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ABSTRACT 
 

Lymphatic vessels exist in nearly all tissues, yet, despite their omnipresence, there remains a 

large knowledge gap between the described fundamental roles of lymphatic capillaries and 

our understanding of their functional biology, adaptive ability, and pathological response. 

This thesis addressed these shortcomings by utilizing an integrative biomedical engineering 

approach to examine molecular and mechanical regulators of lymphatic capillaries using in 

vivo models of lymphatic capillary biology, function, and adaptation.  

 

Using a model of skin regeneration in the mouse tail, we demonstrated that slow interstitial 

flow created by lymphatic drainage was necessary for lymphatic capillary organization. This 

novel model permitted the identification of spatial, temporal and chemical factors governing 

lymphangiogenesis. In contrast to the sprouting mechanism of blood angiogenesis, lymphatic 

endothelial cells (LECs) were demonstrated to organize in a vasculogenesis-like manner, 

migrating in the direction of interstitial flow and then organizing into functional lymphatic 

capillaries. Lymphangiogenesis was inhibited by blocking vascular endothelial growth factor 

(VEGF)-C signaling from day 0, but initiation of receptor blockade once LECs had already 

migrated did not prevent vessel organization. This uniquely demonstrated the need for a 

biochemical mediator (VEGF-C) to initiate lymphangiogenesis, but that an important 

biomechanical force, interstitial flow, was necessary for functional capillary organization.  

 

Further insight into the necessity of interstitial flow in LEC biology was found in the response 

of lymphatic capillary to induced lymphedema, wherein lymphatic drainage is significantly 

reduced. In a mouse tail model of secondary lymphedema, we demonstrated that the 

edematous environment – characterized by extracellular matrix breakdown, lipid 

accumulation, and reduced interstitial flow – resulted in hyperplasia of LECs but concurrent 

poor function due to the lack of interstitial flow as an organizational guiding cue. Similar 

dermal matrix adaptations to dysfunctional lymphatic drainage were also noted in two mouse 

models of congenital lymphedema, the Chy and VEGFR-3-Ig mice, further demonstrating the 

intimate connection of lymphatic capillary function with tissue maintenance and remodeling.  

 

To quantitatively demonstrate the changes in lymphatic capillary uptake and tissue hydraulic 

conductivity found in these and other transgenic mouse models, we developed a poroelastic 

model of interstitial transport. Tissue hydraulic conductivity was also calculated in tissues 
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lacking lymphatics using an unsteady-state solution, demonstrating that lymphedema causes a 

significant increase in tissue conductivity. This model was then utilized to assess the effects of 

a high fat diet, metabolic disorders, and lymphatic dysfunction on the tissue and on lymphatic 

capillary function. We discovered that lymphatic capillary uptake function was significantly 

reduced with dyslipidemia, suggesting a novel interplay between lymphatic function and lipid 

metabolism.  

 

Additionally, we uncovered a new and critical role for lymphangiogenesis and lymphatic 

transport in reproduction. We demonstrated that lymphangiogenesis is a regular, non-

pathological event during folliculogenesis in the ovary. These new lymphatic capillaries are 

seemingly necessary for hormone transport from the ovary – an essential feedback mechanism 

during pregnancy. Blockade of lymphangiogenesis resulted in decreased systemic 

progesterone and estradiol levels and resulted in failed fetal development.  

 

In conclusion, this work highlights the critical roles of the lymphatic circulation and 

demonstrates the interplay between lymphatic biology and the biochemical and biophysical 

environment in which lymphatic capillaries reside. Interstitial flow and the interstitium 

modulate lymphatic behavior, and lymphatic function, in turn, controls the tissue 

microenvironment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: lymphatic, interstitial flow, extracellular matrix, VEGF-C, VEGFR-3, 

lymphangiogenesis, lymphedema, folliculogenesis 
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RÉSUMÉ 
 

Les vaisseaux lymphatiques se trouvent dans pratiquement tous les tissus. Pourtant, malgré 

leur présence importante, il y a encore une grande différence de connaissance entre les rôles 

fondamentaux des capillaires lymphatiques déjà décrits et les connaissances que nous avons 

de leur fonction biologique, leur capacité adaptative et la réponse pathologique. Cette thèse 

vise à combler ces lacunes en utilisant l’ingénierie biomédicale pour examiner les régulateurs 

mécaniques et moléculaires des capillaires lymphatiques grâce à des modèles in vivo de la 

biologie, des fonctions et de l’adaptation des capillaires lymphatiques. 

 

En utilisant un modèle de régénération de la peau sur la queue des souris, nous avons 

démontré que le flux interstitiel lent créé par le drainage lymphatique était nécessaire pour 

l’organisation des capillaires lymphatiques. Ce nouveau modèle a permis l’identification de 

facteurs spatiaux, temporaux et chimiques gérant la lymphangiogénèse. Contrairement au 

mécanisme de croissance  pour l’angiogénèse du sang, les cellules endothéliales lymphatiques 

(LECs) ont démontré une organisation semblable à la vasculogénèse, migrant en direction du 

flux interstitiel, puis en s’organisant en capillaires lymphatiques fonctionnels. La 

lymphangiogénèse est inhibée en bloquant la signalisation des facteurs de croissance 

endothéliale vasculaire (VEGF-C) à partir du jour 0, mais l’initiation du blocus de récepteur 

une fois que les LECs ont déjà migré, n’empêche pas l’organisation des vaisseaux. Cette 

nouvelle approche a démontré le besoin de médiateur biochimique (VEGF-C) pour initier la 

lymphangiogénèse, mais qu’une force biomécanique importante, un flux interstitiel, était 

nécessaire pour l’organisation des capillaires fonctionnels.  

 

De plus, la nécessité du flux interstitiel dans la biologie des LECs a été démontrée dans la 

réponse des capillaires lymphatiques à un lymphœdème induit, où le drainage lymphatique est 

significativement réduit. Dans le modèle de lymphœdème secondaire dans la queue de souris, 

nous avons démontré que l’environnement œdémateux – caractérisé par une défaillance de la 

matrice extracellulaire, une accumulation des lipides et une réduction du flux interstitiel – a 

pour conséquence une hyperplasie des LECs, mais conduit à une fonction diminuée due au 

manque de flux interstitiel comme signal organisationnel. Des adaptations similaires de la 

matrice dermale au dysfonctionnement du drainage lymphatique ont aussi été remarquées 

dans deux modèles de souris de lymphœdème congénital, les souris Chy et VEGFR-3-Ig, de 
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plus elles démontrent la connexion intime de la fonction des capillaires lymphatiques avec la 

maintenance du tissu et son remodelage. 

 

Pour démontrer quantitativement les changements dans l’absorption des capillaires 

lymphatiques et la conductivité hydraulique du tissu trouvé dans ces modèles de souris 

transgéniques, nous avons développé un modèle poro-élastique de transport interstitiel. La 

conductivité hydraulique du tissu a aussi été calculée dans les tissus manquants de 

lymphatiques en utilisant une solution non-stationnaire, démontrant que le lymphœdème 

provoque une augmentation significative de la conductivité du tissu. Ce modèle a été utilisé 

ensuite pour tester les effets d’un régime enrichi en graisses, des troubles métaboliques et des 

dysfonctions des lymphatiques sur le tissu et la fonction des capillaires lymphatiques. Nous 

avons découvert que l’absorption des capillaires lymphatiques a été fortement réduite avec 

une dyslipidémie, mettant en évidence une nouvelle interaction entre la fonction lymphatique 

et le métabolisme des lipides. 

 

De plus, nous avons découvert un nouveau rôle critique pour la lymphangiogénèse et le 

transport lymphatique dans la reproduction. Nous avons démontré que la lymphangiogénèse 

est un événement régulier et non pathologique lors de la folliculogénèse dans l’ovaire. Ces 

nouveaux capillaires lymphatiques sont apparemment nécessaires pour le transport des 

hormones à partir de l’ovaire – un mécanisme essentiel durant la grossesse. Bloquer la 

lymphangiogénèse résulte en une diminution importante du niveau de progestérone et 

d’oestrdiol et conduit à un défaut du développement du fœtus.  

 

En conclusion, ce travail met en évidence les rôles critiques de la circulation lymphatique et 

démontre les interactions entre la biologie lymphatique et l’environnement biochimique et 

biophysique dans lequel se trouvent les capillaires lymphatiques. Le flux interstitiel et 

l’interstitium modulent le comportement et la fonction des lymphatiques, qui eux-mêmes,  

contrôlent le microenvironnement du tissu adjacent. 

 

 

 

Mots-clés : lymphatiques, flux interstitiel, matrice extracellulaire, VEGF-C, VEGFR-3, 

lymphangiogénèse, lymphœdème, folliculogénèse. 
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CHAPTER 1:  
OVERVIEW OF THE THESIS 

 
 
1.1: Aims 

 

The overall goals of this thesis are to identify and explore interactions between 

molecular and mechanical regulators of lymphatic capillary biology with respect to both 

quiescent tissue homeostasis and the pathological tissue states of skin regeneration 

(lymphangiogenesis) and lymphedema, and to quantitatively demonstrate alterations in 

lymphatic capillary function.  

The specific aims addressed in this thesis are to: 

(1) Identify the relative importance and interplay of contributing factors – molecular, 

mechanical, and cellular – to lymphangiogenesis in adult skin regeneration. 

(2) Determine the tissue pathology of both primary (congenital) and secondary (induced) 

lymphedema and how lymphatic capillary biology and function are affected. 

(3) Quantify changes in lymphatic capillary drainage function in response to potential 

molecular effectors. 

(4) Define a role for lymphatic capillaries and ovarian lymphangiogenesis in female 

reproduction. 

 

1.2: Motivation & Approach 

 

Lymphatic vessels and lymphatic circulation is found throughout the body and forms 

an integral part of the body’s circulatory system. Despite the critical roles that lymphatic 

capillaries plays in modulating interstitial fluid balance, maintaining immune surveillance, 

and transporting lipids, knowledge of the lymphatic system and the biology of lymphatic 

endothelial cells (LECs), particularly with regard to their function, remains lacking. To date, 

the bulk of research focused on lymphatic capillaries has been aimed at (a) developmental 

biology and (b) lymphangiogenesis in tumor progression. This research has elucidated an 

array of LEC-specific molecular markers, growth factors, and signaling molecules, and by 

comparing and contrasting lymphangiogenesis – both developmental and pathological – with 

the more widely studied blood angiogenesis, has lent a great deal of understanding and 

brought attention to the importance of lymphatic biology in the scientific community. By 

taking this approach, however, it leaves a significant opportunity to explore what we still do 
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not know about lymphatic capillary biology: How do adult lymphatic capillaries in the skin 

actually function and what factors may modulate this? Do LECs adapt to their environment 

and consequently modulate lymphatic capillary function? And what is the pathobiology of 

lymphatic capillaries in lymphedema and inflammatory conditions? 

 To approach these questions, an integrative biomedical engineering approach was 

taken. The complex biochemical and biomechanical environment in which dermal lymphatic 

capillaries reside would normally lead to the simplified, in vitro methods to directly determine 

outcomes of various experimental questions. For example: adding growth factors to LECs 

growing on 2-D plastic surfaces may help to identify the molecular response to the growth 

factor, but tells us little of the actual mechanism of lymphangiogenesis in a 3-D tissue 

environment. Well-designed engineered systems and experiments can, however, be applied in 

vivo so as to more relevantly tackle the problem of lymphatic capillary function. In this way, 

the environment remains wholly coupled to the biology, and vice versa. One of the principle 

examples in this work is in models utilizing the mouse tail. All lymphatic flow in the tail must 

move from the tip of the tail back towards the body. Because of the simple, cylindrical 

geometry of the tail, this flow is macroscopically unidirectional. This allowed not only the 

application of a quantitative model of lymphatic uptake and interstitial transport (Chapter 6), 

but also permits the mouse-tail model of lymphangiogenesis (Chapter 3) to have a well-

understood direction of interstitial transport. Thus, by approaching and developing models 

integrating the anatomy, biology, physiology, and mechanics of the adult lymphatic 

environment, we can confidently address the adaptive responses of the lymphatic endothelium 

in vivo and gain keen insight into controlling factors of lymphatic capillary biology. 

 

1.3: Thesis Overview 

 

The contents of the subsequent chapters of this thesis, and the studies that they 

represent, are summarized here so as to frame them directly within the overall objective and 

specific aims. Chapter 2 provides a general overview of background information on lymphatic 

capillaries and the environment in which they reside so that the subsequent research 

manuscripts may be held in better context.  

The first manuscript chapter, Chapter 3, defines the mechanism of lymphangiogenesis 

in regenerating mouse skin and characterizes – spatially and temporally – lymphatic 

organization and potentially contributing factors. The mode of vessel regrowth was not 

sprouting from existing capillaries, but rather a process akin to embryonic vasculogenesis. 
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Single LECs, or groups of LECs, first migrate in to the regenerating tissue, in the direction of 

interstitial fluid flow, and then coalesce to form organized, functional vessels.  

As the mechanism of lymphangiogenesis detailed in Chapter 3 was very step-wise and 

pseudo-independent of VEGF-C signaling (the paramount lymphatic growth factor), Chapter 

4 then discusses work on cooperative and redundant signaling of the receptors to VEGF-C, 

VEGFR-2 and VEGFR-3, in proliferation, migration, and organization of LECs during 

lymphangiogenesis. As the prevalent pathway of lymphangiogenesis, we found that VEGFR-

3 signaling was, indeed, important to initiate lymphangiogenesis – through LEC proliferation 

and migration – but was not required for the later LEC organization into new vessels. Rather, 

VEGFR-3 signaling initiates lymphangiogenesis, but functional capillary organization is 

VEGF-C-independent: interstitial flow is the organizing guidance cue. Chapters 3 and 4, 

completing Specific Aim 1, thus present the balance and interplay between molecular 

signaling and the mechanical, organizational force of fluid flow.  

Chapter 5 then presents what happens to lymphatic capillaries and their environment 

when interstitial flow stops in secondary lymphedema induced in the mouse tail. The chapter 

describes the model and the temporal characterization with respect to matrix degradation, 

lipid accumulation, and lymphatic vessel hyperplasia. What is truly interesting is that despite 

LEC proliferation, the lack of flow as an organizational guidance cue results in grossly 

hyperplastic, poorly functioning lymphatic capillaries. The model also successfully 

recapitulated the initial breakdown of the extracellular matrix and the subsequent dermal 

remodeling and subcutaneous lipid accumulation observed in the human condition. Lack of a 

normal matrix further hinders the ability of lymphatic capillaries to function normally.  

In Chapter 7, two models of congenital primary lymphedema, the Chy and K14-

VEGFR-3-Ig mice, are described and used to further demonstrate the adaptive tissue response 

to lymphedema and serve as an excellent basis of studying fluid transport in the interstitium. 

Chapter 6 presents the development of methods to quantify lymphatic capillary uptake and 

tissue hydraulic conductivity. The mouse models of primary lymphedema present the 

unsteady-state solution to the developed equations, as there is insignificant fluid flux to the 

lymphatic capillaries (because there are no lymphatics to take up interstitial fluid). Further 

discussion on quantifying lymphatic function in normal and edematous mice, a necessary step 

in determining the actual success of potential treatments for pathologies resulting from 

lymphatic dysfunction, is also presented in Chapter 6. For example, we found that 

dyslipidemia in the tissue reduced lymphatic function and that targeting lipids may improve 

functional drainage. Specific Aims 2 and 3 were therefore accomplished in Chapters 5, 6, and 
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7. More specifically: Chapters 5 and 6 explore both induced and congenital lymphedema with 

respect to their tissue morphology and changes to lymphatic capillary morphology and 

function; Chapter 6 quantifies lymphatic capillary functional uptake of interstitial fluid in 

these models; and Chapter 6 also identifies dyslipidemia in the tissue as a negative effector of 

lymphatic capillary function. 

Lymphatic vessels are known to modulate fluid balance, immune cell transport, and 

lipid metabolism, but in Chapter 8, a novel role for lymphatics and lymphangiogenesis in 

reproduction is presented. Blood angiogenesis has been established as an essential process in 

the ovaries both during folliculogenesis and sustained pregnancy, but lymphatics, 

lymphangiogenesis, and their potential roles have been sorely ignored. We found that 

lymphatic vessels function in the murine ovary for hormone transport during pregnancy, and 

that a lack of lymphatic capillaries during reproduction resulted in significantly reduced 

systemic progesterone and estrogen levels. Without these new lymphatic capillaries, fetal 

development was impaired and pregnancies failed. By discovering this novel role for 

lymphatics in reproduction, Specific Aim 4 was completed.  

The findings of the thesis study are then summarized in the concluding chapter, 

Chapter 9. Key results are placed within the context of the field and a brief discussion of the 

current and future directions that these results might lead are also included. 
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CHAPTER 2: 
BACKGROUND ON THE LYMPHATICS AND INTERSTITIAL FLOW 

 

2.1: The Lymphatic System 

 

Fluid transport through the lymphatic vasculature forms an integral part of the body’s 

circulation. Throughout nearly all tissues of the body, lymphatic capillaries drain interstitial 

fluid, macromolecules, and cells and transport them, through larger conducting lymphatic 

vessels and the lymph nodes (Figure 2.1), back to systemic blood circulation. As interstitial 

fluid is sourced from fluid extravasted from the blood vasculature, the lymphatics maintain 

tissue homeostasis and complete the body’s circulatory loop (1). 

 

 
Figure 2.1: Schematic of the lymphatic vessels encompassing lymphatic circulation. The focus of this thesis is 
the initial lymphatic capillaries, here shown in respect to the greater downstream lymphatics and lymph nodes. 
Artwork courtesy Carolyn Yong.  
 

While often neglected as nothing more than a passive tissue drainage system, in reality 

the roles of the lymphatic circulation are more active, diverse, and important. By serving as 

the low pressure reservoir in vascularized tissues, the lymphatic vessels promote interstitial 

flow – the subtle fluid flow through the extracellular matrix from blood capillaries and into 

initial lymphatic vessels (2). Interstitial flow has been demonstrated to be a key 

morphoregulator of cells in the interstitium (2, 3), so the lymphatic vessels actually have the 

potential to control the morphogenesis and migration of other cell types such as tumor and 

immune cells (4). Lymphatic vessels, by connecting the periphery to the lymph nodes, allow 

not only active immune cell trafficking for antigen presentation within the lymph node, but 

may also permit the nodes to sample incoming fluid for inflammatory mediators or antigens 

(5). Dietary lipid uptake from the intestinal lumen is, surprisingly, first through the lymphatic 

capillaries located within the villi of the intestinal wall (6). The lymphatic circulation is thus 

potentially important in regulating lipid metabolism as well.  
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2.1.1: Lymphatic Endothelial Cells (LECs) 

  

While in standard in vitro culture conditions blood endothelial cells and LECs are 

phenotypically quite similar, LECs in vivo form vessels that function very differently from the 

blood vasculature. Research on the embryonic development of the lymphatic vasculature has 

identified several genes and molecules specific to LECs that drive their differentiation, may 

modulate their function, and permit their identification both in culture and in tissues (Table 

2.1)(7). In total, LECs differ from blood endothelial cells not only in molecular expression, 

but also in their molecular responses and adaptive morphoregulation, likely due to their 

different roles in vivo. Once formed into capillaries, the differences between the blood and 

lymphatic endothelium, and how these differences impact their respective functions, becomes 

more striking.  

 

Table 2.1: Genes attributed to the lymphatic endothelium and the transgenic consequence in mouse models 
(table taken from Tammela, 2005 (7)) 
 
 
2.1.2: Lymphatic capillaries 

  

Initial lymphatic vessel morphology varies strikingly from that of their blood 

counterparts (Table 2.2) due to their functional differences (7). Lymphatic vessels exist in the 

tissue as a collapsed network of overlapping LECs, are not surrounded by pericytes, possess 

minimal interrupted basement membrane, and are directly anchored to the extracellular matrix 
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(ECM) by anchoring filaments (8, 9) where basement membrane is lacking. These physical 

vessel characteristics permit open fluid flow into the vessel from the interstitial space. While 

it may be contrary to initial intuition, because of the anchoring filaments that tightly tie LECs 

to the extracellular matrix, when interstitial fluid pressure (IFP) increases – and therefore, a 

demand for lymphatic drainage – the vessels are not crushed, but, rather are pulled open as the 

ECM expands (Figure 2.2) to increase flux into the capillary (10). In tissues with low 

compliance, (i.e., a stiffer matrix) the capillaries are thereby more sensitive to changes in IFP 

and fluid uptake is readily increased, as in the healthy lung (11).  

Lymphatic capillary uptake of fluid proceeds between the overlapping LECs through 

unique cell-cell junctions (9, 12). These junctions – recently described to be analogous in 

appearance to overlapping oak leaves (13) – are incredibly dynamic, with LECs actively 

responding to changes in interstitial flows, inflammatory molecules, and migrating cells by 

altering their molecular expression to open or close these cell-cell connections (13, 14), 

resulting in accordingly increased or decreased drainage. Fluid entry into lymphatic 

capillaries is further described in section 2.2.1 and quantified in vivo in Chapter 6. 

 

 

Table 2.2: Morphological differences between blood capillaries, lymphatic capillaries and collecting lymphatic 
vessels (table taken from Tammela, 2005 (7)) 
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Figure 2.2: Flow enters lymphatic capillaries between cells; increased interstitial pressure (IFP) expands the 
matrix, pulling on the LECs and their anchoring filaments, opening the cell-cell junctions; pulling the cell-cell 
junctions open permits increased drainage into the capillary (original artwork). 
 
 

2.1.3: Greater Lymphatics 

  

Initial lymphatics lead to larger collecting lymphatic vessels that further connect 

lymph nodes and downstream collecting vessels before returning lymph flow to the blood 

circulation (Figure 2.2). Unlike the initial lymphatic capillaries, collecting vessels possess 

bileaflet valves to limit backflow and smooth muscle that intrinsically pumps to maintain 

lymph flow (10). Indeed, this pumping is necessary for the low pressure lymphatic network to 

actually propel lymph throughout the body. This thesis does not focus on transport within 

these vessels, but they play a vital role in maintaining lymphatic drainage from upstream 

tissues. 

 Lymph nodes are lymphoid organs located throughout the lymphatic network that 

provide the primary specific immune sampling from peripheral tissues and permit the 

development of an antigen specific lymphocyte response (5). Lymph node anatomy and 

physiology is a detailed field in of itself, primarily focused on the organs’ roles in immunity 

and as cancer metastasis sites. This thesis does not focus on transport within collecting 

lymphatic vessels, nor lymph node function, but acknowledges the vital role they play in 

maintaining lymphatic drainage from upstream tissues. 
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2.2: Roles of Lymphatic Capillaries 

 

2.2.1: Interstitial Flow Driven by Lymphatic Capillary Function 

  

From a physical perspective, the primary role of the lymphatic capillaries is to drain 

interstitial fluid, thus maintaining tissue homeostasis and driving interstitial flow. Fluid entry 

into lymphatic capillaries is quite different, however, than fluid extravasation from the blood 

vasculature. Extravasation is governed by Starling’s law of capillary filtration: 

( ) ( )( )erstitiumcapillaryerstitiumcapillaryv PPLpJ intint ππσ −+−= , 

which demonstrates the balance between hydrostatic pressure, ∆P, and osmotic pressure, ∆π, 

across the capillary wall governed by the reflection coefficient, σ, and the overall vessel 

filtration coefficient, Lp. The equation can be applied to lymphatic drainage – reversing the 

pressure differences, of course – when adapted properly taking into account the unique 

morphology of the lymphatic capillary. As interstitial fluid flow directly into the lymphatic 

capillary, and not through the vessel wall, the osmotic pressure driving force, ∆π, is zero. 

Similarly, because σ (which ranges from 0.0-1.0 for zero to complete reflection) refers to the 

vessel’s ability to prevent the extravasation/intravasation of molecules (e.g., proteins), in 

lymphatics capillaries this term is also zero (15). What remains is merely the hydrostatic 

pressure driving force and the filtration coefficient, Lp, which is governed by the overall 

vessel permeability and vessel wall area (both of which increase when the vessel is opened by 

interstitial pressure increases). Further use of Starling’s law of capillary filtration and in 

calculating fluid flux into lymphatic capillaries is given in Chapter 6. 

Fluid entry into lymphatic capillaries thus provides for interstitial flow as fluid is 

transported across the interstitium from blood to lymphatic capillary. While these flow rates 

are very small (0.1-10 μm/s) (3), a new appreciation for subtle flow effects on cell behavior is 

increasingly emerging. The morphogenetic potential of interstitial flow, along with further 

explanations of its sources and importance are found in the original review manuscript 

entitled, “A Driving Force for Change: Interstitial Flow as a Morphoregulator”, included as an 

Appendix to this chapter. 
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2.2.2: Lymphatic Capillaries in Immunity 

 

Antigen-presenting immune cells (APCs), dendritic cells and macrophages, after 

encountering antigens in the periphery, migrate to a lymphatic capillary and traffic to the 

sentinel lymph node. Lymphatic vessels secrete the cytokine CCL21, which serves as a 

chemoattractant for APCs via binding to the APC receptor CCR7 (5). How interstitial flow 

affects this process and whether or not LECs can actively regulate APC attraction and entry is 

the topic of current research in the laboratory; it is believed that these cells behave similarly to 

metastatic tumor cells (4). According to the theory of autologous chemotaxis, proper 

lymphatic capillary drainage function may be necessary for APC trafficking and entry into 

lymphatic circulation. More comprehensive reading on the role of the lymphatic system in 

immunity can be found in the excellent reviews: (5, 16, 17). 

 

 

2.2.3: Lymphatic Capillaries in Lipid Transport 

 

Lymphatic vessels are the primary route of lipid absorption from the small intestine. 

Enterocytes, specialized cells of the intestinal epithelium, package lipids into chylomicrons, 

which then enter the lymphatic capillaries (also called lacteals) found within the intestinal villi 

(6). In this way, lipids first pass through the lymphatic circulation before entering the blood 

circulation and subsequent metabolism in the liver (18). As this thesis is focused on lymphatic 

capillaries in the dermis, intestinal lymphatics and their potential role in lipid metabolism are 

not directly discussed. However, dermal lymphatic capillaries, by taking up extravasated 

molecules from the interstitium, provide the route of reverse lipid transport from the skin. 

Indeed, when capillary function is compromised, lipid accumulates in the dermal tissue space 

(19). Thus, dermal lipid accumulation and adipogenesis can be utilized as a marker of 

lymphatic dysfunction and a potential exists for further cross-talk between lymphatic function 

and adiposity – an area currently under intense exploration. The impact of dyslipidemia on 

dermal lymphatic capillary uptake is quantified in Chapter 6. 

 

2.3: Lymphangiogenesis 

  

Lymphangiogenesis, the growth of new lymphatic vessels, is modulated by many of 

the lymphatic molecules ascribed above (Table 2.1). The molecules important in 
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developmental lymphangiogenesis, however, are different from those considered to be 

paramount in the adult during lymphangiogenesis associated with wound healing or tumor 

growth and metastasis (20). The principal, and most widely studied, growth factors driving 

lymphangiogenesis are members of the vascular endothelial growth factor (VEGF) family.  

VEGF-C and -D were identified and characterized following much work on the role of 

lymphatics in tumor progression and the search for potential lymphangiogenic therapies in 

lymphedema (21) as the growth factors essential for the proliferation and migration of LECs 

(22). Blocking the primary receptor to these ligands, VEGFR-3, inhibits lymphangiogenesis 

in healing wounds (22, 23), inflammation (24, 25), and prevents tumor metastasis (26). In this 

thesis, the mechanism of lymphangiogenesis in adult skin regeneration is explored more in 

depth in Chapter 3 and the role of VEGFR-3 signaling in this process is more clearly defined 

in Chapter 4. The role of lymphangiogenesis during reproductive cycles in the ovary is newly 

described in Chapter 9. 

 

2.4: Lymphedema 

  

Lymphedema is the most common pathology directly linked to lymphatic fluid 

transport. Lymphedema is classified generally into two forms: primary (congenital) and 

secondary (induced). Primary lymphedema has been linked to mutations in LEC genes 

essential for proper lymphatic vessel development; improper development of lymphatic valve 

structures or insufficient organization of dermal lymphatic capillaries leads to failed 

interstitial fluid and lymph clearance (27-30). Secondary lymphedema is caused when pre-

existing, normal lymphatic vessels are ligated by surgery (e.g., lymph node removal as a 

treatment to prevent breast cancer metastasis), inflammation, or radiation, among others (31). 

