequentially evaluating
ernels (η and κ) and parameters [Aϑ,ϑ0 and τϑ in Eq. (5)] that
haracterize a specific instance of the model. The consecutive
teps of the procedure are as follows

. Extract the kernel η from a sample voltage recording by spike
triggered averaging. For the sake of simplicity, we assume
that the mean drive vanishes, μI = 0.

. Subtract η from the voltage recording to isolate the subthresh-
old fluctuations.

. Extract the kernel κ by a Wiener–Hopf optimal filtering tech-
nique (Jolivet et al., 2004; Wiener, 1958). This step involves
a comparison between the subthreshold fluctuations and the
corresponding input current.

. Find the optimal constant threshold ϑcte for each pair of
parameters (μI, σI). The optimal value of ϑcte is the one
that maximizes the coefficient Γ .

. Plot ϑcte as a function of the firing frequency and run a linear
regression on the results of step 4. ϑ0 is identified with the
value of the fit at f = 0 and α with the slope [see Eq. (8)].

. Optimize Aϑ for the best performances (again measured with
Γ ), τϑ is defined as τϑ = α/Aϑ.

.4.4. The adaptive exponential integrate-and-fire model
aEIF)

We investigated the performance of a fourth method, the
daptive exponential integrate-and-fire (aEIF) model (Brette and
erstner, 2005). It is formulated by a system of differential

quations

du

dt
= −gL(u − EL)+gL�T exp

[
(u − VT )

�T

]
+ I − w (9)

w

dw

dt
= a(u − EL) − w (10)

he model is said to spike when u reaches 20 mV; u and w are
hen reinitialized with the reset condition
f u ≥ 20 mV, then u → Er and w → w + b (11)

The state of the system is defined by the membrane potential
and the adaptive current w, also called the recovery variable.
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n total, there are nine parameters: The parameters gL, C and
L regulate the integrative properties of the neuron, we refer to

hese as the leak conductance, the capacitance and the leak rever-
al potential, respectively. The parameters �T and VT define the
pike initiation, τw describes the timescale of the recovery vari-
ble and ‘a’ its sensitivity to subthreshold activity. The last two
arameters define the reset potential Er and the spike-triggered
daptation b.

The aEIF is a dynamical system very similar to the model pro-
osed by Izhikevich (2003) to the difference that in the aEIF, the
oltage equation [Eq. (9)] contains an exponential (Fourcaud-
rocmé et al., 2003) rather than a quadratic nonlinearity. The
odel can be seen as a two-dimensional reduction of the spike

nitiation in Hodgkin–Huxley models. In particular, there is not
strict threshold but a smooth spike initiation zone. It has been

hown previously that the aEIF reproduces up to 96% of the spike
imes of a Hodgkin–Huxley-type model (Brette and Gerstner,
005). For more details regarding this model, we refer the reader
o the work of Brette and Gerstner (2005).

To fit the nine parameters of the aEIF, we resorted to a black
ox optimization scheme that is described in the following steps.
irst, the parameters gL and EL were fixed since they do not

nfluence the maximal performance attainable by the model:
hifting both EL and VT by the same amount is equivalent to
mere shift in the voltage scale. Similarly, increasing gL and
by the same factor does not change the membrane time con-

tant C/gL. The remaining seven parameters were fit using a
enetic algorithm inspired by the study of Vanier and Bower
1999). We required the algorithm to minimize 1 − Γ *, where