As a chronic pathology, dysfunctional lymphatic transport leads to remodeling of the skin and 

subcutaneous extracellular matrix, accumulation of lipids, and failures in immune response in 

the tissue or limb upstream from the ligation (19). These morphological adaptations can 

worsen the condition and prevent successful resolution – indeed while compression cuffs, 

massage, and surgical removal of tissue have demonstrated success in minimizing the 

condition, unfortunately, there is no complete “cure” for lymphedema (31). The pathology of 

secondary lymphedema is characterized in Chapter 4, while the tissue adaptation to primary 

lymphedema, and the resultant fluid transport implications, are demonstrated in Chapters 5 

and 6. 
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ABSTRACT 
 
Dynamic stresses that are present in all living tissues drive small fluid flows, called interstitial 

flows, through the extracellular matrix. Interstitial flow not only helps to transport nutrients 

throughout the tissue, but also has important roles in tissue maintenance and pathobiology that 

have been, until recently, largely overlooked. Here, we present evidence for the various 

effects of interstitial flow on cell biology, including its roles in embryonic development, tissue 

morphogenesis and remodeling, inflammation and lymphedema, tumor biology and immune 

cell trafficking. We also discuss possible mechanisms by which interstitial flow can induce 

morphoregulation, including direct shear stress, matrix–cell transduction (as has been 

proposed in the endothelial glycocalyx) and the newly emerging concept of autologous 

gradient formation. 
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INTRODUCTION 

The importance of dynamic mechanical stress (see Glossary) in tissue development, 

maintenance, function and pathogenesis has been well established for several decades. The 

field of biomechanics originated to characterize the mechanical behavior of tissues that serve 

obvious mechanical functions (e.g. bone, muscle, arteries and lung tissue) and how these 

mechanical properties change in pathological states. This research evolved and branched into 

the field of mechanobiology, which focuses on understanding the cell biology that controls 

tissue mechanics, in other words, the response of cells to mechanical stress and the way they 

adapt to and control their mechanical environment [1 and 2]. Mechanobiology research today 

remains largely devoted to understanding the control of mechanically important tissues for 

tissue engineering applications and other areas of therapeutic design. 

However, even in tissues that do not serve primarily mechanical functions or undergo 

obvious strains, mechanical stress is an important regulator of tissue development, health and 

pathology. Dynamic stresses and pressure gradients exist in all living tissues. These tissue 

stresses can impart forces on the cell, including fluid shear stress, pressure forces and forces 

on integrins, and they can also affect cell behavior by transporting solutes and shaping the 

extracellular distribution of key signaling proteins. For example, small fluid flows within the 

interstitial space are needed to drive protein transport from the blood to interstitial cells, 

because proteins are too large to readily diffuse the distances between blood capillaries, 

distances optimized for the transport of oxygen and other small molecules to cells. Dynamic 

stresses are therefore not only present in all living tissues, but are also required for 

physiological functions and tissue homeostasis. A clear example of the necessity of activity is 

seen in the atrophy of muscle and bone when movement is limited.  

Here, we focus on the importance of a subtle but essential dynamic force: interstitial 

fluid flow. We argue not only that interstitial flow is an important morphoregulator in tissue 

development, maintenance and remodeling, but also that it is used by interstitial cells to signal 

the state of their surroundings, help establish extracellular microenvironments, and guide 

lymphocytes and tumor cells towards draining lymphatic vessels (also referred to generally 

herein as lymphatics). 
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What is interstitial flow? 

Interstitial flow is fluid flow through a 3D matrix, around interstitial cells such as 

fibroblasts, tumor cells, tissue immune cells and adipocytes. It differs from open-channel 

flow, such as blood flow within vessels, in several ways (Figure 1): for example, it generally 

flows with a much slower velocity because of the high flow resistance of the extracellular 

matrix, it moves around the cell–matrix interface in all directions rather than only on the 

apical side, and it can have important effects on pericellular protein gradients, particularly 

those that are matrix binding. Interstitial flow also occurs across the blood vessel wall (called 

transvascular flow) (e.g. in arteries, this flow is two orders of magnitude slower than that of 

the blood) and the glycocalyx on the luminal surface of blood endothelium can impart some 

features of interstitial flow on the endothelium.  

Interstitial flow is driven primarily by plasma leaving a blood capillary through its 

wall and draining into the initial lymphatics (Figure 2). Even when lymphatics are not 

functional or are blocked, some interstitial flow can occur by plasma reabsorption in post-

capillary venules (although not all can be removed this way). In healthy adult tissues, the 

pressure difference between the two capillary networks maintains fluid pressure gradients that 

are altered by skeletal motion and also by subtle movements, such as those arising from 

arterial pulsation, respiration and organ movement. One noted exception to the intervascular 

pressure driving force is in cartilage and bone, where dynamic compression drives flow 

through the matrix. 

There are only a few direct measurements of interstitial flow velocities in vivo in the 

literature; these velocities are difficult to measure and interpret because they are so slow and 

heterogeneous, they depend on the tracer moving with the same velocity as the fluid (which is 

difficult to confirm in the dense interstitial space, and the tracer can also cause artifacts when 

introduced into the tissue), and they have only been measured close to the surface by 

fluorescence recovery after photobleaching (FRAP) or nuclear magnetic resonance (NMR). 

Furthermore, these measurements are typically performed in anesthetized animals, in which 

interstitial fluid velocities are likely to be substantially different from those in awake animals 

because of changes in blood pressure and lymphatic pumping [3 and 4]. Reported measured 

velocities vary between 0.1 and 4.0 μm s−1 [5 and 6]. Interstitial flow velocity can also be 

estimated using Darcy's law, which relates velocity to the pressure gradient and the hydraulic 

conductivity, K (Box 1). This is sometimes more convenient, because interstitial pressures can 
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be measured more reliably using micropipettes or wick-in-needle techniques [7] and K can be 

measured in tissues ex vivo using confined compression tests [8 and 9].  

Even though it can be extremely slow, interstitial flow can have important effects on 

tissue morphogenesis and function, cell migration and differentiation and matrix remodeling, 

among other processes. The mechanisms by which such flows can drive cell response might 

be purely mechanical, such as shear stress on the cell surface, pressure force ‘pushing’ on the 

cell or tethering forces on cell–matrix connections (Figure 3). Importantly, it can also have 

non-mechanical affects on the cells, such as shifting the pericellular distribution of secreted 

proteins (e.g. morphogens, proteases and chemokines). These transport effects are likely to be 

more important than mechanical stress in tissues that do not serve primarily mechanical 

functions, because of the small magnitudes of stresses and flows found there. In these tissues, 

interstitial flow-induced protein redistribution might help to direct cell migration and guide 

the cell–cell interactions that lead to pattern formation during morphogenesis. Thus, 

interstitial flow affects both the mechanical microenvironment of the cell and the biochemical 

environment to which it is so acutely tuned. 

Biological flows in development 

In embryos that have not yet developed a vascular system or heart, flow that is driven 

through the differentiating cell mass is necessary for proper development. In the embryonic 

node (an embryonic structure located at the anterior tip of the primitive centerline) ciliary 

movement generates the leftward movement of fluid that leads to the left–right asymmetry of 

the organs (in which the heart is on the left, the liver on the right, etc.) [10], and when this 

cilia-driven flow within the node is reversed experimentally, the left–right asymmetry 

becomes reversed [11]. It has been suggested through mathematical modeling that nodal flow 

directs morphogen transport and mixing, thus driving asymmetric development [12]. This is 

indeed likely, because the actions of morphogens (to give cells directional and positional 

information) are achieved through their transcellular concentration gradients rather than their 

absolute amounts. In developing embryos, such spatial information guides cell differentiation 

[13]. Morphogen transport and gradient patterning are also believed to regulate the branching 

of developing lungs in the embryo [14], and it is expected that interstitial flows, caused by 

embryonic lung movements that simulate breathing, would influence morphogen 

distributions. Interstitial flow can also impart shear stress on the cell surface, which, as a 
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mechanical stimulus, can itself drive embryonic cell differentiation and determine lineage fate 

[15 and 16] and could be responsible for shaping organs [17 and 18]. 

Interstitial flow has also been implicated in lymphatic development. Using a skin 

regeneration model in which interstitial fluid flow could be traced and correlated with 

lymphatic proliferation, migration and reorganization over time, it has been shown that 

lymphatic cells migrate in the direction of interstitial flow and organize around fluid channels, 

and that they cannot organize into functional capillaries when interstitial flow is severely 

reduced [19 and 20]. Thus, interstitial flow can act as an important morphogenic cue, by 

mechanisms we discuss later. 

Interstitial flow in tissue function and pathology 

Much evidence has emerged to indicate that interstitial flow has an important 

regulatory role in tissue function. Transvascular flow across the arterial wall provides nutrient 

transport to the metabolically active cells there, and seemingly has a crucial role in 

maintaining arterial smooth muscle tone [21, 22 and 23]. In cartilage, where lymphatics are 

absent and intercellular distances are large, interstitial fluid flow is driven by mechanical 

loading and is necessary for nutrient transport and cell–cell communication when diffusion is 

inadequate [24, 25 and 26]. Also, interstitial flow rather than solid stress is responsible for at 

least some of the mechanical stress-induced matrix production in cartilage [27], because 

dynamic rather than static compression was found to promote proteoglycan and collagen 

synthesis [28] and increase chondrocyte metabolism [29] (interstitial flow is always present in 

tissues undergoing dynamic compression). Dynamic compression stimulates directional 

deposition of proteoglycans and matrix fiber compaction in the direction of flow [26] and 

directs remodeling by enhancing the transport of tissue inhibitor of metalloproteinase-1 

(TIMP-1) [30]. In bone, physical activity causes oscillatory compression that has been 

estimated to increase the convective transport of macromolecules up to 100 times more than 

what is possible with diffusion [31]. Finally, in tissue repair, the migration of endothelial and 

epithelial cells is crucial for wound healing, which (at least on 2D surfaces) can be activated 

by shear stress [32 and 33], suggesting that interstitial flow also promotes wound healing in 

3D tissues by shear stress. In vitro, interstitial flow enhances blood and lymphatic capillary 

formation [34] and acts synergistically with matrix-bound VEGF to induce capillarogenesis, 

probably by enhancing and directing the liberation of VEGF from the matrix to guide 

organization in the direction of flow [35, 36 and 37]. 
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Physiological evidence that interstitial flow is crucial in normal tissue function can be 

seen in pathologies in which interstitial flow is reduced or enhanced. Lymphedema is a 

condition in which interstitial fluid flow is severely reduced due to either malformations in the 

lymphatic system (primary lymphedema) or blockage downstream, such as that which occurs 

after lymph node resection (secondary lymphedema). The accumulation, rather than 

clearance, of fluid from the interstitial space results in inflammation and extensive tissue 

remodeling, lymphatic hyperplasia, and adipocyte growth and lipid accumulation [38 and 39]. 

Fluid stagnation in lymphedema also prevents normal immune cell trafficking in the affected 

tissue, which can exacerbate the pathology. These resultant chronic pathological conditions in 

lymphedema highlight the importance of interstitial fluid convection in maintaining healthy 

tissue. 

Abnormally increased interstitial flow rates can occur during inflammation (when 

blood capillaries become leaky) and can also trigger fibroblasts to differentiate or remodel the 

extracellular matrix. Although this can be due to increased transport of differentiation factors 

from inflammatory cells to fibroblasts, increased interstitial flow itself could be an important 

contributing factor to the development of tissue fibrosis: in vitro studies have shown that 4–

10 μm s−1 interstitial flow through a 3D collagen matrix seeded with human lung or dermal 

fibroblasts causes autocrine upregulation of transforming growth factor (TGF)-β1, 

differentiation into myofibroblasts (Figure 4a), increased collagen production and collagen 

alignment [40, 41 and 42]. In this way, high interstitial flow could be an early signaling cue of 

inflammation that triggers fibroblasts to begin rapid matrix repair. It could also help explain 

why tissue fibrosis often follows inflammation in many tissues, including the lung, skin and 

surrounding tumors, and why fibrosis can occur in the apparent absence of inflammatory 

cells, such as in idiopathic pulmonary fibrosis [43 and 44].  

Interstitial flow in cancer 

Interstitial flow in and around tumor tissue has particular importance in delivering 

anticancer agents to tumor tissue. Given that growing tumors induce angiogenesis and 

angiogenic tumor vessels are more permeable to proteins and large molecules than mature 

vessels [45], there has been substantial interest in exploiting tumor vessel permeability to 

selectively accumulate drug carriers by size in tumor tissue. However, interstitial transport is 

driven by pressure differences between the blood and interstitium, and in tumors interstitial 

fluid pressure is higher, ranging from 10 mmHg to 20 mmHg (with measurements as high as 
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90 mmHg), than in normal tissues, which have pressures that are typically <10 mmHg (Table 

1) [46]. Thus, the driving force for fluid movement from the blood into the tumor stroma is 

lower than that in normal tissues. These high interstitial pressures are due in part to the lack of 

functional lymphatics within the tumor [47] and result in a net convective flow out from the 

tumor mass into the surrounding tissue as a result of the lower interstitial pressure found 

there. (The conclusion that tumors lack functional lymphatics is controversial, however; 

several reports have suggested that metastatic tumors can induce lymphatic growth into the 

tumor mass [48].)  

Although the challenges to therapeutic delivery to solid tumors have been researched 

extensively, the impact of the extratumoral interstitial flow environment on tumor biology has 

not been much explored. Slow interstitial flow from the tumor mass into the surrounding 

tissue and draining lymphatics might, for example, help the tumor invade tissue and 

lymphatics by directing proteolytic enzymes and autocrine chemokines away from the tumor 

and towards the draining lymphatics. Alternatively, it might promote the formation of a 

fibrotic capsule around the tumor (as flow itself can drive fibroblast differentiation, as 

mentioned earlier [41]), which might inhibit tumor spread. Also, it is likely to affect the 

recruitment and function of tumor-associated macrophages that are found around highly 

invasive tumors [49] by further distributing chemotactic factors. 

New insights into how interstitial flow can affect tumor biology and invasion are just 

beginning to emerge. For example, it was recently shown that tumor cell proliferation can be 

influenced by intratumoral pressure [50]. In tumors overexpressing lymphangiogenic growth 

factors, peritumoral lymphatics (those surrounding and draining the tumor) were found to 

drain fluid at an increased rate, and tumor cells were directly observed homing to those 

lymphatics [51]. Finally, recent in vitro studies suggest that interstitial flow from tumor cells 

directed towards lymphatic endothelial cells greatly enhances the migration of tumor cells 

towards the lymphatics, through a combination of autocrine and paracrine signaling 

mechanisms [Shields, J.D, unpublished data]. We explore this possibility further when 

discussing autologous chemotaxis. 

Mechanisms of flow-induced cell response 

Evidence that interstitial flow can direct mechanotransduction events on the cell 

surface comes from recent studies on the endothelial glycocalyx. Originally, the shear stress 
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effects seen on endothelial cells were presumed to be due directly to fluid shear stress acting 

on the cell surface, but there is increasing appreciation for the role of the glycocalyx in 

moderating or amplifying fluid stresses to the cell surface. The primary constituents of the 

glycocalyx are heparan sulfate, chondroitin sulfate and hyaluronan [52], anchored to the cell 

by proteoglycan core proteins. The role of the glycocalyx in transducing shear stress to the 

cell has been demonstrated by selectively degrading these components and exposing the cells 

to shear: for example, when either heparinase or hyaluronidase were applied to an endothelial 

cell monolayer, well established responses to shear stress, such as the release of nitric oxide, 

were eliminated [53 and 54]. Although such stresses are not identical to those in true 

interstitial flow, as mentioned earlier, the fact that cells might sense flow only when the 

glycocalyx is intact gives strong support to the importance of cell–ECM connections in 

transducing mechanical stress by slow interstitial flow. In 3D in vitro matrices, cell surface 

shear stresses for flow rates of 1 μm s−1 were estimated to average 5 × 10−3 to 

7 × 10−3 dyne cm−2 and peak at 1.5 × 10−2 dyne cm−2, although the precise architecture of 

matrix fibers strongly affected these stresses [55]. It is unknown to what limit cells might 

sense shear stress, but with such low levels, it is likely that the glycocalyx and/or surrounding 

ECM helps amplify the signals to transduce mechanical stress to the cell. 

Another mechanism by which interstitial flow can affect cellular responses is by 

changing pericellular diffusion gradients of morphogens that are redistributed by the flow 

according to how they are transported: by diffusive and/or convective transport (see 

Glossary). Given that morphogens act by directing cellular responses spatially according to 

transcellular gradients, subtle changes in their pericellular distributions (e.g. the introduction 

of asymmetry) can have important effects on directed cell processes. In addition, many 

chemokines and growth factors that are both secreted by and act upon the same cell bind 

strongly to the matrix (usually to sulfated proteoglycan components of the matrix), including 

members of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), 

Wnt and TGF families and many immunoresponsive chemokines, such as CCL21, that direct 

leukocyte migration [56]. The binding of these factors to the matrix gives the cell more 

control of its microenvironment and enables solid-phase gradients to form. In addition, some 

of these proteins can signal to cells in both their liberated and their matrix-bound forms. 
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Interstitial flow in cell homing: the concept of autologous chemotaxis 

Chemokine gradients act as directional signals for cell chemotaxis or morphogenesis. 

Because migrating cells move up a chemokine concentration gradient, it is generally assumed 

that the chemokine is secreted by an upstream cell or tissue. An alternative mechanism, 

however, has recently been described whereby a cell can receive directional cues while 

simultaneously being the source of such cues, using interstitial flow. In this mechanism, even 

extremely subtle flows can affect the pericellular distribution of self-secreted proteins that 

interact with the matrix and thus cause autologous transcellular gradients, increasing in the 

direction of flow, to form (Figure 4c) [57]. Flow only slightly biases the distributions of a 

secreted matrix-binding morphogen and proteases that can liberate the morphogen, but those 

effects multiply and combine with the fact that, once the morphogen is liberated, it is further 

biased by flow. In this way, the ability of the secreted morphogen to bind the matrix serves as 

an amplification mechanism for autocrine gradient formation only in the presence of subtle 

interstitial flow. This has been demonstrated experimentally using a 3D culture of endothelial 

cells suspended in a VEGF-containing matrix, in which VEGF was covalently bound and 

liberated only upon proteolytic release by the cells [35]; capillary organization occurred only 

in the presence of both VEGF and interstitial flow (Figure 4b). This was presumably due to 

directed liberation of VEGF. 

This putative phenomenon of autocrine morphogen gradient formation by interstitial 

flow and matrix binding of morphogens suggests that leukocytes and tumor cells might use 

interstitial flow to home to draining lymphatics. This is possible when the cell expresses the 

homing chemokine receptor and also secretes the chemokine ligand. These cells include 

tumor cells [expressing the chemokine receptor CCR7 and the ligand CCL21 (Shields, J.D., 

unpublished data)], dendritic cells (expressing the chemokine receptor CCR7 and the ligand 

CCL19 [58]) and macrophages (expressing VEGF receptor-3 and its ligand VEGF-C [49]). 

As all of these ligands can bind to the matrix, and as all are important cues for migration, 

there is potential for each to direct migration by this mechanism. Mathematical modeling 

shows that even the smallest flows can create autologous gradients in such systems [57]. Not 

only might this help to explain why certain cell types have receptors for ligands that they 

themselves secrete, but this mechanism of self-directed cell migration might also be 

fundamental to the movement of tumor and immune cells in the direction of interstitial 

transport, that is, towards functional lymphatic vessels and on to the nearest lymph node. 
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Flow-induced autologous chemotaxis has recently been demonstrated in vitro, using human 

invasive and noninvasive breast cancer cells, to take place through the chemokine CCR7 and 

its receptor CCL21: whereas flow strongly enhanced the migration of tumor cells through 3D 

matrices in the direction of flow, blocking CCR7 signaling eliminated this effect (Shields, 

J.D., unpublished data). Thus, it is possible that autologous chemotaxis is a powerful 

mechanism that cells use to find and home to functional draining lymphatics. 

CONCLUDING REMARKS 

In summary, interstitial flow is an important component of normal tissue function and 

homeostasis and of many pathologies, from development through to adulthood. It might also 

be a key morphoregulator, acting by giving directional cues to cells. As prime examples, 

dendritic cell trafficking to lymph nodes and tumor invasion and dissemination through 

lymphatics can use interstitial flow to home towards lymphatic capillaries. Future research 

that incorporates and examines interstitial flow as a key microenvironmental component will 

be necessary to elucidate such mechanisms fully and exploit its potential in therapy and tissue 

engineering.  
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GLOSSARY 

Autologous chemotaxis 
a migratory mechanism whereby a cell can respond to a chemotactic gradient while at 
the same time being the source of the chemokine, when interstitial flow is present, to 
create the transcellular gradient. 

Convection 
transport driven by fluid movement. 

Diffusion 
transport driven by random thermal molecular motion (from high to low 
concentration). 

Fluid shear stress 
the tangential stress exerted on a surface (e.g. of a cell) due to fluid viscosity and flow. 

Glycocalyx 
a layer of heparan sulfate proteoglycans and hyaluronan secreted by and coating 
endothelial cells. 

Matrix binding 
the ability of a morphogen to be chemically bound to the matrix, typically through 
interactions with sulfated proteoglycans. 

Pressure gradient 
the difference in pressure divided by a unit length. 

Stress 
force per unit area. 

 

Box 1: Darcy's law  

 

 

where v is the bulk fluid velocity, K is the hydraulic conductivity, and ΔP is the pressure 

difference over length l of the tissue. 

Darcy's law provides the fundamental equation for low Reynolds number flows through 

porous media. Originally developed in 1856 to describe flow through a gravel bed, Darcy's 

law (here in simplified form) can be applied to biological tissues to calculate interstitial flow 

velocities because the physical parameters of pressure and K can be measured more readily. 
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FIGURE LEGENDS 

Figure 1. Interstitial and intravascular flows and their corresponding microenvironments. A 

blood vessel is shown, with insets showing the transvascular and glycocalyx regions. Black 

arrows represent luminal flow, and green arrows represent intra-glycocalyx, transvascular, 

and interstitial flows. By definition, interstitial flow refers to fluid flow around an interstitial 

cell: a cell attached to extracellular matrix in three dimensions. For endothelial cells, flow 

within vessels occurs only on the apical surface. Where there is a glycocalyx, flow might 

percolate through that network of proteoglycans and cause complex stresses on the cell 

surface, but fluid flow is still two-dimensional with respect to the cell surface. However, the 

intimate cell–matrix–flow interactions at the glycocalyx–cell interface might lead to effects 

similar to those in three dimensions. Intravascular pressure can drive flow through the 

vascular wall, but endothelial cells and smooth muscle cells will experience flow stresses 

through cell–cell connections and through cell–matrix connections as in true interstitial flow. 

Figure 2. Determinants of interstitial flow velocity. Darcy's law describes fluid flow through 

a 3D matrix as being driven by a fluid pressure gradient and controlled by a flow resistance. It 

is analogous to water flow through a mat of hair in a bathtub drain: the more dense the hair 

mat, the slower the fluid drains. One important source of interstitial convection is fluid 

movement driven by the pressure gradient between blood and lymphatic capillaries (red and 

green, respectively), determined by the pressure difference (Pblood – Plymphatic) divided by the 

intercapillary distance. The pressure gradient yields a resultant velocity, v (green arrows), 

controlled by the interstitial hydraulic conductivity, K, which varies depending on the density 

and composition of each tissue (Box 1, Table 1). 

Figure 3. The direct effects that interstitial flow has on cells. Interstitial flow can induce (a) 

fluid shear stress, σ, on the cell surface; (b) forces normal to the cell surface (F); (c) shear and 

normal forces to the pericellular matrix that is mechanically coupled to the cytoskeleton; and 

(d) redistribution of pericellular proteins (autocrine and paracrine signals) that bind cell 

receptors. 

Figure 4. Examples of cellular responses to interstitial flow. (a) Interstitial flow at 4 μm/s 

levels (right) cause human dermal fibroblasts seeded in type I collagen to differentiate into 

myofibroblasts by upregulation of TGF-β and align themselves and the matrix fibers 

perpendicular to the flow. Reproduced with permission from Ref. [41]; the scale bar 
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represents 20 μm. (b) Human blood endothelial cells form branched structures with lumens 

when cultured under interstitial flow (right). Here, low levels (4 μm/s) of interstitial flow 

greatly enhanced the effects of matrix-bound VEGF on capillary morphogenesis. Reproduced 

with permission from Ref. [35]; the scale bar represents 40 μm. (c) Computational modeling 

demonstrates that when morphogens or chemokines are autologously secreted by a cell in 

matrix-binding form and under low levels of interstitial flow, autologous morphogen 

gradients develop to guide cell processes in the direction of flow. The concentration profiles 

of liberated VEGF released by cell-secreted proteases,under the conditions in (b) are shown. 

Reproduced with permission from Ref. [35]. 
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ABSTRACT 

 
To date, adult lymphangiogenesis is not well understood. In this study we describe the 

evolution of lymphatic capillaries in regenerating skin and correlate lymphatic migration and 

organization with the expression of matrix metalloproteinases (MMPs), immune cells, the 

growth factors VEGF-A and VEGF-C, and the heparan sulfate proteogylcan perlecan, a key 

component of basement membrane. We show that while lymphatic endothelial cells (LECs) 

migrate and organize unidirectionally, in the direction of interstitial fluid flow, they do not 

sprout into the region but rather migrate as single cells that later join together into vessels. 

Furthermore, in a modified “shunted flow” version of the model, infiltrated LECs fail to 

organize into functional vessels, indicating that interstitial fluid flow is necessary for 

lymphatic organization. Perlecan expression on new lymphatic vessels was only observed 

after vessel organization was complete, and also appeared first in the distal region, consistent 

with the directionality of lymphatic migration and organization. VEGF-C expression peaked 

at the initiation of lymphangiogenesis but was reduced to lower levels throughout 

organization and maturation. In mice lacking MMP-9, lymphatics regenerated normally, 

suggesting that MMP-9 is not required for lymphangiogenesis, at least in mouse skin. This 

study thus characterizes the process of adult lymphangiogenesis and differentiates it from 

sprouting blood angiogenesis, verifies its dependence on interstitial fluid flow for vessel 

organization, and correlates its temporal evolution with those of relevant environmental 

factors.  
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INTRODUCTION 

 

Adult lymphangiogenesis is an important process that occurs in wound healing and 

may play a role in lymphedema and cancer metastasis. Increasingly, the importance of 

lymphatic biology is being realized and many key advances in the field have recently 

emerged, particularly in the identification and characterization of key molecular regulators of 

lymphangiogenesis (1, 2). Through the analysis of gene expression in embryonic 

development, for example, the control of the lymphatic endothelial cell (LEC) phenotype by 

Prox1 (3) and the requirement of neuropilin-2 (4) and podoplanin (5) expression by LECs in 

embryonic lymphatic vessel formation have been established. Vascular endothelial growth 

factor (VEGF) receptor-3 (VEGFR-3) (6) and its ligands VEGF-C (7-9) and VEGF-D (10) 

have been well-established as critical for both embryonic and adult lymphangiogenesis, 

although VEGFR-3 ligation may not be required for lymphatic vessel maintenance (11). 

Developmental and mechanistic studies of these factors and others, including angiopoietin-1 

(12) and -2 (13), are continuing to elucidate the molecular underpinnings of 

lymphangiogenesis. 

Despite this emerging knowledge, lymphangiogenesis in adult tissues is not 

adequately understood. Regulators of developmental lymphangiogenesis may not necessarily 

have the same relevance in adult lymphangiogenesis or lymphatic regeneration, particularly 

considering that many of these factors play multiple roles in early development of both blood 

and lymphatic vessels before becoming specific to one type of endothelial cell in adulthood 

(2). Furthermore, many studies of adult lymphangiogenesis utilize models in which lymphatic 

growth is induced by orthotopic human tumor xenografts in mice (1) or by exogenous 

stimulation in alymphatic tissues (14, 15), which may not accurately reflect physiologically 

relevant situations. 

We recently developed a mouse model of adult lymphangiogenesis in regenerating 

skin and used it to demonstrate the role of interstitial flow in lymphangiogenesis (16, 17). In 

this model, a small circumferential band of skin is removed from the middle of the tail, fitted 

with a gas-permeable silicone sleeve, and filled with collagen. The collagen provides a 

scaffold for tissue regeneration that is initially cell-free, allowing the infiltration of immune 

cells and ingrowth of blood and lymphatic vessels to be tracked both spatially and temporally 

as the tissue regenerates. Furthermore, the silicone sleeve keeps the wound moist and intact 

and prevents granulation; indeed, the regenerated skin is virtually identical to native skin 

except for the absence of hair follicles that do not regenerate. Importantly, the collagen 
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scaffold serves as a fluid bridge for the one-way interstitial convection of lymph fluid 

between the distal and proximal halves of the tail. In other words, since lymph always flows 

from the tip of the mouse tail towards the body, interstitial fluid flow through the regenerating 

region will always be unidirectional.  

We previously used this model to demonstrate that interstitial flow plays an 

organizational role in lymphangiogenesis, specifically showing that lymphatic capillaries 

develop in the direction of lymph flow. We had hypothesized that flow was necessary to 

create fluid channels in the regenerating region into which LECs migrate and organize into 

lymphatic vessels. This model was also used to demonstrate that although complete inhibition 

of lymphangiogenesis in regenerating skin could be achieved by systemic delivery of 

mF431C1, a VEGFR-3 blocking antibody (11), excess VEGF-C in the regenerating region 

could not enhance physiological lymphangiogenesis (18). This model has thus proven useful 

for studying the effects of established biochemical cues on lymphatic regeneration.  

Here we characterize the process of lymphangiogenesis in the regenerating skin model 

to assess relative timing, distribution, and importance of some potential key regulating factors 

relative to lymphatic growth. Specifically, we examine lymphatic growth and morphology at 

early (1, 3, 5, 7, and 10 days) and later (17, 25, and 60 days) timepoints in the regeneration 

process and correlate temporally the presence of VEGF-C, VEGF-A, the heparan sulfate 

proteoglycan (HSPG) perlecan (a key component of basement membrane), MMPs, and 

immune cells to lymphatic growth and morphology. We demonstrate that lymphatic 

regeneration occurs via single LECs migrating with interstitial fluid flow and later, after 

populating the region, coalescing into vessels. We also provide further evidence that 

interstitial fluid flow is necessary for LEC organization using a shunted flow modification of 

our model. We show that VEGF-C expression is decreased as the lymphatic vessels become 

connected and functional, at which time a discontinuous perlecan expression pattern begins to 

become present on the lymphatics. Also, our data suggests that MMP-9 may not be important 

in adult dermal lymphangiogenesis, and support previous observations that macrophages may 

play a critical role (15).  
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MATERIALS & METHODS 

 

Animal and sample preparation 

All studies utilized 6–8 week old female BALB/c mice (Charles River Laboratories, 

France); 3-5 mice were used at each timepoint. Mice were anesthetized with an intraperitoneal 

injection of ketamine (65 mg/kg), xylazine (13 mg/kg), and acepromazine (2mg/kg). An 

analgesic, butorphanol (0.05 mg/kg), was administered subcutaneously twice daily for three 

days following the procedure. All protocols were approved by the Veterinary Authorities of 

the Canton Vaud according to Swiss law (protocol number # 1687). 

Mice were prepared as described previously (17). Briefly, a 2 mm wide 

circumferential band of dermal tissue was excised midway up the tail. The area was then 

covered with a gas-permeable silicone sleeve and filled with type I rat tail collagen (BD 

Pharmingen, San Jose, CA). The sleeve was secured with Nexaband adhesive (Abbott Labs, 

Abbott Park, IL) at the proximal edge. Mice were sacrificed at specified times from 1-60 days 

post-procedure. Additionally, to test the hypothesis that interstitial fluid flow is necessary for 

lymphatic organization, a modified “shunted flow” model was prepared in three mice. In this 

modified model, a 2 mm square excision was made instead of a circumferential excision, 

allowing for lymph to circumvent around the regenerating region through existing lymphatics 

in the intact tissue (Fig. 1).  

After sacrificing the animals, a section of tail 8 mm long (containing the regenerating 

region along with some native distal and proximal tissue) was removed and flash frozen in 

liquid N2. Tissue samples were transversely cryosectioned into 12 and 60 μm-thick sections 

and stored at -80˚C until immunostaining. 

To further examine the role of MMP-9 in this model, MMP-9 deficient on an FVB/NJ 

background, along with wild-type controls, were obtained (FVB.Cg-Mmp9tm1Tvu/J; The 

Jackson Laboratory, Bar Harbor, ME). Nine female mice at 6 weeks of age from the MMP-9 

deficient strain and 9 female FVB/NJ controls were prepared as described.  Three mice from 

each group were sacrificed at 17, 25, and 60 days. 

 

Microlymphangiography 

Mice were anesthetized as above and the regeneration of the lymphatic vasculature 

was examined by fluorescence microlymphangiography (17, 19). A fluorescently labeled 

macromolecule (2000 kDa fluorescein-conjugated dextran, 2 mg/ml; Molecular Probes, 

Carlsbad, CA) was injected intradermally at a constant pressure of 45 cm of water into the tip 
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of the tail. As the fluorescent tracer was picked up and transported by the lymphatic vessels, it 

was clearly visible within dermal lymphatic capillaries, thus providing a clear visualization of 

lymphatic functionality. The lymphatic vasculature was monitored with a Zeiss Axiovert 

200M fluorescence microscope and Zeiss MRm camera. 

 

Immunofluorescence and immunohistochemistry  

To visualize blood endothelial cells (BECs) and LECs, both thin (12 μm) and thick (60 

μm) sections were co-stained with primary antibodies to the lymphatic-specific marker 

LYVE-1 (1:500; rabbit polyclonal; Upstate, Charlottesville, VA), and endothelial cell marker 

CD31 (1:200; rat polyclonal; BD Pharmingen). Although CD31 has an affinity for 

lymphatics, co-staining eliminated any discrepancy in identifying BECs from LECs. For 

immune cells and MMPs, thin (12 μm) sections were labeled using the following anti-mouse 

antibodies: the leukocyte-common CD45 (1:100; rat monoclonal; BD Pharmingen), the 

macrophage-specific surface marker F4/80 (1:50; rat monoclonal; Serotec, Raleigh, NC), the 

Langerhans dendritic cell protein langerin (1:50; goat polyclonal; Santa Cruz Biotechnology, 

Santa Cruz, CA), MMP-2 (1:25; goat polyclonal; R&D Systems, Minneapolis, MN), MMP-8 

(1:100; goat polyclonal; Santa Cruz Biotechnology), MMP-9 (1:400; rabbit polyclonal; 

Chemicon, Temecula, CA) or MMP-13 (1:500; goat polyclonal; Chemicon). The heparan 

sulfate proteoglycan perlecan was also stained (1:500; rat monoclonal; U.S. Biological, 

Swampscott, MA) together with LYVE-1. These antibodies were detected with Alexafluor 

488 or 594-conjugated donkey, rabbit, and goat IgG secondary antibodies (1:200, Molecular 

Probes, Carlsbad, CA), counterstained with DAPI (Vector Labs, Burlingame, CA). Thin 

sections were observed and imaged under a Zeiss Axiovert 200M fluorescence microscope 

with an Axiocam MRm camera. Confocal stacks of thick (60 μm) sections were scanned 

using a Zeiss LSM 510 Meta confocal microscope and maximum projections were generated 

for presentation. 

VEGF-A and VEGF-C were labeled immunohistochemically. Sections were first fixed 

in 4% PFA, blocked against endogenous biotin and avidin (Biotin Blocking System, Dako, 

Carpenteria, CA), then labeled with VEGF-A (1:50; rabbit polyclonal; Santa Cruz) or VEGF-

C (1:50; goat polyclonal; Santa Cruz) and biotinylated secondary antibodies (1:200; 

AffiniPure donkey and rabbit, respectively; Jackson ImmunoResearch, West Grove, PA). 

These were then visualized using the ABC-AP kit and VectaRed (Vector Labs). Sections were 

counterstained with hematoxylin, dehydrated, and mounted with Eukitt (Fluka Chemie AG, 
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Buchs, Switzerland). Images were captured with an Olympus AX70 Microscope and DP70 

Camera. 

 

Image analysis 

Images of the regenerating region were assembled into complete montages in 

Photoshop (Adobe Systems, San Jose, CA). LECs were defined as cells with a blue (DAPI-

stained) nuclei surrounded by green (LYVE-1 with AlexaFluor 488) labeling. After defining 

the borders of the region, the number of LECs within each half of the regenerating region 

were counted and summed across three random 12 μm sections from each animal. Similarly, 

Langerhans dendritic cells were counted by identifying nuclei of langerin-labeled cells in the 

regenerating regions of three 12 μm sections at each time point.  

Metamorph 6.3 image analysis software (Molecular Devices Corp., Sunnyvale, CA) 

was used for quantifying MMPs, growth factors, and other immune cells. For immune cells 

and MMPs, three regenerating region montages from like groups of images were analyzed to 

identify positive fluorescent labeling using intensity thresholding. The region was then clearly 

identified with a freehand tool (with care taken to exclude pockets or defects in the tissue 

sections) and the percentage of stained area within each regenerating region was obtained. 

Values for three regions were averaged. For growth factor quantification, the color range of 

Vector Red (Vector Labs) staining, indicating positive labeling of either VEGF-A or VEGF-

C, was identified and the percent coverage of each regenerating region was similarly 

measured. The data was normalized for each factor to the maximum expression.  

 

Statistics 

ANOVA and two-tailed t-tests were performed to determine statistical significance. 

Data are reported as average ± standard deviation. For MMPs, immune cells, and growth 

factors, the total expression during regeneration was compared to that of normal (control) 

tissue to determine significance in upregulation during regeneration. Additionally, single-

factor ANOVA was performed on expression during regeneration to determine if there were 

significant differences among all of the time points.  
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RESULTS AND DISCUSSION 

 

Unidirectional regeneration with interstitial fluid flow 

First, we confirmed our earlier findings (17) that in regenerating mouse tail skin, 

lymphangiogenesis occurred in the direction of lymphatic flow – distal to proximal – which 

was also the direction of interstitial flow in the regenerating skin where lymph flow was 

interrupted. We further quantified this directionality in migration to demonstrate statistical 

significance (Fig. 2F). This was in contrast to blood angiogenesis, which occurred from all 

directions in the regenerating skin. Quantification of LECs in 12 μm sections revealed that the 

regenerating region was initially free of LECs and remained so through day 10 (Fig. 2E). 

While very few LECs were seen in the region at day 10 (Fig. 2B), those present were confined 

to the distal half (P=0.007) (Fig 2F). At day 17 (Fig. 2C), some LECs were present in the 

proximal half, but the distal population was much greater (P<0.001). Even at later timepoints 

of 25 and 40 days, LECs populated the upstream (distal) region significantly more than the 

downstream region (P=0.04 and P=0.006 for 25 and 40 days, respectively), indicating that 

proliferation and migration were occurring primarily from the distal region. Even though the 

total number of LECs in the region did not significantly change after day 17 (Fig. 2E), it was 

not until day 60 (Fig. 2D), when functional and continuous lymphatic capillaries appeared 

normal, that the distribution of LECs equalized between both halves of the regenerating 

region (P=0.4).  

To further explore whether interstitial flow is necessary for lymphatic organization, 

mice were prepared with a square regenerating region (as opposed to the circumferential 

model), which allows lymph flow to be circumvented around the implanted collagen gel in the 

intact lymphatic vessels. Unlike the circumferential collagen implant, where distal lymph 

must flow interstitially through the regenerating region to be picked up by functional 

lymphatics on the proximal side, lymph need not flow through the high resistance 

regeneration zone in the square model since the intact surrounding lymphatic vessels provide 

a lower resistance to flow. While this relative lack of directional interstitial flow did not 

inhibit re-epithelialization or blood angiogenesis, we found that LECs failed to organize into a 

connected, functional lymphatic network in this shunted flow region (Fig. 1), demonstrating 

that interstitial fluid flow is necessary for functional lymphatic capillary organization.  

Conversely, blood vessel regeneration was independent of the interstitial flow 

direction. Blood vessels initially appeared to sprout from the deeper, larger blood vessels 

underneath the regenerating region (near the bone) at day 7, and at day 10, sprouts were seen 
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equally from distal and proximal edges as well (Fig. 2B). By day 17, blood vessels were 

present throughout the region. In the square shunted flow model, blood vessel regeneration 

was indistinguishable from that seen in the circumferential model (data not shown), as was re-

epithelialization of the collagen gel. 

 

Lymphatic morphogenesis: coalescing rather than sprouting 

Confocal microscopy of 60 μm sections revealed that in contrast to sprouting, LECs 

migrated as single cells (sometimes coalescing into small groups of cells) in the direction of 

interstitial flow, and, after sufficiently populating the region, later organized into vessels. 

LECs were generally absent from the regenerating region until day 10 when individual LECs 

or small groups were seen migrating into the distal half of the region (Fig. 3A). By day 17, 

multicellular groups or ducts were present (Fig. 3B), but were not connected to other groups. 

LECs predominantly began to organize in a fashion reminiscent of vasculogenesis by day 25. 

At this time, LECs in both the distal and proximal halves were already organized into vessel 

structures (Fig. 3C). At day 60, the regenerated region had a complete lymphatic vasculature 

whose morphology appeared similar to that of native vessels. In contrast, during concurrent 

blood angiogenesis, new blood vessels sprout directly from the existing native vasculature. 

Thus, by migrating as single cells in the direction of interstitial flow and then later coalescing 

into individual short vessel fragments and eventually into an interconnected capillary 

network, LEC organization into vessels was more reminiscent of vasculogenesis than of 

sprouting angiogenesis.  

 

Development of basement membrane following lymphatic organization 

Past analysis of endothelial cell basement membrane composition has shown that the 

predominant HSPG in the basement membrane of mature blood vessels is perlecan (20). This 

HSPG, produced in varying degrees by all endothelial cells (21), is essential for 

developmental vasculogenesis in mice (22), and is expressed during angiogenesis (23) and 

following vessel injury (24). Although lymphatic capillaries have a discontinuous basement 

membrane (25), it is not known at what stage during lymphangiogenesis it appears. Using 

confocal microscopy on 60 μm sections, we observed perlecan co-localization with lymphatic 

vessels in regenerating skin only after organization had occurred, at day 25 and day 60 (Fig. 

3). Furthermore, its expression followed the spatial pattern of vessel formation and 

organization. At early times, before vessel organization was seen (day 10 and day 17), 

perlecan expression was limited to new blood vessels. At day 25 (Fig. 3C), when significant 
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organization of LECs into vessels was underway, some lymphatic structures in the distal half 

were perlecan positive while those in the proximal half were not. By day 60 (Fig. 3D), nearly 

all lymphatic vessels in the distal half were co-localized with perlecan, but in the proximal 

half where some vessels were still forming, perlecan expression appeared more sporadically. 

In normal intact skin, the lymphatic capillaries strongly expressed perlecan (Fig. 3E). Thus, 

since the HSPG perlecan identifies basement membrane on regenerating lymphatic vessels 

and appears only after vessel organization has occurred, it may be indicative of lymphatic 

vessel maturation. Additionally, its initial appearance only on distal vessels further 

demonstrates the directionality of both LEC migration and lymphatic organization in this 

model.   

 

Early VEGF-A and -C upregulation 

Expression of VEGF-A and VEGF-C were highest during the initiation of both blood 

and lymph angiogenesis. VEGF-A expression (Fig. 4) appeared to be highest at day 5, slightly 

preceding observable blood angiogenesis. These differences in expression, however, were not 

statistically significant. VEGF-C expression (Fig. 4) was highest prior to, and during the 

initiation of, lymphangiogenesis (days 3-10). This expression was significantly higher at days 

3-10 than at days 17 and 25 (P=0.033). These expression profiles suggest that heightened 

expression of both VEGF-A and VEGF-C signaling might be most important in early (i.e. 

initiation) rather than later (i.e. organization and maturation) stages of vasculogenesis and 

lymphangiogenesis, consistent with their known functional roles (2, 26). 

 

MMP expression 

MMPs known to be upregulated in murine wound healing, specifically MMP-2, -8, -9, 

and -13 (27-29), were examined to determine their transient relationship to lymphatic 

regeneration. Our results suggest that only MMP-9 and MMP-13 were significantly elevated 

in the regenerating region compared to normal control skin (P=0.006 and 0.001, respectively), 

although the expression of MMP-2 was almost significantly higher during regeneration than 

in control tissue (P=0.056) and appeared to peak at day 17 (Fig. 4). MMP-2 and -9 play 

important roles in extracellular matrix remodeling (30, 31), endothelial cell migration (32-34), 

and vasculogenesis (34, 35); we found that MMP-2 expression (Fig. 4) increased after day 10, 

concurrent with blood angiogenesis and at the initiation of lymphangiogenesis. Surprisingly, 

MMP-9 expression was very low after day 7, so its link to endothelial cell migration might be 

more important for blood angiogenesis but not critical to lymphangiogenesis. MMP-13 has 
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been demonstrated to play a critical role in blood neovascularization (36) in conjunction with 

macrophages, which help induce angiogenic sprouting by using MMPs to extravasate from 

blood vessels (37). MMP-13 expression appeared to peak early, by day 7, thus preceding 

elevated macrophage numbers in the regenerating region (below). Although a role in blood 

neovascularization has been established (36), it is therefore possible that MMP-13 activity is 

only critical for revascularization by mechanisms dependent on sprouting from the existing 

vasculature. MMP-8 expression was very low at all times in the regenerating tissue, despite 

other observations that it is upregulated in dermal wounds by neutrophils (38). 

To examine the hypothesis that MMP-9 is not necessary for adult dermal 

lymphangiogenesis, we examined lymphatic regeneration in transgenic mice lacking MMP-9. 

The regenerating regions of these MMP-9 deficient mice were stained for LECs and BECs at 

day 17 and day 60. There were no observable differences in the extent or morphology of 

either lymphatic or blood vessels in the regenerating region of these mice compared to 

matched wild-type control mice (Fig. 5A). Additionally, the number of LECs identified in the 

regenerating region at day 17, a critical timepoint in regeneration, was the same between the 

MMP-deficient mice and matched wild type controls (P=0.48) (Fig. 5B). This is not 

inconsistent with other reports that showed minimal differences in blood angiogenesis in 

MMP-9 deficient mice (39, 40). It has been suggested that MMP-2 might have a more crucial 

role than MMP-9 in retinal angiogenesis (40) and that synergy between MMP-2 and -9 is 

essential for tumor vascularization (39); our data suggests that MMP-2 might be more 

important in lymphangiogenesis, at least in regenerating mouse skin, than MMP-9.  

The temporal expression patterns of each of the MMPs surveyed correlated with the 

results other wound healing studies (27, 28, 38, 41). While it was not possible to define the 

exact role of each MMP due to their release by many cell types, including infiltrating immune 

cells, keratinocytes, and endothelial cells, as well as potentially overlapping and/or redundant 

roles in many different components of the skin regeneration process, our data demonstrate 

that in terms of timing, MMP-2 was the most closely correlated to the onset of 

lymphangiogenesis, and that lymphangiogenesis appeared normal in MMP-9 null mice.  

 

Immune cell infiltration 

Macrophages and dendritic cells, as antigen-presenting immune cells, utilize 

lymphatic vessels in adaptive immunity and may be involved in lymphangiogenesis (15); 

furthermore, macrophages both secrete VEGF-C (42) and chemotact up a VEGF-C gradient 

(43) and may thus help direct LEC migration as well. We found that macrophage numbers 
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were much higher during regeneration (P=0.001) and peaked during LEC migration and 

organization at days 17-25 (P=0.058), hinting that macrophages may contribute to pre-

lymphatic fluid channeling, a role already demonstrated in blood angiogenesis (44) and 

consistent with recent findings that macrophages are necessary in inflammation-induced 

corneal lymphangiogenesis (15). Total immune cell numbers peaked at day 3 (P<0.001)(Fig. 

4). These early infiltrating immune cells at day 3 were typically neutrophils, as evidenced by 

polymorphonuclear Giemsa staining (data not shown). Very few Langerhans dendritic cells, 

normally present in the epidermis, were seen in the regenerating region until day 17 or 25, 

presumably when the regenerated epidermis is sufficiently integrated (P=0.028). Due to 

intense immune cell infiltration during inflammation and in the wound healing response, exact 

roles for immune cells were difficult to discern, however, the correlation of macrophage 

infiltration with lymphangiogenesis at later times supports the prospective role of 

macrophages in pre-lymphatic tunneling.  

 

CONCLUSIONS 

 

This study of lymphangiogenesis in regenerating skin provides new insight into adult 

lymphatic regeneration in a physiologically relevant environment and correlates potential 

contributing factors, such as MMPs and immune cells, to this process. We showed that 

migrating LECs populate the regenerating region in the direction of interstitial fluid flow, and 

then grow together in a vasculogenesis-like fashion to form a new interconnected network of 

lymphatic vessels. Also, we demonstrated that interstitial flow is necessary for the 

organization of LECs into a functional network while MMP-9 was not. Among the factors 

examined, the timing of MMP-2 and macrophages were more closely correlated to the late 

infiltration of LECs in the regenerating region, while basement membrane begins to develop 

only after the lymphatic structures have organized into functional vessels.  
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FIGURE LEGENDS 

Fig. 1. Interstitial flow and the mouse tail model of skin regeneration. (A) In the 

circumferential model, lymph flow from distal lymphatics (that is traveling in the proximal 

direction) must move interstitially through the collagen implant in order to continue its flow 

in the proximal lymphatic capillaries. Functional and organized lymphatic capillaries are seen 

by microlymphangiography at day 60. (B) In the square model, lymph flow is circumvented 

around the implant in pre-existing lymphatic capillaries, and the entire lymphatic circuit is 

uninterrupted. Lymph does not become interstitial fluid in the implant as in the 

circumferential model, and thus interstitial flow through this square implant is much less than 

that through the circumferential implant. In this shunted flow model, LECs do not organize 

into a functional network (as evidenced by microlymphangiography), despite the otherwise 

normal skin regeneration. In all microlymphangiography images, green indicates the lymph 

fluid tracer (fluorescein-dextran) and thus identifies functional lymphatics and interstitial flow 

of post-lymph through the regenerating regions. Bar = 1 mm. 

 

Fig. 2. Lymphatic regeneration occurs in the direction of interstitial flow as shown by 

maximum projections of confocal scans. (A) At 7 days, the regenerating region (marked by 

yellow dashes) is free of LECs, but blood vessels (red) appear to sprout from deeper vessels 

(open arrows). (B) At day 10, very few LECs (arrowheads) are seen, while blood vessel 

sprouting is present in all directions. (C) At day 17, LECs (green) are seen in higher numbers 

in the distal end of the regenerating region, and more organization (arrows) is also seen in the 

distal end. LECs in the proximal half mostly remain as single cells. Blood vessels are present 

throughout the regenerating region. (D) At day 60, LECs are present throughout the 

regenerating region and organized into an interconnected network, similar to that seen in 

native skin (white arrow). Note the overall contraction of the regenerating region over time. 

Bar = 300 μm. (E) Quantification of total LECs in the regenerating region confirms that LEC 

infiltration begins around day 10, is drastically increased at day 17, and is mostly complete by 

day 25. (F) Relative distribution of LECs in the distal vs. proximal halves of the regenerating 

region verifies qualitative observations that migration is primarily occurring from the distal 

end. Through day 40, the relative number of LECs in the distal half is consistently and 

significantly greater than that in the proximal half. By day 60, LEC distribution is normalized. 

(* P<0.05) 
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Fig. 3. Lymphangiogenesis as a process of cell migration and subsequent organization, rather 

than sprouting, with basement membrane developing after vessels become functional. Shown 

are maximum projections of confocal scans. (A) At day 10, the regenerating region is mostly 

free of LECs (green) with only a few LECs (arrows heads) present near the distal end. The 

basement membrane proteoglycan perlecan (red) is readily detected on blood vessels. (B) At 

day 17, LECs are present throughout the entire regenerating region and organized into 

discrete and separate multi-cellular structures. Perlecan expression is not seen to be co-

localized with any of these structures, indicating that basement membrane is absent in these 

primitive structures. (C) At day 25, lymphatic organization is extensive and nearly complete. 

Perlecan is detected only on lymphatic vessels in the distal half of the regenerating region 

(arrows). (D) By day 60, a discontinuous perlecan staining pattern is present on nearly all 

lymphatic vessels (arrows), although staining is visibly stronger in the distal half. (E) 

Lymphatic capillaries in native skin show strong perlecan staining. Bar=50 μm. 

 

Fig. 4. Comparison of the relative temporal expression patterns of VEGF-A and VEGF-C, 

MMPs, and immune cells during regeneration. VEGF-A expression was highest at the 

initiation of angiogenesis (days 5). VEGF-C expression was highest during the initiation of 

lymphangiogenesis (days 5-10) and was reduced during the organization phase (days 17+). 

Expression of MMP-2 peaked during lymphangiogenesis. MMP-8 expression was very low 

throughout regeneration. MMP-9 was high at early times, but decreased after day 7, while 

MMP-13 expression was highest before day 10, just preceding macrophage infiltration. Early 

infiltration of CD45+ immune cells at day 3 primarily reflects neutrophils. Macrophages 

(F4/80+) were highest after day 10, correlating with the onset of LEC infiltration. Langerhans 

dendritic cells (langerin+) did not repopulate the region until day 17 and later, when LECs 

were present and undergoing vessel organization. (* P<0.05; over control indicates significant 

change in regeneration, over bracket indicates temporal significance during regeneration) 

 

Fig. 5. No differences were seen in lymphatic regeneration in MMP-9 null mice vs. matched 

wild type controls. (A) The regenerated blood (red) and lymphatic (green) vessels in MMP-9 

null mice were morphologically indistinguishable to those in control mice at day 17 and day 

60. Bar=150 μm. (B) The number of LECs counted in the regenerating region at day 17 was 

not significantly different between the mouse strains (P=0.48). 
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ABSTRACT 

 

Activation of vascular endothelial growth factor receptor -3 (VEGFR-3) by VEGF-C initiates 

lymphangiogenesis by promoting lymphatic proliferation and migration. However, it is 

unclear whether VEGFR-3 signaling is required beyond these initial stages, namely during the 

organization of new lymphatic endothelial cells (LECs) into functional capillaries. 

Furthermore, the role of VEGFR-2, which is also expressed on LECs and binds VEGF-C, is 

unclear. We addressed these questions by selectively neutralizing VEGFR-3 and/or VEGFR-2 

for various time periods in an adult model of lymphangiogenesis in regenerating skin. While 

blocking either VEGFR-2 or VEGFR-3 with specific antagonist mAbs (DC101 and mF4-

31C1, respectively) prior to lymphatic migration prevented lymphangiogenesis, blocking 

VEGFR-3 subsequent to migration did not affect organization into functional capillaries, and 

VEGFR-2 blocking had only a small hindrance on organization. These findings were 

confirmed in vitro using human LECs and anti-human antagonist mAbs (IMC-1121a and hF4-

3C5): both VEGFR-2 and -3 signaling were required for migration and proliferation, but 

tubulogenesis in 3D cultures was unaffected by VEGFR-3 blocking and partially hindered by 

VEGFR-2 blocking. Furthermore, both in vitro and in vivo, while VEGFR-3 blocking had no 

effect on LEC organization, co-neutralization of VEGFR-2 and VEGFR-3 completely 

prevented lymphatic organization. Our findings demonstrate that cooperative signaling of 

VEGFR-2 and -3 is necessary for lymphatic migration and proliferation, but VEGFR-3 is 

redundant with VEGFR-2 for LEC organization into functional capillaries.  

 

 

 

 

 

 

 

 

 

Key words: VEGF-C, mouse, in vitro, wound healing, vasculogenesis
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INTRODUCTION 

 

Vascular endothelial growth factor (VEGF) receptor -3 (VEGFR-3) activation by its 

ligands VEGF-C and VEGF-D is necessary for developmental and adult lymphangiogenesis 

(1-4). In tumor models, neutralization of VEGF-C with soluble VEGFR-3 reduced 

lymphangiogenesis and lymphatic function at the periphery of VEGF-C–overexpressing 

tumors (5). Signaling through VEGFR-3 has therefore been implicated in tumor lymph node 

metastases (6-8). Indeed, this importance has been demonstrated through the inhibition of 

VEGFR-3 that prevented prostate and melanoma (9) and breast cancer metastases (10) by 

suppressing tumor-associated lymphangiogenesis. 

However, lymphangiogenesis is a complex process comprised of multiple events 

including lymphatic endothelial cell (LEC) proliferation, migration, organization, and vessel 

maturation. Although VEGFR-3 signaling has been shown to be unnecessary for lymphatic 

maintenance and function of existing lymphatic vessels (5), its roles in each of the various 

steps of lymphatic development remain unclear. Proteolytically processed (mature) VEGF-C 

and -D can also bind to VEGFR-2 (11-13), and the activation of VEGFR-2 can also induce or 

guide lymphangiogenesis (14, 15). Furthermore, it has been reported that VEGFR-2 can form 

heterodimers with VEGFR-3 (16, 17), but it is unclear whether heterodimer phosphorylation 

signals different functional responses than homodimer phosphorylation. It is also not known 

how these receptors interact from a functional perspective and how their different signaling 

patterns may affect different stages of lymphatic development.  