* is the average coincidence factor [Eq. (2)] calculated on
he first 2 s of the “training set” traces. We used the genetic
lgorithm implementation available in MATLAB (The Math-

orks, Natick MA) with 150 generation of 100 individuals and
crossover ratio of 0.6, which takes roughly 2 h to terminate.
he initial population was composed of four parameter sets that
ad been hand-tuned to reproduce qualitatively four major types

a
c
i
Γ

able 1
esults of the challenge

ubmission Group Refer

ubmission 1 Kyoto/Kobayashi (AR) See S
ubmission 2 Kyoto/Shinomoto (CC) See S
ubmission 3 Anonymous 1 –
ubmission 4 Anonymous 2 –
eference 1 Lausanne/Jolivet (SRM) See S
eference 2 Lausanne/Naud (aEIF) See S

able 2
esults of the challenge on intrinsically reliable data only

ubmission Group Refer

ubmission 1 Kyoto/Kobayashi (AR) See S
ubmission 2 Kyoto/Shinomoto (CC) See S
ubmission 3 Anonymous 1 –
ubmission 4 Anonymous 2 –
eference 1 Lausanne/Jolivet (SRM) See S
eference 2 Lausanne/Naud (aEIF) See S
e Methods  169 (2008) 417–424

f spiking patterns, i.e., adapting, initially bursting, fast and
low tonic spiking. The best parameters after the optimization
ere: C = 72 pF, �T = 0.006 mV, VT = −38 mV, τw = −25 ms,
= −0.5 nS, b = 36 pA, EL = −60 mV and gL = −13 nS. These
re parameters used on the test stimuli.

. Results

Results of the challenge are summarized in Tables 1 and 2.
e received four submissions in total. Three submissions were

enerated using a deterministic model and one was generated
sing a stochastic model (Anonymous 2). In addition, the
hallenge organizers provided two submissions as a reference
x post facto. The raw coefficient Γ was evaluated by averaging
he values Γ k obtained over the whole test set (Γ = ∑

kΓk/K).
bviously, this average Γ strongly depends on the composition
f the test set. For certain experimental stimuli, the pyramidal
euron was more reliable than for others (Fig. 3). Therefore, we
xpect that a test set composed mostly of intrinsically reliable
pike trains is “easier” for prediction by a model and yields a
uch better Γ than a test set composed of mostly unreliable

pike trains. The global performance Γ A was, therefore, derived
y scaling the raw Γ with the intrinsic reliability of the neuron
see Section 2). This scaled performance measure was then used
o rank submissions [see Eq. (3)]. The coefficients for intrinsic
eliability in the test set were Γ̂ = 0.22, 0.76, 0.85 and 0.89.
able 1 reports values computed with all four test spike trains
hile Table 2 reports values computed with only the intrinsically

eliable test spike trains (i.e., dropping results obtained on the
est spike train with Γ̂ = 0.22). Results obtained on the test set
fter the challenge using the methods described in sections 2.4.3
nd 2.4.4 are indicated at the bottom of Tables 1 and 2 and serve

s a reference. A comparison between a target spike train and the
orresponding spike train predicted using the method described
n Ref. (Jolivet et al., 2006) can be seen in Fig. 5. It shows that

A ∼= 0.69 corresponds to a very good quantitative prediction

ence Raw Γ Performance (Γ A)

ection 2.4.1 0.49 0.72
ection 2.4.2 0.54 0.66

0.39 0.55
0.26 0.32

ection 2.4.3 0.56 0.69
ection 2.4.4 0.70 0.82

ence Raw Γ Performance (Γ A)

ection 2.4.1 0.60 0.73
ection 2.4.2 0.71 0.84

0.48 0.56
0.33 0.40

ection 2.4.3 0.70 0.84
ection 2.4.4 0.70 0.83
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ig. 5. Comparison between the spike train generated by a layer 5 pyramidal ne
ee (Jolivet et al., 2006) for further details. Scale bars are 20 mV (vertical) and

f not only the spike times but also the subthreshold fluctuations
f the membrane voltage. Similarly, Fig. 4 shows a comparison
etween a target spike train and the corresponding spike train
redicted using the AR method described in this paper.