Here we explore the individual and combined roles of VEGFR-2 and VEGFR-3 signaling 

in three distinct components of adult lymphangiogenesis – LEC proliferation, migration, and 

vessel organization – using complementary in vivo and in vitro models. We use a model of 

adult skin regeneration in the mouse tail that we developed previously to investigate the role 

of interstitial flow in the organization of lymphangiogenesis during dermal wound healing. In 

that study, we showed that lymphangiogenesis proceeds by unidirectional migration of LECs 

in the direction of interstitial fluid flow along fluid channels, followed by subsequent 

organization into a functional network of lymphatic vessels in a manner reminiscent of 

vasculogenesis (18, 19). Thus, in this model, adult lymphangiogenesis can be clearly divided 

temporally into three discrete phases – migration (determined by the distal-to-proximal 

distribution of cells in the regenerating region), proliferation (determined by total LEC 

number), and capillary organization (determined by immunostaining thick sections and via 
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microlymphangiography) - allowing us to investigate the importance of VEGFR-2 and 

VEGFR-3 signaling at each phase.  

Using this model, we previously demonstrated that endogenous VEGF-C expression is 

increased during lymphatic migration and proliferation but decreased during later stages of 

lymphatic organization (18, 19), and that delivery of exogenous VEGF-C induced lymphatic 

hyperplasia without improving lymphatic organization or function beyond control levels (20). 

Additionally, in this same model, blockage of VEGFR-3 with the mAb mF4-31C1 prevented 

regeneration of functional lymphatic vessels in the mouse skin without affecting pre-existing 

vessels (21). These findings suggest that while VEGF-C/VEGFR-3 signaling is necessary for 

lymphangiogenesis, it may not serve an important role in the functional or organizational 

evolution of lymphangiogenesis. Based on these results, we hypothesized that VEGFR-2 and 

VEGFR-3 signaling are important primarily during the early stages of lymphangiogenesis, 

which require LEC migration and proliferation, but are less important during the subsequent 

organization of LECs into functional lymphatic capillaries. To this end, antagonist mAbs 

against mouse VEGFR-2 and -3 were delivered at different stages of physiological lymphatic 

regeneration in adult mouse skin to determine the specific roles of these receptors in 

lymphangiogenesis. To support our in vivo results we also examined the importance of these 

receptors using in vitro models of human LEC migration, proliferation, and 3-D tubulogenesis 

in the presence or absence of antagonist mAbs to human VEGFR-2 and VEGFR-3.  

 

MATERIALS AND METHODS 

 

Neutralizing Antibodies 

All antagonist antibodies were provided by ImClone Systems, NY, NY. For in vivo 

studies, 0.625 mg of anti-mouse VEGFR-2 (DC101) (22) and/or anti-mouse VEGFR-3 (mF4-

31C1) (21) were injected intraperitoneally every two days. For in vitro studies, anti-human 

VEGFR-2 (IMC-1121a, 20 μg/mL) and anti-human VEGFR-3 (hF4-3C5, 10 μg/mL) (23) 

were used.  

 

In vivo studies 

Lymphangiogenesis model 

For all studies 6–8 week old, female BALB/c mice (Charles River Laboratories, France) 

were used; at least three mice were used for each condition at each time point examined. Mice 

were anesthetized with an intraperitoneal injection of ketamine (65 mg/kg), xylazine (13 



 81

mg/kg), and acepromazine (2 mg/kg). An analgesic, butorphanol (0.05 mg/kg), was 

administered subcutaneously twice daily for three days following the procedure. All protocols 

were approved by the Veterinary Authorities of the Canton Vaud according to Swiss law 

(protocol number #1687). 

The regenerating region of skin was created as previously described (18). Briefly, a 2-

mm wide circumferential band of dermal tissue (in which the lymphatic network in the tail 

skin is contained) was excised midway up the tail, leaving the underlying bone, muscle, major 

blood vessels, and tendons intact. The area was then covered with a close–fitting, gas 

permeable silicone sleeve and filled with type I rat tail collagen (BD Pharmingen, San Diego, 

CA). The collagen scaffold provides a pre-existing matrix in which epithelial and 

subepithelial tissues readily regenerate. LECs later observed within this region were thus the 

result of de novo cell migration, proliferation, and organization. 

The neutralizing antibodies were then administered as described above for durations that 

varied by experimental group (Table 1). 

 

Detection of functional lymphatics via microlymphangiography 

To visualize lymph flow patterns in situ, a 2 mg/mL solution of fluorescein-conjugated 

dextran of 70kDa (Molecular Probes, Carlsbad, CA) was injected intradermally into the tail 

tip at a constant pressure where it was taken up and transported by the lymphatics in the 

proximal direction, revealing functional lymphatic vessels and fluid channels. Fluorescence 

images were captured with a Zeiss MRm camera on a Zeiss Axiovert 200M fluorescence 

microscope. 

 

Immunofluorescence and immunohistochemistry 

Tail specimens were cut into either 12 or 60 μm-thick longitudinal cryosections and 

immunostained. To detect LECs, a rabbit polyclonal antibody against the lymphatic-specific 

hyaluronan receptor LYVE-1 (Upstate, Charlottesville, VA) was used along with an Alexa 

Fluor 488 conjugated goat anti-rabbit secondary antibody (Molecular Probes). To detect blood 

endothelial cells, a rat polyclonal CD31 antibody (BD Pharmingen) was used along with an 

Alexa Fluor 546 conjugated goat anti-rat secondary antibody (Molecular Probes). Cell nuclei 

were labeled with DAPI (Vector Labs, Burlingame, CA). Thin-section images of the 

regenerating region were imaged (as above) and assembled into complete montages in 

Photoshop (Adobe Systems, San Jose, CA). Thick sections were imaged with confocal 

microscopy on a Zeiss LSM 510 META confocal microscope; maximum projections are 
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presented. LECs were defined as cells with a nucleus completely surrounded by LYVE-1 

labeling. After defining the borders of the regenerating region, the number of LECs within 

each half were counted and summed across three random 12 μm sections from each animal. 

 

In vitro studies 

Lymphatic endothelial cell (LEC) culture  

Human dermal LECs were isolated from neonatal foreskins as previously described 

(24) and maintained in EBM basal media (Cambrex, Walkersville, MD) supplemented with 

20% FBS, 1% penicillin-streptomycin-amphotericin B (both GIBCO, Carlsbad, California), 1 

μg/mL hydrocortisone, and 50 μmol/l DBcAMP (both Sigma, St. Louis, MO) in collagen type 

I coated flasks (50 μg/mL). They were utilized until passage 8. 

 

In vitro proliferation assay 

The effects of VEGFR-2 and VEGFR-3 signaling on LEC proliferation were evaluated 

using a colorimetric BrdU Kit (Calbiochem, San Diego, CA). LECs were serum-starved for 2 

h, seeded into a collagen-coated 96 well plate (3x104 cells/well), and allowed to adhere for an 

additional 2 h. 100 μl full medium supplemented with 100 ng/mL recombinant human 

wildtype VEGF-C (rhVEGF-C, 2179-VC-025 , R & D Systems, Minneapolis, MN) along 

with either (i) 10 µg/mL Hf4-3C5, (ii) 20 µg/mL IMC-1121a, (iii) a combination of both 

antibodies, or (iv) no antibodies. Proliferation (proportional to BrdU incorporation) was 

measured after 24, 48 and 72 hours of receptor blockage. Samples were fixed and 

permeabilized, then BrdU incorporation was detected according to the manufacturer’s 

instructions.  

 

 

In vitro migration assay 

Polycarbonate transwell inserts (8 μm pore, Millipore, Billerica, MA) were coated with 

50 μg/mL type I collagen (BD Bioscience). LECs were seeded at a density of 105 cells per 

insert in basal growth medium. The lower chamber consisted of either basal media alone or 

full growth media supplemented with 100 ng/mL rhVEGF-C and either (i) 10 µg/mL Hf4-

3C5, (ii) 20 µg/mL IMC-1121a, (iii) a combination of both antibodies, or (iv) no antibodies. 

Appropriate neutralizing antibodies were also added to the top chamber for the duration of the 

experiment. Chambers were incubated at 37ºC for 24 hours before the samples were washed 

with PBS and fixed in methanol at 4 ºC. Non-migrated cells were removed with a cotton 
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swab. The membranes were then removed and mounted with Vectashield containing DAPI 

(Vector). Samples were visualized with a 40x objective and the numbers of migrated cells 

within 8 random fields of view were counted. Migration per insert was then calculated and 

expressed as fold increase over control. 

 

In vitro tubulogenesis assay 

A gel suspension assay was used to assess LEC organization, independent of 

proliferation and migration, into capillary tubules within a 3D environment. LECs were 

seeded within Growth Factor Reduced Matrigel (BD Biosciences) at densities of either 

0.5x106 (low density) or 1.5x106 cells per mL (high density). The solution was plated into 8-

well coverslip chamberslides (Lab-TEK Nalge Nunc, Naperville,) and the gel was allowed to 

polymerize for 2 h before treatment. Gels were subsequently maintained at 37ºC/5% CO2 in 

either basal media or full media supplemented with 100 ng/mL rhVEGF-C and either (i) 10 

µg/mL hF4-3C5, (ii) 20 µg/mL IMC-1121a, (iii) a combination of both antibodies, or (iv) no 

antibodies. After 6 days, gels were fixed in 2% PFA and cell structures were visualized with 

Alexafluor 488-conjugated phalloidin (Molecular Probes) and counterstained with DAPI. 

Samples were visualized using confocal microscopy (as above). Tube length per unit area was 

calculated using Image J software (NIH, Bethesda, MD) 

 

Immunoprecipitation and immunoblot for receptor phosphorylation 

LECs were grown to 95% confluence in 10 cm culture dishes. Cells were washed in 

PBS and serum starved for 48 hours and then incubated in the presence of either 10 µg/mL 

hf4-3C5, 10 µg/mL IMC-1121a, a combination of both, or neither for 30 minutes. Samples 

were then treated with 100 ng/mL wildtype rhVEGF-C for 20 minutes, lysed with modified 

RIPA buffer supplemented with a protease inhibitor cocktail (Pierce, Rockford, IL; and 1% 

PMSF) and phosphatase inhibitor cocktails (Sigma). Cleared lysate supernatants were then 

incubated with either 2 μg/ml anti-human VEGFR-3 (sc-321, Santa Cruz) or 2 μg/ml anti-

human VEGFR-2 (AF357, R & D Systems) and 30 μl Protein A/G agarose beads (Pierce) 

overnight at 4ºC. The pellets were then washed three times in inhibitor-supplemented lysis 

buffer, washed once in PBS, and boiled in laemmli sample buffer. Protein samples were then 

separated by SDS polyacrylamide gel electrophoresis, transferred onto nitrocellulose 

membrane, and phosphorylated VEGFR-2 or VEGFR-3 was detected with mouse anti-human 

PY20 (1.0 µg/mL, Upstate) and an HRP-conjugated secondary antibody (Amersham 
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Biosciences, Uppsala, Sweden). Total receptor was detected with either anti-VEGFR-3 (sc-

321) or anti-VEGFR-2 (sc-6251, Santa Cruz). 

 

Statistical methods 

For determination of LEC numbers in the regenerating region, at least three sections 

were counted per specimen. Data is presented as mean ± one standard deviation. All P values 

were calculated using a two-sided Student’s t-test.  

 

RESULTS 

 

Adult lymphatic regeneration without receptor neutralization  

Immunostaining of control mouse 60 μm-thick cryosections from the mouse tail skin 

regeneration model (Fig. 1A) demonstrated that unorganized LECs began to migrate into and 

proliferate within the distal half of the regenerating region 10 days post surgery (Fig. 1B). At 

day 17, LECs were present in both distal and proximal halves but were largely unorganized. 

At day 60, LECs in the control mice were highly organized into lymphatic vessels, indicating 

a regenerated lymphatic capillary network. All LYVE-1 positive cells (and structures) were 

confirmed to be LECs in this model (Supplemental Fig. 1). 

Microlymphangiography, in which a fluorescent tracer is injected intradermally into 

the tip of the tail and taken up by the functional distal lymphatics, confirmed that the newly 

formed functional lymphatic vessels in the regenerating region did not sprout from pre-

existing vessels but instead organized after migration (Fig. 1C). At both days 10 and 17, prior 

to organization of LECs into regenerating lymphatic capillaries, upstream lymph collected at 

the distal boundary and slowly diffused across the regenerating region. At day 60, when LECs 

were organized into vessels, upstream lymph was transported through the region inside 

regenerated hexagonal lymphatic vessels. 

 

Effects of VEGFR-3 neutralization on lymphatic regeneration in vivo 

To determine the involvement of VEGFR-3 in different stages of lymphangiogenesis, 

VEGFR-3 was inhibited during different stages of lymphatic regeneration. Consistent with 

our previous observations (21), we found that inhibition of VEGFR-3 from day 0 to day 60 

completely prevented lymphangiogenesis as demonstrated by both immunohistochemical and 

functional analyses (Fig. 1D-E). When VEGFR-3 blockade was removed subsequent to the 

initiation of lymphangiogenesis but prior to substantial lymphatic migration (days 10-60 of 
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regeneration), LECs failed to migrate into the regenerating region and no functional vessels 

were formed. This finding confirmed that VEGFR-3 signaling is necessary for LEC migration 

into regenerating tissue.  

At day 17 of normal regeneration, we found large numbers of unorganized LEC clusters, 

but no tubular capillary-like structures (Fig. 1F); thus, we also inhibited VEGFR-3 from day 

17 to day 60. Surprisingly, LEC clusters efficiently organized into functional vessels despite 

the absence of VEGFR-3 signaling and were indistinguishable from regenerated lymphatics in 

control mice (Fig. 1D-E). Thus, VEGFR-3 is crucial for the migration and colonization of the 

wound during regenerative lymphangiogenesis, but not for their organization into functional 

vessels.  

LECs appear inside the regenerating region as a result of their proliferation, migration or 

both since the regenerating region is initially acellular. Furthermore, it has been established 

that LECs migrate and organize from the distal end to the proximal end in this model, 

consistent with the direction of fluid flow (18, 19). Thus, LECs found in the regenerating 

region result primarily from cell migration from the distal host dermis. The total number of 

LECs and their distal-to-proximal distribution in the regenerating region are indicative of the 

degree of LEC migration and proliferation, respectively, over a given period of time. In 

untreated mice, quantitative measurements of LECs (LYVE-1 labeled cells in thin 

cryosections) in the distal vs. proximal halves of the regenerating region confirmed their 

unidirectional migration, with cells initially entering the distal region at day 10 and gradually 

migrating until, by day 60, the LECs are uniformly distributed throughout the entire region 

(Fig. 1F, 1G). Blocking VEGFR-3 activation from day 10 to 60 or from day 17 to 60 

significantly decreased the total number of LECs as compared to untreated controls (Fig. 1F). 

Blocking of VEGFR-3 also prevented LEC migration into the proximal portion of the 

regenerating region (Fig. 1G), resulting in the skewing of the LEC distribution towards the 

distal region. Specifically, we observed a significant difference between the percentage of 

LECs in the distal vs. proximal portions of the regenerating regions in mice treated with 

blocking mAbs to VEGFR-3 during days 10-60 and days 17-60. These distributions were 

remarkably similar to the distributions seen at days 10 and 17 in the wounds of control 

animals (Fig. 1G), lending further credence to arrested migration. Their overall numbers were 

similar to those when blocking was begun as well, attesting to arrested proliferation. 

Blocking VEGFR-3 from day 17 to 60 prevented further LEC migration and 

proliferation in regenerating tissue, but did not hinder the organization of LECs into 

functional capillaries within the regenerating region. Therefore, these findings strongly 
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suggest that VEGFR-3 activation is critical for LEC migration and proliferation but not their 

functional organization into lymphatic vessels. 

 

Effects of VEGFR-2 neutralization on adult lymphangiogenesis 

The effects of blocking VEGFR-2 activation on lymphangiogenesis were similar to 

those resulting from blocking VEGFR-3 (Fig. 2A). First, VEGFR-2 blocking from day 0-60 

completely blocked any lymphangiogenic response, consistent with other reports that 

VEGFR-2 is essential to lymphangiogenesis (14, 25, 26). VEGFR-2 blocking from day 10-60 

also resulted in the prevention of lymphatic migration, while blocking from day 17-60 

allowed existing LECs in the regenerating region to organize into lymphatic vessels. This data 

suggest that the activation of VEGFR-2 is also necessary for LEC proliferation and migration 

but not for LEC organization into functional vessels. However, while analysis of total LEC 

numbers in the regenerating region (Fig. 2C) when VEGFR-3 was blocked between days 17-

60 demonstrated that the number of LECs remained constant at the level present at the 

initiation of treatment (day 17), LEC numbers following VEGFR-2 blocking for the same 

period were reduced. This may reflect a small role of VEGFR-2 in LEC survival during later 

stages of lymphangiogenesis. 

 

Effects of combined VEGFR-2 and VEGFR-3 neutralization on adult 

lymphangiogenesis 

Since the neutralization of either VEGFR-2 or VEGFR-3 signaling alone inhibited LEC 

migration and proliferation but did not prevent their subsequent organization into lymphatic 

capillaries, we hypothesized that VEGFR-3 may be redundant with VEGFR-2 for lymphatic 

organization. To explore this possibility, mice were treated with both antagonist antibodies to 

VEGFR-2 and VEGFR-3 during various periods of skin regeneration (blocking between day 

0-60, 10-60, and 17-60). Lymphatic regeneration was completely arrested in all cases (Fig. 

2B-D), confirming the hypothesis and demonstrating the necessity for signaling of at least one 

of these receptors for all stages of lymphangiogenesis.  

 

Roles of VEGFR-2 and VEGFR-3 signaling in LEC proliferation in vitro 

The processes necessary for lymphatic regeneration, LEC proliferation, migration, and 

capillary organization, can be more readily assessed using in vitro studies that allow the roles of 

VEGFR-2 and VEGFR-3 signaling on each of these processes to be investigated in greater detail. 

Unlike the multitude of potentially contributing factors in the regeneration region that may cloud the 
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in vivo assesments, these LEC-only in vitro studies permit a transparent examination of the specific 

impacts receptor blocking has on LEC behavior. To be able assess the roles of VEGFR-2 and 

VEGFR-3 on proliferation, migration and organization in vitro, we first confirmed that our cultured 

LECs possessed functional receptors by immunoprecipitation (Fig. 3A). Stimulation with 

recombinant human wild type VEGF-C induced receptor signaling via tyrosine phosphorylation of 

both VEGFR-2 (top two panels) and VEGFR-3 (lower two panels). Furthermore, the efficiency of 

both human blocking antibodies was clarified. Neutralization of VEGFR-3 specifically prevented 

VEGFR-3 phosphorylation but showed little to no effect on VEGFR-2 signaling. Likewise, 

neutralization of VEGFR-2 blocked its phosphorylation down to baseline levels (seen when no 

VEGF-C was added to the medium), but allowed VEGFR-3 to phosphorylate. We also saw the 

presence of VEGFR-2/-3 heterodimers, as seen in each of the immunoprecipitation experiments (i.e., 

a lower MW band (corresponding to VEGFR-3) was phosphorylated along with the 200 kDa band 

(corresponding to VEGFR-2) that was co-immunoprecipitated, as seen in the top panel. 

Complete medium supplemented with 100 ng/mL VEGF-C promoted LEC 

proliferation (7.2 ± 0.3 fold increase over matching control after 72 h). Blocking the 

activation of either VEGFR-2 or VEGFR-3 significantly (but not completely) inhibited LEC 

proliferation (to 5.0 ± 0.3 fold and 3.7 ± 0.4 fold, respectively; Fig. 3B). Combined inhibition 

of both receptors further reduced proliferation (to 2.2 ± 0.3 fold).  

 

Role of VEGFR-2 and VEGFR-3 signaling in LEC migration in vitro 

  The relative importance of VEGFR-2 and VEGFR-3 signaling in LEC migratory responses in 

vitro mirrored those seen in vivo (Fig. 3C). Full media supplemented with 100 ng/mL recombinant 

human wild type VEGF-C (untreated) induced a 14 ± 3 fold increase in migration over basal levels. 

Inhibition of either VEGFR-2 or VEGFR-3 significantly decreased migration by 58% and 75%, 

respectively. Furthermore, combined inhibition of both receptors completely abolished LEC 

migration stimulated by VEGF-C. Thus, the activation of both receptors in vitro was necessary for 

LEC migration in an apparently additive manner. 

 

Role of VEGFR-2 and VEGFR-3 signaling in LEC organization in vitro 

 Finally, we examined the roles of VEGFR-2 and VEGFR-3 in capillary organization using in 

vitro tubulogenesis experiments under conditions that do not require LEC proliferation. When seeded 

at 1.5 x 106 cells/mL, LECs readily formed tubular networks with numerous filopodia between cells 

of neighboring structures (Fig. 4A). Similar multicellular structures were also seen in cultures with 

VEGFR-3 blocking. Organization was also seen when VEGFR-2 was blocked although this was 
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hindered in comparison to control and VEGFR-3 blockage. When the receptors were blocked 

together, almost no tubular structures were observed. To quantify these observations, the 

organizational capacity of LECs within a 3D matrix for each culture condition was measured as total 

tube length per unit area (Fig. 4B). Although capillary structures were clearly visible, VEGFR-2 

blockage resulted in reduced tube length compared with full media supplemented with VEGF-C 

alone. In contrast, blocking VEGFR-3 had no effect on the ability of LECs to form tube-like 

networks. Low density (0.5 x 106 cells/mL) seeded LECs failed to organize with or without blocking 

(data not shown), suggesting that LEC organization in 3D gels requires a minimum seeding density 

or maximum LEC-LEC distance for cell signaling.  

These observations corroborate our in vivo data and demonstrate that while lymphatic 

capillary organization does not require VEGFR-3 signaling when VEGFR-2 signaling is functional, 

one or the other is needed, and VEGFR-2 appears to be more important than VEGFR-3 in LEC 

organization. 

 

DISCUSSION 

 

Using complimentary in vivo and in vitro studies designed to clearly delineate the 

contributing processes of lymphatic regeneration, we demonstrate that VEGFR-3 plays both 

cooperative and redundant functions with VEGFR-2 in lymphangiogenesis. Signaling through 

both receptors concurrently is required for LEC migration and proliferation. However, once 

LECs are present in sufficient numbers, VEGFR-3 signaling is redundant with VEGFR-2 for 

organization, since blocking VEGFR-3 had no effect on organization. Likewise, VEGFR-2 

signaling is partially redundant with VEGFR-3, since organization was hindered but not 

blocked when VEGFR-2 was blocked. We use the term ‘redundant’ rather than ‘unnecessary’ 

because at least one receptor is necessary – when both receptors are blocked simultaneously, 

vessel organization is blocked. These findings support the hypothesis that VEGFR-3 signaling 

is critical for lymphatic proliferation and migration, but not for functional organization of 

lymphatic vessels, and represent, to our knowledge, the first demonstration of the individual 

roles of VEGFR-2 and VEGFR-3 in these three distinct components of lymphangiogenesis.  

Although less physiologically relevant, the in vitro studies allowed further 

confirmation of receptor roles specifically in LEC proliferation, migration, and organization 

in the absence of other cells or confounding cellular events that might also be affected by 

VEGFR-2 and VEGFR-3. Consistent with our in vivo data, VEGFR-3 was completely 

redundant with VEGFR-2 signaling for LEC tubulogenesis. In order for tube formation to 



 89

show receptor redundancy, high seeding density was necessary to minimize the amount of 

migration required for vessel formation, since lower seeding densities did not promote 

tubulogenesis under any blocking condition. Again, this redundancy was consistent with our 

in vivo data, where the VEGFR-3-independent organization of new lymphatic capillaries 

occurred only if sufficient time was allowed for LECs to proliferate and migrate into the 

region of regeneration. Likewise, failures in organization, specifically in the proximal half of 

the regenerating region, are thus likely the result of a sparse LEC population at the start of 

receptor blocking. Thus, the strong corroboration between our in vivo and in vitro data 

indicate that the effects seen in vivo are most likely due to receptor activation on LECs and 

not on other cells that might express VEGFR-3, such as macrophages (27-29). 

It has been previously reported that heterodimerization with VEGFR-2 may be 

required for VEGFR-3 phosphorylation in aortic endothelial cells (16), but LECs are known 

to express higher levels of VEGFR-3 than blood endothelial cells (12, 24), particulary those 

from large vessels, and it has also been shown that both VEGFR-3 homodimers and VEGFR-

3/-2 heterodimers can form in human LECs (17). Our data support the concept that both 

homodimer and heterodimer forms play different functional roles, and indeed, we see that 

both forms are phosphorylated with VEGF-C (Fig. 3A). However, we were not able to 

conclusively determine which dimer pairs (or combinations thereof) are required for the 

different stages of LEC proliferation, migration, and capillary organization.  

Our findings have important implications for VEGF-C therapies designed to induce 

lymphangiogenesis and help corroborate seemingly conflicting reports on its effects. If 

VEGFR-3 activation is largely redundant for lymphatic organization, but necessary for LEC 

migration and proliferation, as our data show, then VEGF-C therapy would only be 

potentially useful in augmenting lymphangiogenesis in areas where lymphatics are not present 

or are present in sub-optimal densities. It may also have the effect of making normally 

regenerating lymphatics more hyperplastic rather than creating a denser lymphatic capillary 

network, since VEGF-C overexpression has been reported to lead to increased lymphatic 

diameter (hyperplasia) without increased lymphatic density (20, 30, 31). Furthermore, reports 

that VEGF-C delivery results in increased lymphangiogenesis and/or improved lymphatic 

function come largely from models where lymphatic function was disrupted by wounding 

(32-34); in this case, VEGF-C could act by restoring lymphatic proliferation and migration 

into and across the wound, where lymph or interstitial flow would then help drive lymphatic 

organization. Finally, VEGF-C delivery in tissues that are normally devoid of lymphatics such 

as the cornea would certainly be required to initiate lymphatic endothelial cell migration and 
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proliferation (27, 35, 36) without necessarily being required for lymphatic organization. 

Taken together, these data suggest that VEGF-C therapy may be successful in cases where 

lymphangiogenesis needs to be initiated (as in the case of congenital lymphedema) but not in 

cases where lymphatic capillaries are intact but poorly functional (e.g., if the tissue matrix is 

badly damaged, such as following radiation therapy) or blocked downstream (e.g., following 

lymph node resection).  

In summary, our results demonstrate that VEGFR-3 cooperates with VEGFR-2 in 

early stages of lymphangiogenesis by inducing LEC migration and proliferation, but serves 

redundant functions in later stages of lymphatic capillary organization. Importantly, we show 

that VEGFR-3 signaling is required neither for the organization of lymphatic capillaries nor 

for establishing or maintaining lymphatic function, which may rely instead on the activation 

of other lymphatic receptors such as Tie2 (36, 37) and neuropillin-2 (38) as well as on 

functional cues such as interstitial fluid flow (18, 19). These results also have important 

implications for anti-lymphangiogenesis therapy and corroborate recent evidence (10) 

demonstrating that combined inhibition of VEGFR-2 and VEGFR-3 may more effectively 

reduce tumor lymphangiogenesis and consequent lymphatic metastasis than the inhibition of 

either receptor alone. 
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FIGURE LEGENDS 
 
Fig. 1. Effects of VEGFR-3 neutralization in a model of lymphatic regeneration. A) Left: In 

vivo model of adult lymphangiogenesis. A circumferential band of skin is removed, covered 

with a silastic sleeve, and filled with type I collagen that serves as a fluid bridge between the 

distal and proximal lymphatics and provides a support for tissue regeneration; box indicates 

area of inset, right. Inset: Approximate location of images in B-E. The black square indicates 

the distal region shown in the immunostained thick sections in B and D, while the white box 

indicates the region shown in the microlymphangiography analyses of functional regeneration 

in C and E. B) Immunostaining for BECs (CD31, red) and LECs (LYVE-1, green) at various 

timepoints shows progression of normal (untreated) regeneration lymphangiogenesis. At day 

10, the region is primarily LEC-free. At day 17, many LECs are present, and they appear in 

unconnected clusters. At day 60, fully connected lymphatic structures are present throughout 

the regenerating region. C) Microlymphangiography reveals the lack of functional lymphatic 

vessels at days 10 and 17, and functional and architecturally restored lymphatic network at 

day 60. D) Neutralizing VEGFR-3 from the onset of lymphangiogenesis (day 0 or 10) through 

day 60 completely inhibits any lymphatic growth in the regenerating region. However, 

blocking from day 17 to 60 does not inhibit the organization of LECs that had migrated into 

the regenerating region. Bar=150μm. E) Analysis for blocking schedules in D confirms the 

functionality of lymphatics that form in the absence of VEGFR-3 between days 17 and 60, 

where functional lymphatic transport is visible within the distal portion of the regenerating 

region. Bar=300μm. F) Quantification of LEC numbers in the regenerating region under 

various blocking schedules. In normal regeneration, LEC numbers are low at day 10, medium 

at day 17, and high at day 60. When VEGFR-3 is blocked, cell numbers are similar to those at 

the onset of blocking (i.e., those at days 10 and 17 in control mice), indicating that VEGFR-3 

blocking prevents cell proliferation but does not affect cell survival. *P<0.05 compared with 

day 10 control, # P<0.05 compared with day 17 control. G) Distribution of LECs in the 

regenerating region indicates the direction of LEC migration. In normal regeneration, the few 

LECs present at day 10 are present only in the distal edge; at day 17, LECs are present 

throughout but still more numerous in the distal half; by 60 days, LEC distribution is even 

throughout the region. When VEGFR-3 is blocked during days 10-60 and 17-60, LEC 

distributions are statistically similar to those at the onset of blocking, indicating that LEC 

migration was arrested when VEGFR-3 blocking began. *P<0.05 between distal and proximal 

fraction. 
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Fig. 2. Effects of VEGFR-2 blocking and combined VEGFR-3 and VEGFR-2 blocking on 

lymphatic regeneration. A) VEGFR-2 blocking alone (top panel) prevented lymphatic 

regeneration when the mAb was administered during days 0-60. Minimal regeneration was 

observed when VEGFR-2 was blocked from days 10-60. Organization of LECs into 

lymphatic capillaries was seen when VEGFR-2 was blocked from days 17-60. Combined 

blockade of both receptors between days 17-60 (lower panel) drastically inhibited lymphatic 

organization, with very few vessels present. Bar=150μm. B) The number of LECs in the 

regenerating region at day 60 was somewhat diminished when VEGFR-2 was blocked during 

days 17-60 and diminished greatly when both receptors were blocked during this time period 

indicating that VEGFR-2 signaling may affect LEC survival, particularly that of unorganized 

LECs. *P<0.05 compared with day 10 control, # P<0.05 compared with day 17 control. C) 

The distribution of LECs in the regenerating region. The effects of individually blocking 

either VEGFR-2 or VEGFR-3 on LEC distribution resulted in a cell distribution similar to 

that seen on day 17 of controls, suggesting inhibition of migration and proliferation. 

Combined blocking of both receptors, however, resulted in LEC distribution similar to that of 

day 10 controls. *P<0.05 between distal and proximal fraction.  

 

Figure 3. Signaling by both VEGFR-2 and VEGFR-3 is important for LEC proliferation and 

migration in vitro. A) Wild-type VEGF-C stimulated receptor activation via tyrosine 

phosphorylation of both VEGFR-2 and VEGFR-3 in cultured human microvascular LECs, 

and neutralizing antibodies specifically inhibited phosphorylation of their respective 

receptors, whilst allowing signaling of the other. The top two panels show immunoblots 

(performed in parallel) from VEGFR-2 immunoprecipitated samples; top blot shows PY-20 

and reveals phosphorylated protein of both a 200 kDa and 110 kDa, while second blot shows 

VEGFR-2 appearing only as a 200 kDa protein, verifying equal protein loading and 

demonstrating the presence of co-immunopreciptated VEGFR-3. The bottom two panels show 

immunoblots (performed in parallel) from VEGFR-3 immunoprecipitated samples; third blot 

shows PY-20 and again reveals phosphorylation of both approximately 200 kDa and 110 kDa 

bands, which can be inhibited when VEGFR-3 is neutralized. The second blot shows total 

VEGFR-3. IC indicates where isotype-matched control IgG was used in place of blocking 

antibodies in the medium. B) After 72 hours of treatment, blockade of either VEGFR-2 or 

VEGFR-3 reduced VEGF-C-induced LEC proliferation. This was further inhibited when both 

receptors were blocked simultaneously. C) Blocking either VEGFR-2 or VEGFR-3 
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substantially decreased VEGF-C-induced LEC migration, while combined blockade 

completely abolished this migratory response. *P<0.05, **P<0.01 vs untreated; # P<0.05, ## 

P<0.01 vs other conditions as indicated. 

 

Figure 4. VEGFR-3 is redundant with VEGFR-2 for LEC tubulogenesis in vitro. 

A) VEGF-C stimulated formation of multicellular structures leading to an extensive tubular 

network. Inhibition of VEGFR-2 permitted LEC organization, although the extent of 

tubulogenesis was hindered compared with untreated LECs. VEGFR-3 inhibition did not 

affect LEC tubulogenesis, whilst combined blockade of both receptors completely prevented 

tubulogenesis. Bar=100μm. B) Quantification of organization expressed as total tube length 

per mm2 confirmed these observations and demonstrated that VEGFR-3 blocking has no 

effect on tubulogenesis. #P<0.05, ##P<0.01 as indicated. 
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Figure 2 
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Figure 3 
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Figure 4 
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Table 1 
 Normal Regeneration R3 Block R2 Block R3 + R2 

Block 
Day 0 Cell free          
Day 10 LECs proliferate and 

migrate only at the distal 
edge 

         

Day 17 LECs migrating throughout 
region; primitive and 
disconnected structures 
begin to form 

         

Day 25 Organization continues 
and some functionality is 
established but incomplete 

         

Day 60 Functional, mature 
lymphatic network 
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Supplemental Figure 1 
 

 
 
Supplemental Figure 1: Cells identified as lymphatic endothelial cells (LECs) do not express 
macrophage markers. On 10 μm-thick cryosections, LYVE-1 (green, top panel) labeled 
unorganized LECs in a normal regenerating region at 25 days. F4/80 (red, top panel. BD 
Pharmingen; 1:50) labeled the dense macrophage population in the region. Highlighting the 
LYVE-1 positive cells, there is no overlap (bottom panel). As both markers are found on the 
cell surface, lack of colocalization demonstrates that the mechanism of lymphatic 
regeneration in the mouse tail does not intimately involve LYVE-1 expressing macrophages. 
Bar=100 μm. 
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ABSTRACT 

 

Disturbances in the microcirculation can lead to secondary lymphedema, a common 

pathological condition that, despite its frequency, still lacks a cure. Lymphedema is well-

described clinically, but while the genetic underpinnings that cause lymphatic malformations 

and primary lymphedema are being discovered, the pathophysiology and pathobiology of 

secondary lymphedema remains poorly understood, partly due to the lack of well-described 

experimental models. Here, we provide a detailed characterization of secondary lymphedema 

in the mouse tail and correlate the evolution of tissue swelling to changes in tissue 

architecture, infiltration of immune cells, deposition of lipids, and proliferation and 

morphology of the lymphatic vessels. We show that sustained swelling leads to lymphatic 

hyperplasia and upregulation of vascular endothelial growth factor (VEGF)-C, which may 

exacerbate the edema since the hyperplastic vessels leak lymph back into the interstitium. The 

onset of lymphatic hyperplasia occurred prior to the onset of lipid accumulation and peak 

VEGF-C expression. Langerhans dendritic cells were seen in the dermis migrating from the 

epidermis to the lymphatic capillaries in edematous tissue. Furthermore, these results were 

consistent between two different normal mouse strains, but swelling was significantly greater 

in a matrix metalloproteinase (MMP)-9 null strain. Thus, by characterizing this highly 

reproducible model of secondary lymphedema, we conclude that VEGF-C upregulation and 

lymphatic hyperplasia resulting from dermal lymphatic ligation and lymphedema leads to 

decreased drainage function and that MMP-9 may be important in counteracting tissue 

swelling.   

 

 

 

 

 

 

 

 

 

 

Key Words: lymphatic function, extracellular matrix, lipid deposition, MMP-9, VEGF-C 
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INTRODUCTION 

 

 Lymphedema is a common pathology of tissue fluid balance often due to defects in 

lymphatic uptake and/or transport. Primary lymphedema results from defects of the lymphatic 

system leading to insufficiencies in transport, while the more common secondary 

lymphedema arises as a consequence to surgical, malignant, inflammatory, or traumatic 

disruption of the lymphatics (1, 2). As a chronic disease, lymphedema leads to the remodeling 

of skin and subcutaneous tissues (3), accumulation of lipids (4), macrophage recruitment (5), 

and failures in Langerhans dendritic cell migration (6) in the affected tissue. Unfortunately, 

this potentially debilitating condition lacks a cure and current treatment for chronic 

lymphedema, which include regular massage treatments and pressure applications or surgical 

removal of edematous tissue, can only slow its progression but not reverse the condition (2, 7, 

8).  

Recent studies have identified key regulators of lymphatic development and the 

genetic underpinnings of primary lymphedema caused by lymphatic malformation in 

development. However, the pathophysiology of secondary lymphedema – including the 

interplay between inflammatory events, matrix remodeling, and local lymphatic response – is 

less understood, and because of this, it is still not clear to what extent therapies aimed at 

lymphatic regrowth can be used to treat various types of secondary lymphedema. For 

example, if lymphedema is caused by downstream blockage (e.g., surgical removal of lymph 

nodes), do the previously healthy lymphatic capillaries respond to the tissue swelling by 

growing, or by regressing? Do they still facilitate immune cell trafficking? Without an 

understanding of the tissue-lymphatic pathophysiology of secondary lymphedema, rational 

treatment options will continue to be elusive. 

Key molecular players in lymphatic development have been demonstrated primarily 

by transgenic models; mutations in these regulators commonly lead to either embryonic 

mortality or lymphatic irregularities and symptoms of primary edema (9). Prox1, for example, 

governs the commitment of endothelial cells to a lymphatic lineage in development and Prox1 

null embryonic mice die before birth (10) while surviving Prox1 heterozygotes possess 

discontinuous lymphatic endothelium and exhibit abnormal fluid and lipid accumulation in 

the interstitium (11). Mice lacking angiopoietin-2, thought to play a role in vascular 

remodeling and lymphatic patterning, have disorganized, irregular lymphatic vessels and 

exhibit dermal edema and chylous ascites (12). Mutations in Foxc2, a transcription factor 

expressed on developing lymphatics, have been identified as the cause of lymphedema-
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distichiasis in humans that, unlike other types of congenital lymphedema, is characterized by 

hyperplastic lymphatic vessels (13, 14). Foxc2-null and -heterozygous mice posses 

hyperplastic lymphatic vessels and malfunctioning lymphatic valves that result in lymphatic 

backflow and abnormal lymphatic drainage (15, 16). A mutant allele for vascular endothelial 

growth factor (VEGF) receptor-3 (VEGFR-3) is responsible for Milroy’s disease in humans, a 

congenital disorder characterized by primary lymphedema in the extremities, as well as the 

Chy mouse phenotype that exhibits lymphatic defects similar to the human condition (17). 

VEGFR-3 and its ligand VEGF-C are also critical for both embryonic (18) and adult 

lymphangiogenesis (19, 20). These findings suggest that targeting lymphatic molecular 

mechanisms for improving lymphatic function may lead to a successful treatment of 

lymphedema and, as a result, research has focused on the most well-studied lymphatic 

molecular pathway to potentially treat conditions of both primary and secondary 

lymphedema: VEGFR-3 and VEGF-C (17, 21, 22). However, VEGF-C overexpressing mice 

display hyperplastic lymphatics (23) and we recently showed that excess VEGF-C delivered 

to otherwise normally regenerating skin led to hyperplastic lymphatic vessels without any 

increase in function (24). The proper resolution of lymphedema is likely dependent on the 

initial cause of the pathology, and effective treatments for primary and secondary 

lymphedema are therefore likely to differ. While the causes of primary lymphedema are 

increasingly appreciated, there remain gaps in our understanding of the pathophysiology and 

pathobiology of secondary lymphedema. These gaps are largely due to the absence of well-

characterized models of secondary lymphedema. 

Existing models of secondary lymphedema in the dog hindlimb (25, 26), rat hindlimb 

(27, 28), or rabbit ear (21) disrupt lymphatic transport through the excision of a 

circumferential band of skin and subcutaneous tissue. These models can sustain significant 

lymphedema for 3-4 weeks and result in a chronic increase in limb or ear volume. We earlier 

described a model of secondary lymphedema in the mouse tail skin (29, 30). Here, we 

characterize this model of secondary lymphedema to not only determine the reproducibility 

across several strains of mice, but moreover, to also describe the relative timing of the 

appearance of chronic symptoms, such as changes in extracellular matrix structure, 

accumulation of lipids, and recruitment of macrophages with the overall degree of swelling of 

the tail skin. We then correlate the timing of the lymphatic response and expression of VEGF-

C to these pathological outcomes and show that sustained tissue swelling leads to hyperplasia 

and subsequent decrease in function of the lymphatic capillaries, closely followed by a drastic 

increase in local VEGF-C expression. Additionally, to ascertain the importance of matrix 
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metalloprotenases (MMP)s in the inevitable matrix changes during tail swelling, mice lacking 

MMP-9, a key MMP in tissue remodeling (31), were also examined and found to experience a 

much higher increase in tail volume during secondary lymphedema. Thus, this 

characterization of the mouse tail model and correlation of molecular, cellular, and 

physiological changes over time lends new insight into the pathophysiology of secondary 

lymphedema, including the observation that lymphatic hyperplasia and VEGF-C 

overexpression may be key responses to chronic swelling.  

 

MATERIALS AND METHODS 

 

Mouse tail model of lymphedema 

 

These studies used 6-8 week old female mice, 10 per group, of the following strains: 

BALB/c (Charles River Laboratories, Wilmington, MA), FVB/NJ (Charles River 

Laboratories, France) and MMP-9 null on an FVB background (FVB.Cg-Mmp9tm1Tvu/J; The 

Jackson Laboratory, Bar Harbor, ME). Mice were anesthetized with a subcutaneous injection 

of ketamine (65 mg/kg), xylazine (13 mg/kg), and acepromazine (2mg/kg). An analgesic, 

butorphanol (0.05 mg/kg), was administered subcutaneously twice daily for three days 

following the procedure. All protocols were approved by the ACUC of Northwestern 

University and the Veterinary Authorities of the Canton Vaud according to Swiss law. 

 To create lymphedema, a circumferential incision was made through the dermis close 

to the tail base to sever the dermal lymphatic vessels. The edges of this incision were then 

pushed apart with a cauterizing iron, thereby disturbing the deeper lymphatics, preventing 

superficial bleeding, and creating a 2-3 mm gap to delay wound closure. Care was taken to 

maintain the integrity of the major underlying blood vessels and tendons so that the tail distal 

to the incision did not become necrotic. An age-matched control group of mice was 

maintained without this procedure to measure the baseline tail volume during the time course 

of the analysis. 

 Daily volume measurements of the tails, from the tip to the distal edge of the wound, 

were made by volume displacement. For untreated mice, a circumferential mark was made on 

the tail 10 mm from the tail base to mimic the incision site for reproducibility in measuring. 
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Sample preparation 

 Mice were sacrificed at various times up to 30 days post-procedure. The tail was 

excised at the site of the edema procedure and the distal tissue was flash frozen in liquid N2. 

Tissue samples were transversely cryosectioned into 12 and 60 μm-thick sections and stored 

at -80˚C until immunostaining. 

 

Microlymphangiography 

  Mice were anesthetized as above and the integrity of the lymphatic vasculature of the 

tail was examined by fluorescence microlymphangiography (30, 32, 33). A fluorescently 

labeled macromolecule (2000 kDa tetramethylrhodamine-conjugated dextran, 2 mg/ml; 

Molecular Probes, Carlsbad, CA) was injected intradermally at a constant pressure of 45 cm 

of water into the tip of the tail. Because of its large size, the tracer was taken up by the 

lymphatics but was excluded from the blood vasculature. As the fluorescent tracer was 

transported by the lymphatic vessels, it was clearly visible within dermal lymphatic 

capillaries, thus providing a clear visualization of lymphatic functionality. The filling of the 

lymphatic vasculature was monitored for 90 minutes with a Zeiss Axiovert 200M 

fluorescence microscope and Zeiss MRm camera set at equal exposure time for each mouse. 

 

Immunohistochemistry and histology 

 To visualize lymphatic vessels, thin (12 μm) and thick (60 μm) sections were co-

stained with a primary antibody to the lymphatic-specific marker LYVE-1 (1:500; rabbit 

polyclonal; Upstate, Charlottesville, VA). Thin sections were also labeled using anti-mouse 

antibodies for the macrophage-specific surface marker F4/80 (1:50; rat monoclonal; Serotec, 

Raleigh, NC) and the Langerhans dendritic cell protein langerin (1:50; goat polyclonal; Santa 

Cruz Biotechnology, Santa Cruz, CA). These antibodies were detected with Alexafluor 488 or 

594-conjugated donkey, rabbit, and goat IgG secondary antibodies (1:200, Molecular Probes), 

counterstained with DAPI (Vector Labs, Burlingame, CA), and observed and imaged as 

above. Thick sections were scanned using a Zeiss LSM 510 Meta confocal microscope. 

PCNA staining was achieved on thin sections with a monoclonal biotinylated mouse anti-

PCNA primary antibody (prediluted; Zymed Laboratories, South San Francisco, CA) and 

detected with Texas Red-conjugated avidin (Vector Labs).  

VEGF-C was labeled immunohistochemically on thin sections. Sections were first fixed in 

4% PFA, blocked against endogenous biotin and avidin activity (Biotin Blocking System, 

Dako, Carpenteria, CA), then labeled with anti-mouse VEGF-C (1:50; goat polyclonal; Santa 
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Cruz) and biotinylated secondary antibody (1:500; AffiniPure rabbit; Jackson 

ImmunoResearch, West Grove, PA). This was then visualized using the ABC-AP kit and 

Vector Black (Vector Labs). Sections were counterstained with Orange G (Merck KGaA, 

Darmstadt, Germany), dehydrated, and mounted with Eukitt (Fluka Chemie AG, Buchs, 

Switzerland). Images were captured with an Olympus AX70 Microscope and DP70 Camera. 

Masson’s trichrome was used to stain collagen and oil red O (Sigma-Aldrich, Buchs, 

Switzerland) to stain lipids on thin sections. Sections were mounted and imaged as above, 

except oil red O stained sections were counterstained with hematoxylin and not dehydrated 

but immediately mounted with Glycergel mounting medium (Dako). 

 

Image Analysis 

Images of each tail section were first assembled into complete montages in Photoshop 

(Adobe Systems, San Jose, CA). To quantify LEC hyperplasia, LECs were defined as cells 

with a blue (DAPI-stained) nucleus surrounded by green LYVE-1 staining, and lymphatic 

structures were defined as continuous groups of LYVE-1 labeled cells. The numbers of LECs 

within each structure were counted in three random 12 μm sections from each animal.  

To quantify VEGF-C expression, Metamorph 6.3 image analysis software (Molecular 

Devices Corp., Sunnyvale, CA) was used. Three labeled sections from each timepoint were 

analyzed. In each, the region between the epidermis and underlying tendon was clearly 

identified with a freehand tool, and the total intensity within this region was integrated.  

 

Statistics 

For quantified data, ANOVA followed by two-tailed Student’s t-tests were performed to 

determine statistical significance between two groups or among different timepoints. Data are 

reported as average ± standard deviations. Tail volumes are presented as a change over 

normal, LEC counts as total cells, and VEGF-C as normalized to the maximum.  

 

RESULTS 

 

Degree and sustainability of swelling 

All three strains of mice tested (BALB/c, FVB/NJ, and MMP-9 null) sustained 

reproducible edema for a period of at least 30 days. In the wild-type strains examined, 

FVB/NJ and BALB/c, tail volume measurements consistently peaked at 15 days following the 

ligation procedure with a volume increase of 55-75% (Fig. 1). Resolution of edema in these 
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mice also consistently occurred to within 20% of control volume by 30 days. Two FVB/NJ 

mice were kept for 60 days and their increased tail volumes were sustained (both 17% larger 

than baseline at day 60) in agreement with past work (29). MMP-9 null mice experienced 

significantly more tissue swelling than wild-type controls both with a higher peak volume 

change at 15 days of 115% (P=0.0287) and higher 30 day volume change of 75%. 

 

Matrix changes and lipid accumulation 

 In normal tail skin, the dermis possesses a much higher density of collagen than the 

underlying hypodermis. One day after of lymphatic disruption, we observed an immediate 

reduction in collagen density throughout the dermis, while the subcutaneous tissue layer of 

the hypodermis was drastically swollen (Fig. 2A). Within the first week, however, the density 

of collagen in the dermis increased, and by day 14 the collagen architecture in the dermis 

appeared similar to that of normal tissue. The change in tail volume was thus mainly due to 

hypodermal swelling. The hypodermis remained swollen with decreased collagen density 

until day 30, when collagen density again appeared normal, although total tissue volume was 

significantly increased.  

In addition to its propensity to accumulate fluid and swell, the hypodermis also 

exhibited a striking increase in lipid deposition (Fig. 2B). Lipid accumulation in the 

hypodermis, visualized through oil red O staining, became visible after 7 days, peaked at 14 

days, and was maintained through 30 days. Macrophages were also present throughout the 

dermis and hypodermis in edematous skin at all time points examined (Fig. 2C). 

 

Lymphatic function in edematous tail skin 

 The lymphatic network of the mouse tail skin consists of a regular, hexagonal network 

of dermal lymphatic capillaries that are easily visualized by fluorescence 

microlymphangiography (20, 32, 33). Furthermore, measures of how much volume is infused 

into the tail at fixed pressure is indicative of hydraulic conductivity and lymphatic function 

(30). Microlymphangiography in normal vs. edematous tails revealed functional 

insufficiencies in the lymphatics and increased hydraulic conductivity (Fig. 3). In normal 

mice, the lymphatic capillaries took up ~8 μl in 90 min of fluorescent dextran infused into the 

tail tip at 45 cm water; while in contrast, day 10 edematous tails took up ~30 μl of dextran in 

90 min at the same pressure. Despite the increase in hydraulic conductivity and dramatic 

increase in injected fluid flow rate for a given injection pressure, the lymphatic capillaries in 

edematous tails remained functional in taking up the injected fluid tracer; however, 
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fluorescent tracer was visible in the interstitial space around the capillary network, suggesting 

that the lymphatics in edematous skin were leaky and prone to backflow. After 60 days, the 

edema was reduced and the lymphatic leakiness was decreased but not entirely resolved. 

 

Lymphatic hyperplasia  

 Lymphatic ligation and subsequent tissue swelling led to marked morphological 

changes in the dermal lymphatics caused by the proliferation of LECs and subsequent 

enlargement of the lymphatic vessels. PCNA-positive LECs were seen in hyperplastic 

lymphatic vessels at day 10 (Fig. 4A). A reduced number of PCNA-positive cells were seen in 

lymphatic vessels at 20 days, and none were visible at 30 days. Confocal microscopy of the 

lymphatic vessels in the tail during edema (Fig. 4B) revealed that the morphology of the 

vessels was clearly altered, with striking hyperplasia during the period when overall swelling 

was the greatest (7 to 21 days). The number of LECs counted in each lymphatic structure was 

significantly higher than in normal vessels, peaking at 7 days (P<0.001). After this, the 

number of LECs per structure decreased, but still remained significantly higher than normal 

throughout the resolution of edema (P<0.001) (Fig. 4C).  

 

Heightened VEGF-C expression  

 VEGF-C expression in normal tail skin was low, consistent with earlier findings (24, 

34). In the first days after lymphatic ligation, tail swelling and lymphatic vessel hyperplasia 

were already significant but VEGF-C expression remained low (Fig. 5). VEGF-C began to 

increase throughout the edematous tissue at day 7 (P=0.037) and peaked at day 14 (P=0.022). 

Expression remained high as the swelling began to resolve at day 21 (P=0.014), and was 

decreased to normal levels at day 30. VEGF-C was mostly concentrated in the hypodermis, 

where the swelling was maximal but few lymphatic vessels were present. Thus, while VEGF-

C was upregulated in edematous tissue, its expression patterns did not necessarily correlate 

with lymphatic hyperplasia. 

 

Dendritic cell migration 

 Langerhans dendritic cells reside in the epidermis and migrate to the lymphatics in 

response to immune challenges (35). In normal tissue, Langerin+ cells were seen both in the 

epidermis and in the dermis near lymphatic vessels (Fig. 6). However, these cells were 

confined to the epidermis after lymphatic ligation until day 14, where they appeared to be 

migrating towards the lymphatics despite the hyperplastic appearance and transport 
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insufficiencies of the lymphatic vessels (Fig. 6). Therefore, at days 14, 21, and 30, correlating 

with the peak and resolution phase of edema, these cells were present in the dermis near the 

hyperplastic lymphatic vessels, suggesting a return to normal function. 

 

Increased fluid uptake and propensity for edema in MMP-9 null mice 

 In untreated (non-edematous) mice, the lymphatic capillary architecture was similar in 

MMP-9 null vs. wildtype control tails as visualized by microlymphangiography (Fig. 7A, B), 

although the lymphatic networks in MMP-9 null mice appeared much brighter than in control 

mice and took up 50% more fluid in 90 min at a fixed infusion pressure of 45 cm water than 

did the controls (12 vs. 8 μl). While there appeared to be minor indications of fluorescent 

tracer outside of the well-defined lymphatic vessels (Fig. 7B), there was little evidence of 

actual lymph leakage from the capillaries into the interstitium, as was clearly seen in 

edematous tails. This minor defects were likely the result of the increased brightness of the 

tail images resulting from increased tracer uptake (images were taken at the same exposure). 

Confocal imaging of the lymphatic vessels revealed no obvious differences in lymphatic 

vessel morphology from normal mice, suggesting that the increased fluid tracer uptake in 

untreated MMP-9 null mice was the result of either more efficient lymphatic transport or a 

higher hydraulic conductivity of extracellular matrix.  

Surprisingly, despite the apparently normal or above normal functionality of the 

lymphatics, MMP-9 null mice with lymphatic ligation exhibited a far greater degree of 

swelling than did wild-type mice, particularly between 7 and 21 days (P< 0.001; Fig. 1), and 

took longer to resolve (P<0.001; Fig. 1). This swelling was so rapid and so extensive that it 

actually led to necrosis of the tail in a two of the seven mice tested. Examination of the 

extracellular matrix of the tail skin revealed that the collagen density of MMP-9 null mice 

was, in fact, less than that of the wild-type controls. This was the case both in untreated tails 

and those after 14 days of edema. Therefore, the increased tracer fluid uptake into the tail seen 

in untreated MMP-9 null mice was probably due to an increase in hydraulic conductivity. This 

difference in the matrix architecture, in conjunction with the inability to maintain tail volume 

during swelling, suggests that MMP-9 plays an important role in the maintenance of 

extracellular tissue fluid.  
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DISCUSSION 

 

 To help elucidate the pathophysiology of secondary lymphedema, we characterized 

and correlated key molecular-, cellular-, and tissue-level changes over time in the mouse tail 

edema model and demonstrated its reproducibility and sustainability. We found that in 

otherwise healthy tissue, sustained swelling induced by lymphatic ligation leads to lymphatic 

hyperplasia and VEGF-C upregulation. Interestingly, LEC proliferation began before VEGF-

C upregulation, suggesting that lymphatic hyperplasia may be supported by VEGF-C only 

later, from day 14 (the peak in tail volume) through day 30. Also, the maximal VEGF-C 

expression was seen within the hypodermis, where most of the tail swelling was maintained 

but where lymphatic vessels were scarcer than in the dermis. This VEGF-C upregulation may 

therefore be a response to the accumulated fluid in the hypodermis. 

Lymphatic vessel hyperplasia in the absence of VEGF-C presents a quandary when 

examining the potential for VEGF-C delivery as a therapy for lymphedema. While VEGF-C 

treatment has been shown to hasten the resolution of edema in the mouse tail model, this 

result was accomplished by hastening lymphangiogenesis across the ligation (22) rather than 

necessarily inducing a change in the local function of lymphatics.  Therefore, delivery may 

only be beneficial in cases where transport insufficiencies are the result of a lack of lymphatic 

vessels in the tissue by inducing the growth of new lymphatic capillaries (17, 21, 22). Excess 

VEGF-C has also been shown to cause hyperplasia of lymphatic vessels when no other 

lymphatic defects were present (24). Therefore, our results, showing that increased VEGF-C 

and lymphatic hyperplasia is a response to tissue swelling, suggest that VEGF-C therapy may 

have limited use for treating secondary lymphedema. 