Among the submissions to the challenge, the AR method
ields the best performance on the complete test set beating the
pike Response Model (SRM) by about 5% but beaten by the
daptive exponential integrate-and-fire (aEIF) model by about
3% (Table 1). Considering a specific example, one observes
hat the AR model correctly predicts 729 spikes at the cor-
ect timing over a total of 795 spikes in the target spike train
93%) while the SRM predicts 657 spikes at the correct timing
83%) and the aEIF predicts 763 spikes at the correct timing
96%). The difference between the AR model and the SRM
an be explained by the fact that in the AR model, the model
arameters A and B were chosen independently for each stimu-
us whereas for the SRM and the aEIF model, a single parameter
et was used across all stimuli. In this specific example, the cor-
esponding raw Γ coefficients are Γ = 0.597 (AR), Γ = 0.573
SRM) and Γ = 0.571 (aEIF). Since the measure Γ corrects for
otential random coincidences, raw Γ coefficients are signif-
cantly lower than the percentage of predicted spikes. On the
ontrary, the SRM yields the best performance together with the
arbon-copy (CC) technique and the aEIF model on the partial
est set containing only intrinsically reliable spike sequences
Table 2). As one might expect from similar models, visual
nspection confirms that the spikes correctly predicted by the
RM, by the aEIF and by the AR model are essentially the
ame.

. Discussion

Despite an intense activity in trying to develop neuron mod-
ls with a quantitative predictive power (Clopath et al., 2007;
uys et al., 2006; Jolivet et al., 2004, 2006; Keat et al., 2001;
obayashi and Shinomoto, 2007; La Camera et al., 2004; Lansky
t al., 2006; Paninski et al., 2005; Pillow et al., 2005; Prinz et
l., 2003, 2004; Rauch et al., 2003), a standard test to compare
he performances of one model versus the others is still lacking.
ere, we described such a benchmark test for simple neuron
odels and reported the first results of a challenge on “Quan-

itative Neuron Modeling: Predicting every spike?” There were
our submissions plus two reference models from earlier work

Clopath et al., 2007; Jolivet et al., 2006).

In this first round of the proposed benchmark test, the AR
odel described above and developed at Kyoto University was

he best submission. It reached a global performance Γ A ∼= 0.72

a
s
(
(

black trace) and the spike train predicted by a simple neuron model (red trace).
s (horizontal).

n the test set meaning it was able to predict on average about
2% of spikes that one may expect to be predictable at the correct
iming ±2 ms. The AR model reached a slightly lower perfor-

ance than the reference method using the aEIF model which
eached Γ A ∼= 0.82. This result alone illustrates the capacity of
implified models in predicting the spike train of cortical pyra-
idal neurons while staying at an analytically tractable level. As
e already observed in precedent studies, it is relatively easy to
redict the subthreshold voltage but rather difficult to find a good
riterion to decide when spikes are elicited (Jolivet et al., 2006;
obayashi and Shinomoto, 2007). Since the global performance

Γ A) reported in this paper is far below one, there is still room
or improvement of such a threshold criterion. As suggested by
he very good performance of the aEIF model, we expect that

ethods more sophisticated than a simple threshold crossing of
he voltage will help improve performances of simple models
Kobayashi and Shinomoto, 2007) as well as fuel the debate on
he neural code.

The fact that the carbon-copy method has achieved a fairly
ood performance has a significant implication: A neuron has a
trong tendency of evoking similar spike sequences as long as
he temporal structure of inputs is similar, even if their means
nd variances are very different (Fig. 2). We confirmed this fact
ith the numerical simulation of model neurons. In addition,
eurons of different parameters have a tendency to generate
oincident spikes in response to correlated inputs (Brette and
uigon, 2003). This fact is consistent with the idea of synfire

hains (Abeles, 1991; Ikegaya et al., 2004). Indeed, it is likely
hat cortical neurons receiving correlated inputs evoke output
pikes that coincide in time.

As a conclusion, this first attempt at setting a benchmark test
llustrates the capabilities of simplified model neurons. It also
hows that the best models at the moment have remarkably simi-
ar performances. In the future, we will extend the test by adding
ew data sets. In particular, we will add new recordings with
njected currents or conductance injection using dynamic clamp
enerated with different random sequences to better sample the
nput space.
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