In examining functional lymphatic uptake during lymphedema, we found that the 

disruption in lymphatic transport led to an increase in fluorescent tracer uptake during 

microlymphangiography in part from the well-established increase in hydraulic conductivity 

of the interstitium resulting from in the breakdown of the tail matrix (30, 36, 37). We also 

found that the dilated, hyperplastic lymphatics were less effective at lymph transport and 

leaked lymph back into the interstitium. It is not known whether or how the decreased 

lymphatic transport function contributed to the increased lipid accumulation in adipocytes.  

In addition to decreased fluid drainage from the interstitium, hyperplastic lymphatics 

may exacerbate the edematous pathology by decreasing immune cell trafficking. When 

stimulated, Langerhans dendritic cells normally migrate from the epidermis into the lymphatic 

capillaries to traffic to lymph nodes for antigen presentation. In edematous skin, Langerhans 
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cells were not migrating through the dermis until day 14, even though other inflammatory 

responses like macrophages and massive matrix proteolysis were present earlier in 

lymphedema. Lack of migration may be due to the absence of migration-directing interstitial 

flow which only returns once edema is resolving, although it has yet to be demonstrated that 

interstitial flow specifically guides dendritic cells towards the lymphatics (35).  This apparent 

lack of DC migration to lymphatics during tissue swelling may lead to decreased immune 

response, which in turn may exacerbate the pathological state of the limb. This notion is 

consistent with previous work showing that the immune response is compromised in 

edematous limbs (6), leaving the tissue more prone to infection and further inflammation.  

MMP-9, a key MMP in matrix remodeling (31), appeared to play an important role in 

edema prevention. First, the collagen density in the dermis of MMP-9 null mice was lower 

than that in wildtype mice, both in normal and edematous states. This reduced matrix density 

may leave the tissue more susceptible to fluid accumulation and tissue swelling. Indeed, 

MMP-9 null mice were unable to sufficiently counteract the swelling through responsive 

remodeling of the matrix; the tail apparently relies on MMP-9 in remodeling the extracellular 

matrix to counteract the change in volume. Since all other studied factors appeared similar in 

response to wild type mice, the role of MMP-9 in this pathological state is that of matrix 

maintenance.  

The reproducibility and sustainability of the mouse tail model of lymphedema was 

demonstrated across two normal strains and for roughly 20-30 days, respectively, although in 

some mice (for unknown reasons) edema can be sustained indefinitely (29). This time frame 

is sufficient to observe key features of chronic edema, including collagen breakdown and 

remodeling, lymphatic hyperplasia, and abnormal lipid accumulation in the skin, consistent 

with pathological features observed in longer studies in other models (21, 26, 27). Responsive 

changes in the dermal matrix during swelling – initial degradation followed by compensatory 

rebuilding – were also temporally correlated to lipid accumulation and macrophage 

infiltration throughout the tissue, both chronic indicators of lymphedema (4, 5).  

 In summary, the mouse tail model of lymphedema is reproducible, reliable, and shows 

many characteristics of chronic lymphedema. We found that sustained tissue swelling due to 

lymphatic blockage led to marked lymphatic hyperplasia and lipid accumulation, followed by 

substantial VEGF-C overexpression in the hypodermis. The hyperplastic lymphatic vessels 

were poorly functional at draining interstitial fluid, and the resulting fluid stagnation may 

have contributed to decreased Langerhans dendritic cell homing to the lymphatics. These 

correlations between factors regulating tissue homeostasis and those regulating lymphatic 
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biology during tissue swelling following lymphatic ligation raise important questions in 

considering treatment strategies aimed at lymphatic growth for alleviating secondary 

lymphedema. 
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FIGURE LEGENDS 
 
Fig. 1. Tail volume changes following lymphatic ligation. Two control strains of mice, 

FVB/NJ (blue diamonds) and BALB/c (red squares), displayed nearly equivalent swelling and 

resolution patterns, and both peaked at 15 days. Transgenic mice lacking MMP-9 (green 

triangles) also displayed maximum volume increase at 15 days, but showed a significantly 

greater extent of swelling compared to the wild type strains as well as a longer resolution 

time. 

 

Fig. 2. Extracellular matrix density, lipid accumulation, and macrophage presence in 

edematous tails. (A) In normal skin, a collagen-dense dermis (gold arrow) and less dense 

hypodermis (white arrow) was seen. One day following lymphatic ligation, the collagen 

network was degraded in both the dermis and hypodermis as fluid accumulated. At day 14 

when tail volume reaches its peak, the collagen density in the dermis returned to normal (gold 

arrow) while the architecture of the hypodermis remains severely compromised. At day 30, 

the collagen architecture throughout the tissue appeared normal. (B) Oil Red O staining 

showed that the hypodermis dramatically filled with lipids (red) at day 7 and that this 

accumulation was maintained through 30 days. (C) Macrophages (red) were also present in 

high numbers at all times during edema. Note the hyperplastic lymphatic (green) vessels at 

days 7 and 14 (marked by white arrows) as compared to normal vessels (gold arrows). Scale 

bars = 200 μm. 

 

Fig. 3. Fluorescence microlymphangiography revealed leaky lymphatic capillaries in 

edematous skin, with higher magnification images shown at right. The normal mouse tail skin 

possessed a well-defined hexagonal network of dermal lymphatics that transport the 

fluorescent tracer proximally (left to right) from infusion into the tip of the tail. At 10 days of 

lymphedema, the tail was swollen and the fluorescent tracer filled both the lymphatic vessels 

and the interstitial space (back flow indicated by arrows). At 60 days, the lymphatic transport 

was mostly returned to normal. All images were taken with the same exposure time. Scale 

bars = 2 mm. 

 

Fig. 4. Lymphatic morphology changes during edema. (A) Normal tissue showed few 

proliferating cells and small superficial lymphatics (gold arrow heads) with the underlying 

collecting lymphatic vessels (white arrow heads). PCNA staining indicates that as the tail 
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volume increased, lymphatic endothelial cells (LECs) proliferated (white arrows). At day 10, 

LECs in the vessels were proliferating and the vessels were hyperplastic. This LEC 

proliferation is reduced at 20 days and absent at 30 days. Edema also induced the proliferation 

of other cells in the tail (gold arrows) (B) Confocal microscopy of the dermal lymphatic 

vessels forming the hexagonal network in the tail demonstrated the drastic hyperplasia and 

morphological changes associated with edema at 7 and 14 days, with an abnormal 

morphology still present at 30 days. Scale bars = 100 μm. (C) The number of LECs per 

lymphatic structure was greatest at day 7 in both wild type and MMP-9 deficient mice (* 

indicates P<0.05 over control).  

 

Fig. 5. VEGF-C expression in edematous tails. (A) VEGF-C expression (black) was normally 

quite low and remains so during the onset of edema (through 7 days); orange indicated 

collagen by orange G staining. At 14 days, however, VEGF-C was greatly increased and 

remained so during resolution at day 21. Bar = 200 μm (B) The peak of VEGF-C expression 

(integrated intensity) lagged behind the peak of LEC proliferation and vessel hyperplasia (* 

indicates P<0.05 vs. control).  

 

Fig. 6. Langerhans dendritic cell (DC) trafficking during edema. In normal skin, some DCs 

were seen between the epidermis and lymphatic vessels (green) in the skin, indicating normal 

migration. After 7 days of edema, no DCs could be found below the epidermis. At 14, 21, and 

30 days, DCs were present in high numbers in the dermis and near the hyperplastic lymphatic 

vessels, indicating migration. Yellow arrows indicate some DCs in the epidermis, and white 

arrows indicate migrating DCs. Bar = 200 μm. 

 

Fig. 7. Differences in lymphatic function and morphology and extracellular matrix 

architecture in MMP-9 null mice vs. wild type controls. (A) In untreated animals, constant-

pressure infusion of fluorescent tracer led to 50% more uptake by MMP-9 null mice vs. 

wildtype controls. The lymphatic vessel networks of the MMP-9 null mice appeared to be 

much brighter (with equal exposure time) than those of the wildtype controls, indicating a 

higher uptake rate. Bar = 2 mm. (B) Higher magnification images of the lymphatic structures 

showed normally functioning vessels with no backflow. Bar = 2 mm. (C) Confocal images of 

the lymphatic vessels in each type of mouse showed little or no morphological differences 

between wildtype and MMP-9 null mice; bar = 100 μm. (D) In untreated animals, the collagen 

matrix (blue) appeared to be less dense in the dermis of the MMP-9 null mice than in that of 
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the FVB/NJ mice. Bar = 200 μm. (E) After 14 days of edema, the dermal collagen density 

appeared normal in the wild-type control mice but remained largely degraded in the MMP-9 

null mice. Bar = 200 μm. 
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ABSTRACT 

 

Flow through the interstitium is an important morphogenetic driving force that is 

present in nearly all tissues. The uptake of interstitial fluid is the primary function of 

lymphatic capillaries. In this capacity, they are the modulators of interstitial flow: fluid 

extravasated from blood capillaries is transported across the interstitium to the lower pressure 

lymphatic capillary. The other chief parameter controlling the ease at which fluid moves 

through the extracellular matrix is the tissue hydraulic conductivity. Coupled together, 

lymphatic capillary uptake and tissue hydraulic conductivity dictate interstitial flow rates and, 

therefore, are important parameters with which to describe the potential morphogenetic 

impact of flow on cells within the interstitium. Here, we present a simple poroelastic model of 

interstitial fluid flow and lymphatic capillary uptake that can be used to quantify physiologic 

in vivo lymphatic function and tissue hydraulic conductivity in the mouse tail. The 

implications of lymphatic dysfunction within tissues are described and the governing 

equations for tissue hydraulic condictvity are subsequently reformulated in a model of 

primary lymphedema, the K14-VEGFR-3-Ig mouse. The model is then applied to a mouse 

model in which we discovered lymphatic hyperplasia, the Apolipoprotein E (ApoE) knockout 

mouse. In this model, our model’s calculations demonstrate a significant reduction in 

capillary function. Additionally, this provides the first direct experimental evidence linking 

dyslipidema and lymphatic capillary function. Thus, the quantitative model is sufficiently 

sensitive to detect changes not only when lymphatics are functional, but also to determine the 

consequential effects of lymphatic molecular responses. This model is therefore ideal to 

examine baseline lymphatic function and tissue hydraulic conductivity in transgenic mouse 

models where these physiologic parameters would be highly influential to the results of 

inflammation, lymphedema, or immune cell responses. 
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INTRODUCTION 

 

Lymphatic capillaries reside in nearly all tissues of the body to drain fluid, 

macromolecules, and cells that have extravasated from the blood circulation (1). In doing so, 

interstitial flow is directed from the blood capillary to the lymphatic circulation by means of 

the hydrostatic pressure difference between the two systems (2). Due to the important 

morphogenetic effects of interstitial flow on cells that reside in and traverse the interstitium 

(2), understanding flow through the interstitium is important when exploring cell behavior in 

in vivo and in 3-D in vitro models.  

Due to their critical role in maintaining tissue fluid balance, understanding the uptake 

and transport of fluid via lymphatic vessels is an important aspect of tissue physiology. Very 

little, to date, is known about the capacity of normal, healthy lymphatic capillaries to uptake 

fluid (3); even less is known about pathological states such as lymphedema, where drainage is 

dramatically reduced or nonexistent (4, 5) or in inflammation, where flows are greatly 

increased (6). Coupling lymphatic uptake of fluid to interstitial transport is thus a goal in 

understanding tissue homeostasis. 

Tissue exists essentially as a saturated sponge, with fluid flow driven not only by 

changes in hydrostatic pressure, but flow also being induced by matrix deformation as, for 

example, in articular cartilage (7); and in turn, flow potentially deforming the matrix. Matrix 

mechanics are thus a critical component in modulating lymphatic function (1, 8). This makes 

for potentially complex mathematics if the real-world scenario is modeled. Fortunately, flow 

through fibrous matrices has been previously modeled to quantify interstitial flow (elegantly 

reviewed in (9, 10)); the use of a poroelastic model to describe fluid movement through the 

extracellular matrix has also been performed (11, 12).  

Here, we attempt to clarify the mathematics associated with these models and simplify 

these to parameters readily obtainable through simple experiments for determining tissue 

hydraulic conductivities and lymphatic uptake in vivo. The mathematical models are then 

applied to transgenic mouse models representing lymphatic dysfunction, lipid metabolic 

disorder, and inhibited pathological lymphangiogenesis. 
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METHODOLOGY 

 

Assumptions 

 These calculations all base themselves in soil mechanics and its subsequent 

mechanical models. Soil mechanics function as an ideal model for the interstitium, if, for 

example, an analogy between this tissue and soil is made based on Terzaghi’s principles for a 

matrix of soil. The assumptions: 

(a) Homogenous, isotropic matrix 
(b) Matrix is 100% saturated 
(c) Both solid and liquid phase are incompressible 
(d) Solid phase behaves as a linear elastic solid  
(e) Strains to the matrix are relatively small  
(f) Darcy’s Law can be applied for hydrostatic gradients 
(g) Permeability and compressibility constants remain constant 
(h) There exists a unique relationship between stress and void ratio, dependent on time 

With these assumptions in place, a simple mechanical model can be applied using 

fundamental governing equations for poroelastic theory.  

 

Developing the governing equations 

 

Equation 1 represents a momentum balance for the interstitium as a whole. Stresses are at 

equilibrium, and inertial effects and body forces are neglected. 

 

(1) 0=•∇ τ  

 

The constitutive equation for a linear elastic solid is given as: 

 

(2) μελτ 2++−= II eP  

 

where e is the dilatation of the solid matrix, λ and μ are the Lamé parameters (material 

constants) and ε is the infinitesimal strain tensor. The other governing equation is Darcy’s 

Law for flow through porous medium, Equation 7. First, however, Equations 1 and 2 are 

combined and simplified by further defining their parameters: 

 

(3) u•∇=e  
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The dilatation of the solid phase is equal to the divergence of u, the solid displacement vector. 

 

(4) )(
2
1 Tuu ∇+∇=ε  

 

Equation 4 represents the strain tensor as defined by displacement in a linear elastic solid. If 

the solid is undergoing purely hydrostatic pressure, there are no shear components and uT=u. 

Similarly, the strain tensor will thus only have diagonal components; in pure hydrostatic 

pressure, the divergence of ε equals the gradient of e: 

 

(5) ε•∇=∇e  

 

These relationships (Eq. 3-5) thereby allow us to combine Eq. 1 and 2 into a more applicable 

relationship: 

 

(6) eP ∇+=∇ )2( μλ  

 

Equation 6 demonstrates the direct relationship as to how changes in pressure affect matrix 

dilation, and vice versa. Returning to Darcy’s Law of flow through a porous medium; this is 

defined to obtain the velocity of the interstitial fluid, v, relative to the solid network. In this 

form, the dilatation of the solid phase is coupled: 

 

(7) PK
t
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where Φ is the fluid volume fraction and K is the effective hydraulic conductivity of the 

tissue. Combining the rate of change of the liquid phase and the rate of change of solid phase, 

each represented by the divergence of the respective term, and fluid losses, Equation 8 is 

obtained: 
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where Jv is the fluid input or output, or flux. This equation was previously developed (12) and 

more elegantly written combined as Equation 9. In this form the flux is written as the resultant 

changes in the fluid or matrix: 

  

(9) vJ
t

−=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+•∇
uv )1( φφ  

 

As a combined continuity equation for flux through the interstitium, the average interstitial 

fluid velocity and solid matrix displacement vector equal interstitial fluid generation from 

blood capillary extravastion (11) or interstitial fluid drainage by lymphatic capillaries (12), or 

a combination of both. Since the governing equation of this model is effectively the 

conservation of mass, it is perhaps useful to rewrite Eq. 9 in terms of tissue strain, where the 

form becomes analogous to Fick’s second law of diffusion with reaction: 

 

(10) 0)2( 2 =+∇+−
∂
∂

vJeK
t
e λμ  

 

Here, dilatation is analogous to the reactive species. Changes in dilatation result in either 

pseudo-diffusion through the tissue governed by K(2μ+λ) – analogous to the diffusion 

coefficient Dab – and a pseudo-reaction term represented by the flux term. Flux, or the 

hydrostatic pressure-driven uptake into lymphatic capillaries, is defined by: 

 

(11) *)( PPPJ biv ββ =−=   

 

where the newly introduced β is defined as the lymphatic conductance in volume of fluid 

drained by the vessels per volume of tissue with respect to time and pressure (final units of 

reciprocal time and pressure) and P* is defined as the hydrostatic pressure driving force 

between the pressure in the interstitium, Pi, and the baseline physiologic pressure, Pb. 

Coupling Equations 10 and 11, the final governing equation is achieved: 

 

(12) 0*)2( 2 =+∇+−
∂
∂ PeK

t
e βλμ  
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Factors influencing lymphatic uptake 

Uptake into lymphatic capillaries is similar to the well-described phenomenon of 

blood capillary extravasation; a fundamental equation can be used to explore how changes in 

Starling’s Law for transcapillary transport affect the interstitium and vice versa. Starling’s 

Law in its complete form, for blood capillary extravasation: 

 

(13) ( ) ( )( )erstitiumcapillaryerstitiumcapillaryv PPLpJ intint ππσ −+−=  

 

where the flux is related to the hydrostatic driving force, as well as the osmotic pressure 

driving force, Δπ. Lymphatic intravasation is represented by the appropriate directional 

changes to the driving forces. Physiologically, flux into lymphatic vessels is predominantly 

intercellular, where lymphatic cell-cell junctions are opened – almost valve-like – to 

accommodate flow (6, 13). It is therefore reasonable to neglect osmotic differences because 

interstitial fluid predominantly flows directly into the lymphatic capillary. The filtration 

coefficient, Lp, is dependent on vessel wall area and wall hydraulic conductivity. In blood 

capillaries, a basement membrane and pericytes affect the wall hydraulic conductivity, but, 

again, physiologically this is irrelevant for the initial lymphatics. Hence, when Lp is redefined 

as β above (Equation 11), it is essentially the ease at which fluid is taken across the lymphatic 

capillary wall. Vessel diameter and vessel density will be the contributing physical parameters 

to lymphatic vessel wall area in any volume of tissue. 

 Lymphatic endothelial cell-cell junctions, which presumably mediate the open 

connections through which interstitial fluid enters the capillary, will molecularly contribute to 

lymphatic flux. Repulsion of cell-cell contacts, for example, by podocalyxin expression, may 

also inversely contribute (14). Changes in the expression of these molecules (e.g., VE-

cadherin) may result in changes in uptake. Indeed, during heightened shear conditions and in 

inflammation, where flows are increased, molecular expression of cell-cell connections is also 

altered (6, 13, 15)(Yong, C., et al. unpublished). Equally important in lymphatic drainage 

during increased flows are cell-matrix interactions. Anchoring filaments that link lymphatic 

endothelial cells to the matrix permit the capillary to open with increase interstitial fluid 

pressure in the matrix (Fig. 1). Heightened shear also alters the expression of these molecules 

in lymphatic endothelial cells (Yong, C., et al. unpublished). While incapable of transporting 

larger molecules, aquaporin expression may also mediate transcellular water flux across the 

capillary wall (16). Resultantly, the changes in LEC molecular expression are coupled into β 
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when calculating lymphatic conductance experimentally. The experimental model should thus 

be able to detect not only anatomical differences in the lymphatic network, but also the active 

response of LECs to changes in interstitial flow, molecular agonists, or genetic mutation. 

 
Factors influencing hydraulic conductivity 

 Hydraulic conductivity is a physical property of the tissue. It will change with changes 

in matrix composition and density, as well as the tissue saturation. Physiologic tissues are 

wholly saturated, but the ratio of fluid to solid will affect the overall porosity, or cross-

sectional area accessible to fluid flow. Tissues with higher lipid content per volume (e.g., 

obese or edematious) would have a lower area accessible to flow due to (a) the 

hydrophobicity of the lipds and (b) the inability of flow to pass directly through cells – in this 

case adipocytes – that have taken up the lipid. Matrix components such a proteoglycans also 

posses dense negative charges that inhibit free flow of fluid through the matrix. Further 

discussion on how the matrix impacts hydraulic conductivities is found in the excellent 

Levick review (9). 

 

EXPERIMENTAL DESIGN 

 

A fluorescent tracer is slowly infused into the tail tip of an anesthetized mouse 

beginning at t=0. Flow is driven by a small application of hydrostatic pressure using a water 

column (Fig. 2) set at 40, 45, 50, and 55 cmH2O. As the applied pressures are higher than 

baseline tail pressure, Pb, flow into and through the tissue is created. Very small, constant 

pressures are essential to maintain the tissue state according to our assumptions (e.g., minimal 

matrix strain at steady state) and to allow the lymphatic capillary uptake of the infused fluid to 

reach steady-state with the infusion.  

 The infusion flowrate, Q, is constantly monitored by tracking a small amount of air 

drawn into the tubing that separates the water (used to supply the pressure head) from the 

infused tracer (2% fluorescently-labeled dextran). The distance, x, that fluorescent tracer has 

traveled through the tail is also monitored by fluorescence microscopy. For each pressure, 

sufficient time is given for the interstitial transport and lymphatic uptake to reach steady state 

before the next pressure is applied [This characteristic time can be estimated to be 1/βP0
*, or 

approximately 14 minutes based on past measurements of β and K  (12)]. 

 



 151

Because the physical geometry in the mouse tail is assumed to be purely axial flow, in a 

symmetric rod geometry, with lymphatic drainage being the outlet of flow, it is easy to recall 

a symmetric, one-dimensional differential form of the solution in Eq. 6 for the constitutive 

equation: 

 

(14) 
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Combining Eqs. 12 and 14, strain is directly related to the applied force, pressure, and the 

governing equation can be re-written in terms of hydrostatic pressure: 
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The distribution of pressure is controlled by the “stress diffusivity” K(2μ+λ), or K*, and the 

overall lymphatic conductance β(2μ+λ), or β*. Solving this equation is non-trivial; however, 

the solution is available in mathematics texts. The boundary conditions are set for P* as P*(0, 

t)=P*0, P*(∞, t)=0, and P*(x, 0)=0, where P0 is the applied pressure (P0=Pb) at the tail tip. 

Introducing the term α=√(K/β) allows for a characteristic penetration length that will govern 

the steady-state pressure profile, and also permits the final solution for P*(x,t): 
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Steady-State Approximation 

 

While the complete solution for P* may appear to be quite complicated, at steady-state 

(t→∞) the equation readily describes the behavior of the pressure profile at to be exponential 

decay, governed by the ratio α, or the resistance to flow of the tissue versus uptake by the 

lymphatic capillaries: 

 

(17) α/
0 e** x

ss PP −=   
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Using this steady-state relationship, the length, L, which is the penetration depth of the 

infused fluid (Figure 1), can be solved for by applying P*ss to Darcy’s Law for the average 

fluid velocity. 

 

(18) αβ /
0 e* LPKPK −=∇−=v  

 

The penetration length can then be solved in terms of the ratio, α: 
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In this simple form, it would be possible to readily obtain α by measuring the penetration 

depth versus the applied pressure P*0. The term P*L need not be defined. The only necessity 

is that the ratio P*L/ P*0 be sufficiently small so that convection due to the applied pressure is 

minimized at L. Also, the measurement of L must be consistently performed at each pressure 

so as to not to permit any diffusion of the infused solute to skew the necessary length (the 

time of each measurement period can likewise be shortened so as to eliminate this potential). 

As the experimental procedure utilizes a fluorescent solute, L can be repeatedly and 

confidently measured by taking the average fluorescent intensity along the tail length and 

calculating the distance of the “moving front”. Because lymphatic uptake is in equilibrium 

with axial fluid movement at steady state, after a short time L remains constant at any applied 

pressure (Fig. 3A). As discussed, at steady-state x becomes the constant L because the 

infusion flow rate, Qss, is equivalent to the lymphatic uptake taken over the length, L. If 

lymphatic uptake were less, continued infusion would result in continued movement of L at he 

same rate, but this is not the case due to equilibrium (Fig. 3A). Thus, the changes in Qss with 

applied pressure can be used to similarly obtain a relationship between lymphatic conductance 

and hydraulic conductivity: 

 

(20) ∫
∞

==
0

0*d* PKAxPAQ ssss ββ  

 

Flow rates into the tail remain constant with homogeneous tissue structure and increase with 

each applied pressure (Fig. 3B). Therefore, by monitoring the relationship between the 
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infused flow rate and the penetration length of infusion for each applied pressure, the slopes 

of these regressions allow for the non-invasive quantification of β and K for any experimental 

condition. 

 

Non-steady-state: dysfunctional lymphatic drainage 

 The steady state approximation works well to calculate tissue hydraulic conductivities 

and lymphatic conductances when lymphatic vessels function and interstitial fluid clearance is 

normal. However, some experimental conditions with extremely dysfunctional lymphatics – 

or the complete lack thereof - present a challenge when applying the same governing 

equations. Primary (hereditary) lymphedema presents just such a case. In two mouse models 

of primary lymphedema, the “Chy” mouse (17) and “K14” (K14-VEGFR-3-IgG) mouse (18), 

there are no dermal lymphatics in the tail skin and thus, no lymphatic uptake. If there is no 

equilibrium state between lymphatic uptake and interstitial fluid movement, then L should 

never become constant at any pressure. A new solution must be formulated. 

 
A rigorous non-steady state calculation for K 

The complete solution for P*(x,t) in the tail is represented in Equation 16. In the Chy 

or K14 model, the lack of dermal lymphatics should result in β→0. [As previously mentioned 

in the model’s development, βP* could technically be taken as the pressure driven flux into 

lymphatic capillaries, blood capillaries, or post-capillary venuoles according to Starling’s 

Law. Significant flux into the blood capillaries may result when P*
0 is increased and would be 

detected as the movement of L would “equilibrate” with capillary reabsorption with 

increasing P*0.] Simply, with β→0, Equation 16 simplifies to: 
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Equation 21 can be manipulated to solve directly for K*: 
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Using a mathematics software package, this can be solved provided the proper data is taken. 

The recorded times that are taken which were used in the steady-state model to calculate the 

flowrate into the tail, now enter directly into the calculation as t, and the moving front must be 

continuously monitored for x from t=0, rather than just taking the final L value at 30 minutes.  

 

Problems with this approximation 

 Whereas in our steady-state calculation P*, or P(L,t), was mathematically irrelevant, 

here it is now of critical importance. What is a reasonable approximation of this value? When 

the infusion pressure is changed, there is an initially fast moving front that eventually slows. 

In steady-state tissue – that with lymphatic uptake – this decline is rapid. However, if there is 

no lymphatic uptake, the moving front moves constantly, with no change in rate, through the 

tissue (Fig. 4). A “steady-state” L cannot, therefore, be applied and x becomes linearly time 

dependent. The exactness of this model makes it a potential liability for accurate in vivo 

approximations. However, its sensitivity is ideal for detecting flux loss to the vasculature and 

may thus serve as a guide to at least the correct range of potential hydraulic conductivities. 

 

Other approximate solutions for non-steady state K 

 Some problems presented by the exact solution for non-steady state uptake can be 

circumvented by taking into consideration a simplification of the governing equation for flow 

through porous media, Darcy’s Law. If the tail is considered merely to be porous media, with 

all fluid flowing axially through the tail, Darcy’s Law represents a reasonable approximation 

for calculating the hydraulic conductivity in non-steady state tissues. 

 Instantaneous velocities are a problem in the rigorous, full calculation of K. Thus, if 

we utilize Darcy’s Law with an average moving front velocity over the time of infusion at 

each pressure, in differential and integrated forms: 

 

(23) 
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(24) τ0
2 *2KPL =  

 

where τ represents the time of infusion for each pressure. It should be also be noted that L is 

the absolute distance that the solute front has moved, not just the distance for each pressure. 

Unlike the elegant, full calculation for K, this linear approximation will overestimate K. The 
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deviation from what physically happens can be seen in Table 1 for normal versus edematous 

mice. The ambiguities of measurable parameters are, however, eliminated. Because 

monitoring the infusion flowrate is trivial in the experimental setup, Darcy’s Law can also be 

utilized in a form that relates the infused flowrate to the bulk fluid velocity through the tissue: 

 

(25) 
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(26) 0*AKPQL =  

 

As with any approximation using a simplified Darcy’s Law only, the linear result is an 

overestimation of the true tissue K. However, by coupling two measureable quantities, Q and 

L, this approximation maximizes the benefit of the potential experimental inputs for the non-

steady state approximation. A comparison of this calculation for normal and edematous mice 

is seen in Table 1. 

 

How to judge the quality of non-steady-state approximations? 

 In Table 1, the differences in the three potential approximations of K in mice lacking 

dermal lymphatic capillaries are visualized. The question of which method yields the most 

accurate value of K can only be considered if the tissue exhibits true, non-steady-state 

behavior. Is the approximation of non-steady-state even reasonable? There are three potential 

ways to test this question: 

 
Method 1: The moving front of solute in the tail is continually monitored for long periods of 
time to ensure that the interstitial velocity is constant and does not sufficiently decelerate. 
Deceleration at longer times (i.e., over 20 minutes) indicates flux losses to the vasculature. 
 
Method 2: A comparison of K obtained via the non-steady state method can be made to that 
obtained using the steady-state calculation. Since lymphatic uptake is discounted in the non-
steady-state model, the hydraulic conductivity of normal tissue should decrease, while 
edematous tissue should remain the same or increase in K.  
 
Method 3: The infused volume can be directly compared to the volume of tail occupied by the 
fluorescent tracer at each pressure’s infusion. With no loss of solute, the infused volume 
should be accounted for in the tissue space, as defined by Equation 27: 
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If these “methods” are used to check the validity of the results obtained in Table 1, the exact 

solution is the best and should be applied. It demonstrates not only the ability to successfully 

calculate the tissue hydraulic conductivity, but also the means to sensitively detect flux losses 

to lymphatic capillaries or blood capillary and post-capillary venuole reabsorption of 

interstitial fluid at higher pressures. Fortunately, the simple steady-state solution works for all 

models with functioning lymphatic capillaries – the most likely scenario. 

 

MODEL APPLICATION: Transgenic mouse strains 

 

One of the essential features of a model for lymphatic uptake is that it is sufficiently 

sensitive to detect changes in lymphatic function when molecular signaling in lymphatic 

endothelial cells is potentially altered. An ideal application of the model is thus to examine 

transgenic mouse strains to verify that lymphatic function is normal, as its normalcy – or lack 

thereof – may dictate the results of other studies of edema, inflammation, or immune cell 

migration. To both verify the sensitivity of the model and explore some experimental 

questions, we tested several transgenic mouse strains. 

 

Apolipoprotein E (ApoE) -/- 

 The apolipoprotein E (ApoE) knockout mouse line has long been used as a model of 

artherosclerosis and hypercholesterolemia. Gene array analysis on LECs stimulated with 

VEGF-C and shear stress exhibited significant changes in apolipoprotein expression (19). The 

potential for lymphatics to be altered in ApoE-/- mice was thus motivated by the potential 

roles of lymphatics in lipid metabolism (the gene array analysis) and work demonstrating 

reduced dendritic cell migration (which enter and traffick via lymphatics) in these mice (20). 

 In ApoE-/- mice aged 16-20 weeks on a high fat diet, dermal edema and increased 

lymphatic capillary diameter were observed (data not shown). When lymphatic function was 

measured using the steady-state model, lymphatic conductance was significantly reduced in 

these mice (Fig. 5A). In young mice that are not yet hypercholesterolemic, no difference in 

lymphatic function was measured (Fig. 5B). The tissue hydraulic conductivity was identical in 

all mice. These findings verify not only the sensitivity of the model, but also demonstrate an 

interplay between lipid metabolism and lymphatic function that has been previously 

unexplored.  
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Neural cell adhesion molecule (NCAM) -/- 

 Neural cell adhesion molecule (NCAM) has been identified as a modulator of tumor 

lymphangiogenesis (21), and gene array analysis revealed a marked increase in expression by 

LECs under shear stress (Yong, et al. unpublished). It was thus hypothesized that a lack of 

NCAM expression in NCAM-/- mice may result in decreased lymphatic capillary function. 

 NCAM normal, heterozygote, and homozygote -/- mice were tested. Lymphatic 

capillaries appeared to be normal in these mice, and no significant differences in lymphatic 

function were detected. Also, no differences were calculated in the tissue hydraulic 

conductivity. These findings indicate that while NCAM may play a role in lymphatic biology 

during pathological events (e.g., tumor progression or inflammation), there is little role for 

LEC NCAM in normal capillary function. 

 

CONCLUSIONS 

 

The results of this work demonstrate an easy to apply, quantitative means to measure 

lymphatic capillary uptake and tissue hydraulic conductivity in vivo. As the two key 

parameters modulating interstitial flow , understanding lymphatic function and tissue physical 

properties are essential for understanding the biophysical environment in which cells exist, as 

well as lending knowledge to proper design of in vitro systems that better recapitulate the in 

vivo environment (22, 23). While the need for such an approach has been addressed in the 

past (12), here we have fully explained the mathematics for a better understanding of the 

steady-state formulation, and, for the first time, thoroughly discuss the implications of 

dysfunctional lymphatic uptake on the calculations. These non-steady state governing 

equations can actually be applied even to steady-state systems as simplified versions that 

result in reasonable approximations of tissue hydraulic conductivity. 

 As there is an increasing appreciation of the lymphatic circulation, understanding 

which molecular signaling pathways affect capillary function is crucial. The sensitivity of our 

quantitative approach permits the use of transgenic mouse models and antibody and small 

molecule therapies to determine the relevancy of various molecules and genes to lymphatic 

capillaries. This is critical to correctly answer questions of dermal physiology, for example, if 

dendritic cell migration is actually tied to interstitial flowrates and lymphatic function, or if it 

is wholly independent (15, 24). 

 By applying the steady-state model to transgenic mouse models, immediately a new 

finding in lymphatic capillary biology was found. The ApoE-/- mouse was selected as a 
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model with potentially reduced lymphatic function as indicated by reduced dendritic cell 

migration to the sentinel lymph node (20). Indeed, we found the lymphatic capillary function 

was reduced in these mice, despite normal hydraulic conductivity. This makes a strong case 

for further study on the effect of hypercholesterolemia on lymphatic capillary function. 

Additionally, as lymphatic capillaries in the intestine play a crucial role in lipid uptake, these 

results suggest a whole new realm of research on lymphatic function, lipid metabolism, and 

cardiovascular health. 
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FIGURE LEGENDS 
 
Figure 1: Lymphatic drainage occurs between lymphatic endothelial cells. Increased 

interstitial fluid pressure (IFP), at right, expands the matrix, and – due to the LEC anchoring 

filaments – opens the vessel further to promote drainage. 

 

Figure 2. Experimental setup for calculating hydraulic conductivity and lymphatic 

conductance in the mouse tail. Small increments of 5cmH2O in hydrostatic pressure are 

applied (right) and a fluorescent tracer is infused into the tail at flowrate Q. The fluorescent 

tracer is visualized in the interstitium as the front moves along length x. With lymphatic 

uptake present, the final value of x, L, is constant at each pressure due to conservation of mass 

at steady-state. Actual images of fluorescence in the mouse tail after 24 minutes at each 

applied pressure are shown. 

 

Figure 3: To calculate β and K the change in penetration depth and infusion flowrate with 

pressure for each pressure step are monitored. A) Plot of the penetration depth of fluorescent 

dextran for various pressures demonstrates the approximate steady-state values of L: where 

the curves become level. Steady-state is only possible with lymphatic uptake of infused fluid. 

B) Increasing, and constant infusion flow rates into the mouse tail are recorded by tracking 

the small air bubble in the infusion line. 

 

Figure 4: In the K14-VEGFR-3-Ig mouse, there are no dermal lymphatic capillaries and no 

lymphatic uptake occurs. Thus, the moving front distance continuously increases, with no 

steady-state L being reached as in wildtype mice. 

 

Figure 5. Lymphatic conductance is reduced with the onset of hypercholesterolemia in aduly 

ApoE-/- mice. A) Older ApoE-/- mice, which exhibit high cholesterol, artherosclerosis, 

edematous skin, and enlarged lymphatic capillaries, have significantly reduced lymphatic 

uptake. B) Young transgenic mice exhibit normal lymphatic function. (from Angeli V, Reddy 

ST, Rutkowski JM, Swartz MA, Randolph GJ. Impaired lymphatic function in dyslipidemic 

mice. Submitted for publication, Microcirculation) mice. 

 

Figure 6. NCAM expression does not significantly affect lymphatic function. In normal 

wildtype, heterozygote, and knockout mice, the quantified lymphatic conductance was equal. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1 
 
 K (mm2/min/mmHg) 
 Wildtype K14-VEGFR-3-Ig 
Steady-State Approximation 0.0272 0.1185 
Non-SS, Exact Solution (P*

0=29.4mmHg)* 0.0050 0.1345 
Non-SS, Exact Solution (P*

0=40.8mmHg)* 0.0003 0.0050 
Non-SS, Approximation #1 0.0307 0.5071 
Non-SS, Approximation #2 0.0437 0.3489 
* for the exact solution, a P* of 1mmHg was used. 
Table 1: Calculated hydraulic conductivities for one example mouse using the various calculations described. 
Note the variation in change with each technique, particularly the overestimation of the approximate solutions. 
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ABSTRACT 

 Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage 

characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid 

accumulation in the underlying tissue. Genetic studies in humans and mice have linked 

mutations in genes of lymphatic endothelial cells to the improper development and function of 

the lymphatic vasculature in these patients. Two mouse models, the Chy mouse and the K14-

VEGFR-3-Ig mouse, target vascular endothelial growth factor receptor (VEGFR) -3 

signaling, and exhibit dermal lymphedema symptomatically similar to the human condition. 

The Chy mouse possesses a genetic mutation in VEGFR-3, while the K14-VEGFR-3-Ig 

mouse expresses soluble VEGFR-3 that has prevented lymphatic capillary growth; both 

models lack dermal lymphatic capillaries, and are phenotypically similar. We sought to 

quantitatively determine both the equivalency of the edematous pathology and the functional 

interstitial transport implications as a result of the pathology in these models. We found that 

despite their similarities in increased skin hydration and elevated interstitial fluid pressure, the 

tissue adaptations to a lack of dermal lymphatics were significantly different. Chy mice skin 

possessed much higher levels of collagen and fat, while K14-VEGFR-3-Ig mice skin was 

relatively normal, as compared to their respective wildtype controls. Functionally, this 

resulted in a normal hydraulic conductivity in Chy mice, and a greatly increased conductivity 

in K14-VEGFR3-Ig mouse skin. Thus, based on the principles of interstitial flow, the tissue in 

Chy mice has likely adapted to limit interstitial transport, while the K14-VEGFR3-Ig has 

adapted to permit interstitial flow over longer distances. These opposing tissue responses to 

primary lymphedema suggest that tissue remodeling is not simply a consequence, but a 

purposeful adaption to control the pathology. Thus, successful lymphedema therapy should 

aim not only restore lymphatic function, but remediate the tissue changes. 

Keywords: VEGF-C, lymphatic, hydraulic conductivity, interstitial fluid pressure
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INTRODUCTION 

 

 Primary or congenital lymphedema is an inherited pathological condition in which 

excess fluid accumulates in the limb due to dysfunctional lymphatic drainage (1). As a 

chronic pathology, lymphedema leads to remodeling of the skin and subcutaneous 

extracellular matrix, accumulation of lipids, and failures in immune response (2-6). These 

morphological adaptations can worsen the condition and prevent successful resolution – 

indeed while compression cuffs, massage, and surgical removal of tissue have demonstrated 

success in minimizing the condition, unfortunately, there is no “cure”. In humans, the causes 

of these conditions have been linked to mutations in genes essential for proper lymphatic 

vessel development; improper development of lymphatic valve structures or insufficient 

organization of dermal lymphatic capillaries leads to failed interstitial fluid and lymph 

clearance (7-9). 

To create the pathology of primary lymphedema in mouse models, lymphatic genes 

have been targeted to disrupt the proper formation of lymphatic vessels during development. 

Unfortunately, in most cases, homozygote mutations fail to survive beyond the womb as the 

systemic lymphatic circulation fails to form, and most heterozygote mutations do not truly 

recapitulate the human condition (7-9). Targeting vascular endothelial growth factor receptor 

(VEGFR) -3, a critical receptor in lymphangiogenesis, has proven to be reasonably successful 

in creating an edematous state in two different animal models: the Chy mouse and the K14-

VEGFR-3-Ig mouse. 

The Chy mutant mouse possesses a heterozygous VEGFR-3 mutation that leads to 

developmental deficiencies in lymphatic vessels and a complete lack of lymphatic capillaries 

in the skin. In pups this results in chylous ascites in the gut (the namesake of the strain) and, 

in the adult, dermal lymphedema. It has been shown that the resulting lymphedema, as well as 

the location of the gene mutation, mirror the human condition of Milroy’s disease (7). The 

K14-VEGFR-3-Ig mouse is a transgenic mouse strain developed such that a soluble form of 

the ligand-binding domain of VEGFR-3 is expressed in the epidermis under the keratin-14 

(K14) promoter (10). This results in systemically-present soluble VEGFR-3 that prevents 

proper lymphatic capillary maturation, a lack of dermal lymphatics, and dermal lymphedema 

much like the Chy mouse model. 

Both mouse models exhibit dermal swelling, particularly in the lower limbs, tail, and 

snout, and tissue histology has revealed a pathological state similar to that of human 
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lymphedema (i.e., fibrotic thickening of the dermis and swelling and fluid accumulation in the 

hypodermis). However, despite a lack of dermal lymphatics, in neither case does the extent of 

the edematous pathology approach that of the human condition. We thus hypothesized that the 

tissue composition must have adapted to increase the hydraulic conductivity so as to 

maximize interstitial fluid transport in the absence of dermal lymphatics. Tissue collagen, 

lipid, and water concentrations were therefore measured to determine the compositional tissue 

changes in these mice. Interstitial fluid pressures were measured and applied to a quantitative 

in vivo model of tissue hydraulic conductivity. In this way, transport of extravasted fluid and 

macromolecules within the interstitial space when initial lymphatic capillaries are missing 

may be better understood. Despite the fact that each of these models exhibits lymphedema by 

a loss of dermal lymphatic capillaries, we found that the resultant tissue adaptation was quite 

different between the two strains. 

 

MATERIALS AND METHODS 

 

Animals 

 Male Chy mice on a C3H background were crossed with wildtype C3H females to 

obtain heterozygote Chy offspring (7). The Chy mutation was identified by PCR analysis 

prior to all experiments (11). K14-VEGFR-3-Ig heterozygote mice on a C57Bl6 background 

were crossed with wildtype C57Bl6 mice. Offspring were genotyped by PCR (10). 

Heterozygotes and their respective wildtype littermates were used for all studies. Use of the 

Chy mouse was approved by the Norwegian State Commission for Laboratory Animals while 

use of the K14-VEGFR-3-Ig mouse was approved by the Veterinary Authorities of the Canton 

Vaud according to Swiss law (protocol number #1987). 

 

Interstitial Fluid Pressure Measurements 

 Interstitial fluid pressure (IFP) was measured by micropipettes connected to an 

automatic counterpressure system (12) inserted into the tail skin of anesthesized mice as 

previously described in detail (13). After zeroing, measurements were qualified when: (a) the 

measurement was unaltered with increased feedback gain, (b) suction to the pipette resulted in 

a resistance change verifying an open capillary, and (c) the zero reference pressure was 

unchanged (13).   
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In vivo quantification of tissue hydraulic conductivity 

 Mice were anesthetized (an intraperitoneal injection of ketamine (65 mg/kg), xylazine 

(13 mg/kg, followed by subcutaneous additions when necessary) and the functional uptake of 

the lymphatic vascualture was determined by adapting the technique of fluorescence 

microlymphangiography (14). Briefly, a 30-gauge needle catheter containing 0.9% NaCl with 

2% FITC-conjugated 70kDa dextran (Molecular Probes, Carlsbad, CA) was placed 

intradermally into the tail tip. The catheter was attached to a low-pressure reservoir that 

permitted stepwise changes of 5-cm H2O, from 40-cm H2O, up to 100-cm H2O. The low 

infusion pressure allowed physiologic uptake into the lymphatic capillaries (if present) and 

minimized the gross swelling or tissue damage that might have resulted from higher pressure 

injections. The fluorescent dextran, once in the tail, either traveled through the interstitial 

space (linearly with pressure change) or was taken up and transported by the lymphatic 

capillaries. The infusion flow rate was continually monitored (via the tracking of a small air 

bubble introduced into the infusion line); pressures were changed and flow rates monitored 

for 30 minutes per pressure setting. In K14-VEGFR-3-Ig mice, 40-60 cmH2O was used; in 

Chy mice, 40-100 cmH2O was used in 10 cmH2O steps. By also monitoring the convective 

front of fluorescence at each infusion pressure, using a fluorescence-equipped Leica MZ16 

FA stereomicroscope, the hydraulic conductivity of the matrix was calculated (14). Measured 

IFPs were applied to the calculations, as well as the quantified cross-sectional areas. Cross-

sectional areas were also corrected for lipid content, which, as non-aqueous regions, were 

considered to be flow impermeable. 

 

Tissue Water and Collagen Composition 

Tail skin was excised and the wet weight recorded. The sample was then freeze dried 

and weighed again. The difference was recorded as the total tissue water. The freeze dried 

sample was then homogenized for collagen determination. 

Tissue collagen was quantified according to the spectrophotometric method described 

by Woessner (15) based on determination of hydroxyproline content as described in a 

previous publication (16). The absorbance was read at 557 nm on a Spectramax pluss 384 

spectrophotometer (Molecular Devices, Sunnyvale, CA). Hydroxyproline concentration was 

quantified by comparison to a standard curve of L-4-hydroxyproline (Fluka Chemie GmbH, 
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Buchs, France) in 1mM HCl. Collagen content was calculated based on a 6.94 to 1 collagen to 

hydroxyproline ratio (17). 

 

Tissue Lipid Extraction 

 Lipid content of the tail skin was determined by assessing dry weights before and after 

fat extraction. Lipid was extracted placing homogenized tail skin samples overnight in 4 mL 

mixture of chloroform and methanol (2:1). The solvent fraction, containing the lipids, was 

removed and evaporated before weighing. This was repeated thrice; the total lipid isolated is 

reported. 

 

Immunofluorescence and Histology 

 Tail specimens were cut into 10 μm-thick longitudinal cryosections and immunostained. 

To detect LECs, a rabbit polyclonal antibody against the lymphatic-specific hyaluronan 

receptor LYVE-1 (Upstate, Charlottesville, VA) was used along with an Alexa Fluor 488 

conjugated goat anti-rabbit secondary antibody (Molecular Probes). To detect blood 

endothelial cells, a rat polyclonal CD31 antibody (BD Pharmingen) was used along with an 

Alexa Fluor 594 conjugated goat anti-rat secondary antibody (Molecular Probes). Cell nuclei 

were labeled with DAPI (Vector Labs, Burlingame, CA). Sections were fluorescently imaged 

with a Zeiss Axiovert 200M fluorescence microscope and Zeiss MRm camera. 

 For histology, sections were first fixed in 4% PFA. To visualize the matrix, Giemsa 

staining was used on both tail cross-section and axial sections, which were then dehydrated 

and mounted with Eukitt (Fluka Chemie AG, Buchs, Switzerland). Oil red O (Sigma-Aldrich, 

Buchs, Switzerland) was used to stain lipids, with a hematoxylin counterstain, and slides were 

mounted in Glycergel mounting medium (Dako). Color histological samples were imaged 

with a Zeiss MRc camera. 

 

Image Analysis 

To quantify tissue lipid content from mounted skin sections, Metamorph 6.3 image 

analysis software (Molecular Devices Corp., Sunnyvale, CA) was used. Five images were 

captured from each side of the tail of each of five samples. In each, the region between the 

epidermis and underlying tendon was clearly identified with a freehand tool, and the total oil 

red O staining of lipids within this region calculated per area analyzed. Interstitial area was 

similarly quantified on tail cross-sections (taken @ 5mm from the tail tip) with hair follicles, 

bone, tendon, muscle, etc. excluded from the defined area. 



 183

 

Statistical methods 

For all quantifications representing tissue extractions or animal measurements, n is 

equal to or greater than 6. For quantifications from histochemistry, 5 samples from each of 3 

animals were analyzed. Data is presented as mean ± one standard deviation. All P values were 

calculated using a two-sided Student’s t-test.  

 

RESULTS 

 

Chy and K14-VEGFR-3-Ig mice lack dermal lymphatic capillaries, but possess deeper 

collecting vessels 

 Immunohistochemical analysis of lymphatic and blood capillaries confirmed the 

absence of lymphatic capillaries in the tail skin with normal blood capillaries in the model 

strains (Fig. 1A). In the mouse tail, from the perspective of fluid transport, a lack of dermal 

lymphatic capillaries implies that interstitial fluid must either drain the entire length of the 

tail, transport the entire depth of the dermis to be taken up by the deeper collecting lymphatic 

vessel, or be reabsorbed into post-capillary venuoles. Histologically, it appeared that 

collecting lymphatic vessels were present in both Chy and K14-VEGFR-3-Ig strains, 

indicating that this route is anatomically possible (Fig. 1A). Functionally, however, direct 

interstitial fluid uptake by collecting lymphatic vessels has not been previously reported. 

When fluorescent tracer was infused into the tail of K14-VEGFR-3-Ig mice, no functioning 

collecting vessels were found (Fig. 1B); tracer moved readily below the dermis.  

 

Chy and K14-VEGFR-3-Ig mice demonstrate significantly increased interstitial fluid 

pressures, but only K14-VEGFR-3-Ig mice show increased hydraulic conductivity 

Interstitial fluid pressure (IFP) is a key parameter of Starling’s Law in its complete 

form, for blood capillary extravasation: 

 

( ) ( )( )erstitiumcapillaryerstitiumcapillaryv PPLpJ intint ππσ −+−=  

 

where the flux is related to the hydrostatic driving force, as well as the osmotic pressure 

driving force, Δπ. Lymphatic intravasation is represented by the appropriate directional 

changes to the driving forces. The filtration coefficient, Lp, is dependent on vessel wall area 
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and wall hydraulic conductivity. During lymphedema, the interstitial fluid pressure is 

increased (18), which would reduce extravasation from the blood capillaries while increasing 

the driving force to lymphatic vessels and potentially permitting increased uptake by post-

capillary venuoles. Osmotically, there are changes in both the molecular concentrations as 

well as in σ, the capillary reflection coefficient (19, 20).  

Average IFP in the tail skin of Chy mice was measured to be significantly higher than 

in wildtype (Fig. 2A). Similarly, in K14-VEGFR-3-Ig, the IFP was significantly higher than 

their wildtype cagemates (both P<0.01). The marked increase in IFP exhibited by these mice 

is another hallmark of their edematous condition. Also, as lymphatic drainage normally 

provides a low-pressure route for fluid transport, the increased IFP in these mice is likely a 

consequence of the lack of lymphatic capillaries.  

While IFP drives fluid movement through the tissue, the tissue’s hydraulic 

conductivity determines its resistance to flow. Factors influencing tissue hydraulic 

conductivity include tissue hydration (21) and matrix composition (22). Hydraulic 

conductivity is also coupled to IFP, as increased IFP leads to swelling of the matrix, which 

opens “pores” and increases the conduction of fluid (23). We utilized a quantitative in vivo 

model of interstitial transport in the mouse tail to quantify the changes in hydraulic 

conductivity induced by lymphedema in these mouse strains (Appendix A).  

In Chy mice, a higher starting infusion pressure of 50 cmH2O (typically beginning at 

40 cmH2O) was necessary to visibly induce significant flow through the interstitium. Once 

flow was established, however, the resultant movement of fluorescent dextran through the 

matrix was similar to wildtype mice at the same infusion pressure. The calculated hydraulic 

conductivity of the Chy mice was the same as the wildtype mice examined (Fig. 2B). No 

uptake and transport by lymphatic vessels was observed ahead of the convective front (Fig. 

2C).  

K14-VEGFR-3-Ig tissue responded differently in that our standard initial infusion 

pressure of 40 cmH2O was sufficient to induce interstitial flow, despite the higher IFP 

recorded in these mice. Again factoring in the larger flow area and IFP, the hydraulic 

conductivity of K14-VEGFR-3-Ig was dramatically increased over matching wildtype 

controls by nearly threefold (Fig. 2D)(P=0.069). Like in the Chy mouse, no lymphatic uptake 

was visualized (Fig. 2E). 
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Chy mice exhibit a greater change in tissue composition than K14-VEGFR-3-Ig mice 

 Despite the phenotypic appearance of lymphedema, we sought to determine if the 

underlying tissue structure and composition in Chy and VEGFR-3-Ig mice could suggest 

adaptations that (a) explain the differences in the measured hydraulic conductivities and (b) 

could offer clues as to why the extent of the human lymphedema condition is avoided.  

Histological analysis of tail skin demonstrated dermal swelling in these strains 

primarily in the hypodermis (Fig. 3A) and a denser tissue structure in the dermis. The 

swelling was further demonstrated quantitatively by calculating the cross-sectional area of the 

interstitium (Fig. 3C). Lipid accumulation, marked by oil red O staining, occurred in the 

edematous tissue as well (Fig. 3B). Quantification of lipid accumulation by image analysis 

revealed, however, that while Chy mice exhibit significantly more lipid accumulation (Fig. 

3D) than their wildtype littermates (P=0.039), K14-VEGFR-3-Ig actually exhibited less, 

though not significantly (P=0.25). These results were applied to the hydraulic conductivity 

model to ensure maximum accuracy in the calculations. 

 To complement the histological analyses, we analyzed the skin for total tissue water, 

collagen, and total lipid concentrations. Total tissue water was significantly higher in both 

Chy and K14-VEGFR-3-Ig mice (P<0.01 for both), indicative of the edematous condition 

(Fig. 4A). Collagen concentration, on a dry tissue weight basis, was significantly higher in 

Chy mice as compared to their wildtype controls (P=0.022) (Fig. 4B).  Conversely, K14-

VEGFR-3-Ig mice had a collagen content equivalent to that of their controls (P=0.87). Lipid 

extraction from tail skin confirmed the validity of our histochemical analysis: Chy mice had a 

significant and marked increase in tissue lipid content, over 25% more (P=0.013), while K14-

VEGFR-3-Ig mice actually had 10% less lipid content (P=0.012) than respective controls 

(Fig. 4C). 

 It is quite interesting that the two mouse strains, both without dermal lymphatics, had 

adapted a very different tissue composition. The Chy mouse adapted a more collagenous 

dermis, with an increased presence of lipids, while the K14-VEGFR-3-Ig mouse was 

compositionally quite similar to its wildtype littermates.  

 

DISCUSSION 

 

 Though both Chy and K14-VEGFR-3-Ig exhibit lymphedema in the skin resulting 

from improper VEGFR-3 signaling and the resultant lack of dermal lymphatic capillaries, in 

neither animal is the extent of lymphedema as severe as the human condition. Despite these 
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similarities, the lack of lymphatics resulted in different tissue adaptations in the two strains 

that consequently impacted the hydraulic conductivities of the skin. These differences 

demonstrate what are, essentially, the ways that tissue might adapt when uptake by the initial 

lymphatic capillaries is absent. 

 Blood capillaries are not impermeable to transmural flow and thus form the starting 

point interstitial flow as fluid and macromolecules extravaste into the interstitium (24). This 

flux from the blood capillaries is governed by Starling forces. In lymphedema, as exhibited by 

both Chy and K14-VEGFR-3-Ig mice, the interstitial fluid pressure is increased (18) and 

interstitial molecule concentrations are altered (11, 19), thus altering the Starling forces not 

only for blood capillary filtration (20), but likely for lymphatic uptake as well. Increased IFP 

may also permit reabsoption of interstitial fluid by post-capillary venuoles. One compensatory 

mechanism by which the tissue may adapt is to reduce flux out of the blood circulation or 

through the interstitium. Indeed, the Chy mouse tissue may have adapted in this manner. 

Another study in the Chy mouse demonstrated that skin colloid osmotic pressure was 

heightened in these mice and that the tissue response to volume loading was exaggerated 

compared to wildtype mice (11). 

 Another adaptive mechanism may be for the tissue to remodel such that the hydraulic 

conductivity is increased. A higher hydraulic conductivity permits flow to pass more easily 

through the interstitium. As a result, for the same hydrostatic pressure driving force across the 

interstitium, fluid can travel further. In K14-VEGFR-3-Ig mice, we quantified a significantly 

higher hydraulic conductivity. Extravasted fluid may, therefore, be more readily transported 

across the interstitium and taken up by lymphatic vessels outside the dermis. 

 These results illustrate that while lymphedema may be a sufficient blanket term to 

describe the pathology resulting from insufficient lymphatic transport, the actual resulting 

tissue effects may be quite different. The differential response in tissue adaptation 

demonstrated in the Chy and K14-VEGFR-3-Ig mouse strains exhibit a range of potential 

adaptations that are possible to not only define qualitatively via pathological methods, but 

also quantitatively and functionally. The tissue adaptations present in these mice may also 

explain why mouse models of congenital lymphedema have, thus far, failed to successfully 

recapitulate the human condition: the tissue adapts too readily to a lack of lymphatic capillary 

uptake. This suggests that therapies for lymphedema must consider not only the growth of 
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new lymphatic vessels to restore lymphatic transport in affected tissues, but should also, 

perhaps more importantly, investigate tissue transformation in any proposed comprehensive 

curative regimen. 
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APPENDIX A 

 
Model of Interstitial Transport 
 
 For all mice, the tissue hydraulic conductivity was calculated using the model 
presented by Swartz, et al. (14). As this model includes a term for flux into lymphatic 
capillaries, and neither the Chy nor the K14-VEGFR-3-Ig mouse has dermal lymphatic 
capillaries, there was some concern as to the applicability of the steady-state formulation 
presented. The model can also be applied when no flux is present; thereby changing the final 
governing equations to solve for K, and a comparison between the two solutions reveals the 
extent of flux losses. Flux in mice without lymphatics would indicate post-capillary venuole 
reabsorption. The dramatic change in K for wildtype mice (Table A.1) illustrates the 
unaccounted for flux to lymphatic capillaries, but as there is little difference in K for the K14-
VEGFR-3-Ig mouse, there is little unaccounted for fluid loss at 29.4mmHg applied infusion 
pressure. At higher applied pressures, however, some capillary reabsorption may occur.  
 
 K (mm2/min/mmHg) 
 Wildtype K14-VEGFR-3-Ig 
Steady-State Approximation 0.0272 0.1185 
Non-SS, Exact Solution (P*

0=29.4mmHg) 0.0050 0.1345 
Non-SS, Exact Solution (P*

0=40.8mmHg) 0.0003 0.0050 
* for the exact solution, a P* of 1mmHg were used.  
Table A.1. Calculated hydraulic conductivities for one example mouse using the various calculations described. 
The unsteady state solution fails for mice with lymphatic uptake. Higher infusion pressures potentially force 
capillary reabsorption, as a flux loss of tracer appears in the unsteady state calculation. 
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FIGURE LEGENDS 
 

Figure 1: Chy and K14-VEGFR-3-Ig mice lack dermal lymphatic capillaries. As compared to 

their respective wildtype controls, both Chy mice (left) and K14-VEGFR-3-Ig (right) mice 

lack dermal lymphatics (arrows)(green, LYVE-1). Subdermal lymphatic vessels (arrowheads) 

are visible with immunohistochemistry in all mice. The blood vasculature (red, CD31) was 

normal in the dermis of all strains. Bar=200um. B) Following an infusion of FITC-conjugated 

dextran, no deeper lymphatic vessels were visible in K14-VEGFR-3-Ig mice. The collecting 

vessel is visible along the tail vein of wildtype mice. Bar=1mm. 

 

Figure 2: Quantification of interstitial fluid pressure and dermal hydraulic conductivities 

revealed marked differences in the tissue adaptation to lymphedema. A) In both mouse 

strains, the measured IFP was significantly higher than their respective wildtype controls 

(P<0.01). B) In Chy mice, the calculated hydraulic conductivity is the same as in wildtype 

controls, despite the different tissue composition. C) No lymphatic capillary uptake (arrow) 

was seen downstream of the convective front in Chy mice. D) K14-VEGFR-3-Ig mice exhibit 

the expected behavior in lymphedema with a significantly increased hydraulic conductivity in 

the skin. E) Lymphatic capillary uptake (arrow) was not seen in the K14-VEGFR-3-Ig 

transgenic mouse. 

 

Figure 3: Histologic staining of tail tissue demonstrates that characteristics of lymphedema in 

Chy and K14-VEGFR-3-Ig mice. A) Giemsa matrix staining reveals the swelling of the 

hypdermis (arrows) in Chy (left) and K14-VEGFR-3-Ig (right) mice as compared to their 

respective wildtype controls. Dense thickening of the dermis is also present in each 

edematous strain (arrowheads). Bar=500um. B) Oil red O staining reveals the lipid 

accumulation, as compared to normal, in the hypodermis of Chy mice (left). K14-VEGFR-3-

Ig mice (right) did not appear to have significant lipid accumulation. Bar=200um. C) The 

interstitial cross-sectional area is significantly larger in Chy and K14-VEGFR-3-Ig mice at the 

same distance from the tail tip. D) Quantification of % lipid in the dermis confirmed that Chy 

mice accumulate significant amounts of lipid, while K14-VEGFR-3-Ig mice may actually 

have a less fatty hypodermis than normal mice. 

  

Figure 4: Quantifications of tissue water weight, collagen composition, and lipid content 

reveal marked differences between the skin of Chy and K14-VEGFR-3-Ig mice. A) Total 
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tissue water, a common symptom in lymphedema, was significantly elevated in each model 

strain. B) Collagen composition (%, dry weight basis) was significantly increased in Chy 

mouse skin, but normal in K14-VEGFR-3-Ig mice. C) Lipids extracted (% mass) were 

significantly increased in Chy skin, but actually decreased in the skin of K14-VEGFR-3-Ig 

mice. * indicates P<0.05. 
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Figure 2 

 



 196 

 
 
 
 
 
 
 
 
 
 

This page is intentionally left blank. 
 



 197

Figure 3 
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Figure 4 
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ABSTRACT 

 

Lymphatic vessels surround developing follicles within the ovary, but their roles in 

follicle maturation and pregnancy, as well as the necessity of lymphangiogenesis in these 

processes, are undefined. Here we demonstrate a critical role for ovarian lymphatics in 

murine reproduction by blocking lymphangiogenesis using systemic delivery of mF4-

31C1, a specific antagonist antibody to vascular endothelial growth factor receptor 

(VEGFR)-3. VEGFR-3 neutralization for two weeks prior to mating and pregnancy 

blocked ovarian lymphangiogenesis in all stages of follicle maturation without limiting 

blood angiogenesis. While the number of oocytes ovulated and fertilized and embryonic 

implantations in the uterus were all normal, all pregnancies were unsuccessful due to fetal 

defects and miscarriage. Preantral follicles isolated directly from treated ovaries, were 

able to grow and mature normally in vitro. When embryos from mF4-31C1 treated mice 

were isolated and transferred to untreated surrogate mothers, pregnancies were normal 

and came to term. Conversely, implantation of normal embryos into treated surrogate 

mothers led to the same fetal deficiencies as observed with pregnancies from mothers 

treated in situ. This suggests the importance of lymphatic capillaries in maintaining an 

ovarian hormonal environment necessary for fetal development and pregnancy 

maintenance. Indeed, pregnant mice with limited follicular lymphangiogenesis also 

exhibited significantly reduced serum progesterone and estradiol, hormones that are 

sourced from the ovarian corpora lutea during pregnancy. In total, these results 

demonstrate that lymphangiogenesis is a necessary process for ovarian lymphatic 

capillaries that transport hormones and thereby critical for successful reproduction. 

 

 

 

 

 

 

 

 

 

Keywords: corpus luteum, folliculogenesis, lymphatic, VEGF-C, VEGFR-3, blastocyst
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INTRODUCTION 

 

Lymphatic vessels are present within the ovary and surround follicles during 

maturation (1, 2), but the importance of the lymphatic vasculature and lymphangiogenesis in 

the ovary is unclear. Consequently, the potential roles of lymphatic vessels in follicle 

maturation and pregnancy, and the extent or even necessity of lymphangiogenesis in 

reproduction, are undefined. This contrasts with ovarian blood angiogenesis, whose critical 

roles in follicular nourishment and maturation as well as the formation and maintenance of the 

corpus luteum is well appreciated; indeed, oocyte fertilization, embryonic implantation, and 

pregnancy all require blood angiogenesis (3-5). Lymphangiogenesis, which is often 

concurrent with blood angiogenesis (6), may play an equally important role in these 

processes.  

Adult blood angiogenesis requires signaling via vascular endothelial growth factor 

(VEGF) receptor -2 (VEGFR-2), most potently by VEGF ligation (7, 8). In murine ovaries, 

VEGF expression increases during angiogenic growth phases (9), and blockade of VEGFR-2 

signaling effectively prevents angiogenesis, resulting in a marked decrease in ovarian weight, 

blood vessel density, number of corpora lutea, and infertility (10-12). Since gonadatropin 

treatment apparently does not correct these deficiencies (13), it is likely that follicle 

maturation and successful pregnancy are highly dependent on VEGFR-2-mediated 

neovascularization (3, 14). 

 VEGFR-3 is expressed primarily on lymphatic endothelial cells (LECs) in adult tissue 

(15, 16), and its signaling, via ligation by VEGF-C or VEGF-D, is necessary for 

lymphangiogenesis by inducing LEC proliferation and migration (16-19). Blockade of 

VEGFR-3 signaling, using a function blocking antibody such as mF4-31C1 (ImClone 

Systems), completely blocks the initiation of new lymphatic vessels in adult mice without 

affecting pre-existing lymphatic morphology or function and without apparently affecting 

blood angiogenesis (17, 18). Here we investigate the roles of lymphatic vessels and 

lymphangiogenesis in reproductive functions of the ovary. Specifically, we hypothesize that 

lymphangiogenesis within the ovary parallels blood angiogenesis during reproductive cycles 

(20-22) and that these new lymphatic capillaries may serve to balance hormones produced 

within the ovary, transport hormones from the ovary and corpus luteum, and aid in hormonal 

communication between the uterus and ovaries during pregnancy (23-25). Using combined in 

vivo, ex vivo, and in vitro methods, we examined which aspects of fertility are influenced by 

inhibited lymphangiogenesis, including oocyte and follicular development and maturation, 
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embryonic implantation in the uterus, and embryonic development. We show that blocking 

ovarian lymphangiogenesis prevents viable, full-term pregnancies due to decreased systemic 

hormone levels, thereby demonstrating a critical role for the ovarian lymphatic vasculature in 

reproduction. 

 

MATERIALS AND METHODS 

 

Animal procedures 

All protocols were approved by the Veterinary Authorities of the Canton Vaud 

according to Swiss law (protocols 1687, 1988, and 1988.1). The function-blocking antibody 

against murine VEGFR-3, mF4-31C1, was kindly provided by ImClone Systems (18). For 

two weeks prior to mating, 0.25 mL of 2.5 mg/mL mF4-31C1 was injected intraperitoneally 

every two days. 0.25 mL saline was similarly injected for some control groups with no 

adverse effects on reproductive potential. 

For studies without fertilization, 3 week old female F1 hybrid mice 

(C57Bl/6JxCBA/caj, Charles River Laboratories, France) were treated for two weeks and then 

sacrificed. Follicles and ovaries were collected for subsequent in vitro culture and histological 

examination, respectively. 

In studies requiring fertilization, 4-6 week old female F1 hybrid (C57Bl/6JxCBA/caj) 

mice were treated for two weeks before mating (to ensure spanning two full menstrual 

cycles). At approximately 6-8 weeks of age, mice in estrus were mated and coitus was 

evaluated by the presence of a vaginal plug 16 hours post-mating. For embryo retrieval, ex 

vivo culture, and transplantation, mice were sacrificed 42 hours post-mating and two-cell 

embryos collected by oviduct flushing with M2 medium (Sigma-Aldrich, St. Louis, MO). 

Embryos were implanted into pseudo-pregnant recipient NMRI mice (Charles River) 

following standard implantation protocols. Embryos from mF4-31C1 treated and untreated F1 

hybrid donors were implanted into treated and untreated recipients. Recipient mice were 

anesthetized using an intraperitoneal injection of ketamine (100mg/kg) and xylazine 

(10mg/kg). A small midsagittal incision, over each oviduct, was made and the donor embryos 

were deposited into each oviduct by mouth pipetting under a stereomicroscope. The incision 

was then sutured and pregnancies were permitted to continue through day 17. Implantation 

success was consistently >90%.  

For examination of fetal development and uterine implantation, mice were sacrificed 

at pregnancy day 17 or after birth. Implantation spots were counted in the uterus and fetuses 
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were graded as either (a) normal, (b) grade i – normal sized but abnormal coloration, (c) grade 

ii –under-developed fetus (in size or limb development), and (d) grade iii – implanted cell 

mass or necrotic fetus (refer to Figure 2B for examples). 

 

In vitro follicle culture and maturation 

To determine the direct effects of in vivo mF4-31C1 treatment on normal follicle 

maturation potential, ovaries were isolated from 5-week-old mice following two weeks of 

antibody treatment. In vitro maturation of preantral follicles was performed as previously 

described (26, 27). Briefly, whole ovaries were placed in 3 mL of L-15 Leibovitz-glutamax 

medium (Gibco, Carlsbad, CA) with 10% FBS (HyClone Laboratories, Logan, UT) and 1% 

penicillin-streptomycin (Gibco) solution. Preantral follicles with diameters of 100-130 μm 

were mechanically separated from the ovaries, washed, transferred to individual 10 µL 

droplets of MEM-alpha-glutamax medium containing 5% FBS, 1% ITS (5 µg/mL, insulin, 5 

µg/mL, transferrin, and 5 µg/mL selenium mixture solution; all Gibco), 1% penicillin-

streptomycin, and 100 MIU/mL recombinant human follicle stimulating hormone (hFSH) 

(Organon, Switzerland).  

On day 12 of in vitro culture, follicle maturation was induced by exposing to medium 

lacking hFSH, but supplemented with 2.5 IU/mL hCG-Pregnyl (Organon) and 5 ng/mL 

murine epidermal growth factor (Sigma). After 16 hours, oocytes were retrieved by removing 

the follicular cumulus cells using 200 IU/mL of hyaluronidase (Sigma). Oocytes were 

classified by the following maturation states: germinal vesicle (GV), germinal vesicle 

breakdown (GVBD) and metaphase II (MII).  

In groups were VEGFR-3 was neutralized directly on normal follicles, follicles were 

cultured using the above reagents in a method modified from West, et al. (28). 10 µg/mL 

mF4-31C1 was added to the culture medium of the test group. 

 

Ex vivo development of 2-cell embryos 

To determine the direct effects of VEGFR-3 inhibition on preimplantation embryonic 

development, two-cell embryos were retrieved from the oviducts and cultured in 4-well dishes 

containing 400 uL of M16 medium (Sigma). The number of embryos that developed into the 

8-cell, morula, and blastocyst stages were quantified and imaged under a Nikon SMZ1000 

stereomicroscope with a Nikon DS-5M monochrome camera at 66, 90 and 114 hours after 

mating, respectively. 
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Immunofluorescence, immunohistochemistry, and histology 

To visualize lymphatic vessels, 6-μm-thick ovary and uterus cryosections were labeled 

with a primary antibody to the lymphatic-specific marker LYVE-1 (1:500; 07-538; Upstate, 

Charlottesville, VA). For blood vessels, ovaries were labeled with a FITC-conjugated primary 

antibody to CD31/PECAM-1 (1:200; 550274; BD Pharmingen, San Jose, CA). Vessels were 

also co-labeled for VEGFR-3 (1:100; AF743; R&D Systems, Minneapolis, MN). Sections 

were also labeled for the macrophage-specific surface marker F4/80 (1:50; MCA497; AbD 

Serotec, Oxford, UK) and collagen IV (1:1000, 10760; MP Biomedicals, Irvine, CA). These 

antibodies were detected with Alexafluor 488 or 594-conjugated donkey, rabbit, or goat IgG 

secondary antibodies (1:200, Molecular Probes) and nuclei were labeled with DAPI mounting 

medium (Vector Labs, Burlingame, CA). Fluorescent labeling was observed and imaged 

using a Zeiss Axiovert 200M microscope with a Zeiss MRm camera. Slides were then rinsed 

and counterstained with hematoxylin and eosin, dehydrated, mounted with Eukitt (Fluka 

Chemie, AG, Buchs, Switzerland), and imaged again using a color Zeiss MRc camera. The 

corresponding fluorescence and chromogenic images were then compared for identification, 

and subsequent quantification, of follicular development.  

To label apoptotic cells, a fluorescence TUNEL kit was used according to 

manufacturer’s instructions (Roche Diagnositics, Rotkreuz, Switzerland). Oil red O (Sigma-

Aldrich, Buchs, Switzerland) was used to stain lipids in ovarian frozen sections. Sections 

were counterstained with hematoxylin and immediately mounted with Möwiol-based 

mounting medium for imaging. 

 

Serum Analysis 

 Serum was collected from all mice when sacrificed and analyzed using ELISA kits for 

estradiol (Calbiotech, Spring Valley, CA) and progesterone (BioSource, Carlsbad, CA) levels 

according to manufacturer’s instructions. Absorbance was measured using a Tecan Safire2 

plate reader (Tecan, Männedorf, Swtizerland). 

 

Image analysis and quantification 

To quantify macrophages, Oil red O, and TUNEL labeled slides, images of entire 

ovaries were assembled, the ovary body was outlined, and the percentage of positive area 

measured using Metamorph 6.3 (Molecular Devices Corp., Sunnyvale, CA). For lymphatic 

and blood vessel quantification, we considered each follicular maturation state. Each follicle 

was outlined using a Wacom CintiQ freehand graphic monitor (Wacom Co., Ltd., Saitama, 
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Japan) for accuracy. Vessel labeling was defined by fluorescence threshold and the number of 

positive pixels for each follicle was measured. The average vessel area for each maturation 

state is reported. Follicle maturation states were scored as follows: (i) preantral follicle 

(secondary follicle), (ii) antral follicle (small follicle with formed atrium), (iii) Graffian 

follicle (large follicle with significant atrium), and (iv) corpora lutea (Supplemental Figure 1). 

These divisions were consistently identified across multiple examiners. 

 

Statistical Methods 

For determining statistical significance between treatments in follicle vascularization 

over the stages of maturation, follicle survival and maturation, and embryo development, 

ANOVA followed by DUNCAN was used. Students’t-tests were used to compare other 

factors in treated vs. untreated plasma or in ovaries as a whole.  

 

RESULTS 

 

VEGFR-3 neutralization prevents successful murine pregnancy 

Female mice were mated at 6-8 weeks of age following 2 weeks of treatment with 

either (i) anti-VEGFR-3 neutralizing antibody (mF4-31C1), (ii) saline, or (iii) no injection 

(normal). All treatments were ceased before mating. Mice receiving saline or no injection 

were equally successful in giving birth to normal and healthy pups. Mice treated with mF4-

31C1, however, failed to produce a single live birth in the animals tested. This unexpected 

response to VEGFR-3 blockade prior to mating led to the hypothesis that lymphangiogenesis 

within the ovary helps mediate reproductive ability. 

 

Ovarian lymphangiogenesis but not blood angiogenesis is inhibited by VEGFR-3 blockade 

First, we examined blood and lymphatic vessels in the ovaries of saline-treated mice 

using CD31 and LYVE-1 co-labeling, and examined their relative expression of VEGFR-3. 

While all lymphatic (LYVE-1+) vessels expressed VEGFR-3 (Fig. 1A), limited VEGFR-3 

expression was found on follicular blood vessels (Fig. 1B). Lymphatic vessels were observed 

surrounding nearly every follicle at all maturation states and did not penetrate into the 

follicular body or thecal layers (Fig. 1A, C). The extent of lymphatic vascularization was 

dependent on the maturation stage of the follicles, with preantral follicles displaying only a 

few sparse lymphatics and corpora lutea displaying a significantly higher degree of peripheral 

lymphatic vessels. In ovaries from mice treated with mF4-31C1, the extent of lymphatic 
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vascularization was greatly reduced at all stages of follicular maturation, as measured by 

vessel density (Fig. 1D). There was not, however, a complete lack of lymphatic vessels. This 

was consistent with our previous studies where VEGFR-3 neutralization prevented 

lymphangiogenesis but had no morphological effects on pre-existing lymphatic vessels (17, 

18).  

While mature blood vessels do not express VEGFR-3, angiogenic blood vessels have 

been observed to express VEGFR-3 during normal development as well as in tumors and 

healing wounds (29-31), and there is evidence that VEGFR-3 inhibition may limit tumor 

angiogenesis (32, 33). Since blood angiogenesis in the ovary is necessary for pregnancy (3-5, 

13, 34), we examined the blood vessels to assess whether mF4-31C1 had any effects on 

ovarian blood angiogenesis. We found VEGFR-3 expression primarily limited to lymphatic 

vessels, with the exception of the blood vasculature within the corpora lutea (Fig. 1B). More 

importantly, the extent of blood vascularization, as quantified by vessel density, was not 

significantly affected by VEGFR-3 blockade (Fig. 1E). Therefore, ovarian blood angiogenesis 

appeared to be unaffected by VEGFR-3 neutralization, consistent with our findings in dermal 

wound healing and regeneration (17, 18).  

 

VEGFR-3 neutralization pre-fertilization leads to retarded embryonic development 

 Since pregnancies were not successful in VEGFR-3 neutralized mice, we sought to 

determine at what stage post-fertilization observable differences could be seen in embryonic 

and fetal development. Mice were treated for two weeks and then mated, and the uteri 

examined at pregnancy day 17. We observed no differences in the number of implantation 

sites in the uteri of treated vs. control mice, but fewer fetuses remained in mF4-31C1-treated 

mice at pregnancy day 17 (Fig. 2A). More strikingly, those fetuses remaining were 

dramatically smaller and underdeveloped (Figs. 2A,B), threatening future miscarriage. 

Combined, these results indicate that multiple abortions had already occurred by day 17, and 

that the remaining fetuses were likely not viable. 

To determine whether the numbers of ovulated oocytes were normal and to examine 

blastocyst development from VEGFR-3-blocked mice, mice were sacrificed 42 hr after 

mating and 2-cell embryos were flushed from the oviduct. The numbers of harvested 2-cell 

embryos per mouse were the same in normal vs treated mice, with an average of 7.1±2.5 and 

8.3±1.5 taken from normal and treated mice, respectively. Additionally, all 2-cell embryos 

were cultured in vitro to blastocysts with 100% success, regardless of treatment (Fig. 2C). 

Thus, although VEGFR-3 neutralization pre-maing dramatically affected embryonic 



 209

development, it did not appear to reduce ovulation quantity or fertilization potential of 

ovulated oocytes.  

 

VEGFR-3 neutralization decreases number of healthy follicles but has no direct effect on their 

quality 

To explore the possible effects of VEGFR-3 signaling and lack of lymphatic 

vasculature on follicular maturation potential in virgin mice, preantral follicles (100-130 μm 

in size) were retrieved after 2 weeks of treatment. The numbers of healthy preantral follicles 

successfully retrieved was lower (P<0.01) from mF4-31C1-treated mice than from saline-

treated mice (Fig. 3A). This was due to a noted fragile contact between the oocyte and 

granulosa cells in mF4-31C1 treated mice (noting that preantral follicles require interactions 

between surrounding granulosa and theca cell layers and the oocyte (26)). These contacts 

were apparently not, however, due to any loss of integrity of the basal lamina as examined by 

collagen IV staining (Fig. 3B), since no differences were observed in the granulosa-thecal 

boundary. While these discrepancies may impact the local hormonal environment in vivo, 

once separated and cultured in vitro, both groups of preantral follicles exhibited similar 

survival rates (P=0.763, Fig. 3C). Surviving follicles were able to mature normally, as defined 

by the method (27), through the GVBD and MII phase with equal success (Fig. 3C).  

Finally, to determine whether VEGFR-3 blocking had any direct effects on 

folliculogenesis, we isolated preantral follicles from untreated mice and cultured them in the 

presence of 10 μg/mL mF4-31C1 in vitro. All follicles survived (Fig. 3D) and grew to similar 

sizes (P=0.299, Fig. 3E). Thus, VEGFR-3 blocking had no direct effect on in vitro growth and 

maturation of secondary follicles. 

 

Loss of lymphatic capillaries does not alter macrophage recruitment, lipid accumulation, or 

apoptosis within the ovary 

Our combined in vivo and in vitro results suggest that failed pregnancies derive from 

alterations in the follicular environment due to the lack of lymphatic vessels. Since immune 

function may be important in mediating the balance between hormone accumulation (35) and 

follicle maturation and ovulation within the ovary (36, 37), and since lymphatic capillaries 

may be important in ovarian immune cell trafficking (20, 21), we examined macrophage 

populations in the ovaries (Fig. 4A). We found no significant differences in macrophage 

numbers within the ovaries (P=0.362; Fig. 4B). Therefore, the lack of lymphatic capillaries 

did not visibly alter overall macrophage recruitment in the ovary.  
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Furthermore, lymphatic insufficiencies have been linked to excessive tissue lipid 

accumulation in skin (38, 39). Since lipids are necessary for hormone synthesis by granulosa 

and luteal cells in the ovary (40, 41), we examined gross lipid content in the ovaries via oil 

red O staining (Fig. 4C), but no differences were observed between mF4-31C1-treated and 

control animals (P=0.532; Fig. 4D). 

Finally, we sought to determine whether blocking VEGFR-3 would affect cellular 

apoptosis, which normally occurs within certain bodies of the ovary throughout the menstrual 

cycle (42). Analysis of apoptotic cells revealed a similar distribution and number of TUNEL-

positive cells within the ovary (Fig. 4F) in both groups. Consistent with earlier findings (42, 

43), apoptotic cells were confined primarily to the interior layer granulosum of regressing 

antral follicles, regressing corpora lutea, and post-ovulatory cells at the ovarian wall in both 

groups (Fig. 4E). Thus, neither the direct blockade of VEGFR-3 nor the resultant lack of a 

significant lymphatic vasculature led to abnormal cell apoptosis in the ovary. 

 

Loss of ovarian lymphatics results in significantly reduced hormone levels during pregnancy 

With few other differences between ovaries from treated and untreated mice noted, we 

sought to determine whether the lack of ovarian lymphatics altered hormone levels during 

pregnancy. Serum collected from systemic circulation 42 hours after mating revealed no 

change in progesterone levels (Fig. 5A), but a significant decrease in estradiol levels (Fig. 

5B). As estradiol is sourced from the granulosa/luteal cells in the corpus luteum during 

pregnancy, and since mF4-31C1 treatment had the greatest effect on decreasing follicle-

associated lymphatic capillaries around the corpora lutea (Fig. 1D), these data suggest that 

ovarian lymphangiogenesis is critical for hormone transport and that decreased follicular 

lymphatics lead to decreased progesterone and estrogen transport, critical for maintaining 

pregnancy, from the ovary. These findings also support the hypothesis that intraovarian 

lymphatic capillaries are the entry point of ovarian sourced hormones to the systemic 

circulation (25). 

As hormone secretion by the murine corpora lutea has also been linked to proper 

blood angiogenesis, we verified the blood vasculature of pregnant mouse ovaries at day 17. In 

both untreated and treated mice, the blood vasculature of the corpora lutea appeared normal 

(Fig. 5C) while the lymphatic vasculature surrounding these bodies in mF4-31C1 treated 

ovaries was notably deficient. 
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Reduced ovarian hormone production by recipient mothers results in poor fetal development 

and miscarriage of transplanted normal embryos 

Finally, to demonstrate an ovarian, and not uterine, cause to pregnancy failures, we 

isolated two-cell embryos from normal and treated mothers and implanted them into normal 

and treated pseudo-pregnant recipient mothers. Regardless of the treatment of the donor 

mother, transplantation of embryos into normal mothers resulted in normal implantation and 

fetal development with only normal, viable fetuses found in the uterus at day 17 (Fig. 6A). 

Conversely, the deficient ovarian hormone signaling demonstrated in treated recipient 

mothers led to retarded fetal development of implanted embryos (Fig. 6A). In fact, the 

developmental deficiencies observed (Fig. 6B) were nearly identical to those found during in 

situ pregnancies (Fig. 2A,B). This supports the hypothesis of early ovarian 

lymphangiogenesis being necessary for subsequent pregnancy success. 

Further verification of an ovarian source to failed pregnancies was found upon 

examination of the uterine blood and lymphatic vasculature from normal and treated mothers. 

No changes in the blood or lymphatic vessel network of the ovarian wall were noted in early 

pregnancy (Fig. 6D). This lack of differences in the uterine vasculature supported the findings 

of normal implantation rates, and reinforced that ovarian lymphangiogenesis is the likely 

process affecting hormone maintenance. 

 

DISCUSSION 

 

 Taken in total, these results demonstrate that ovarian lymphatics, particularly those 

that develop during folliculogenesis, are necessary for maintaining pregnancy by providing a 

conduit for hormone transport. We saw that blockade of VEGFR-3 effectively halted 

lymphangiogenesis of maturing follicles within the ovary while not visibly affecting blood 

angiogenesis, macrophage recruitment, lipid accumulation, or overall cell apoptosis. In the 

absence of lymphangiogenesis, there were fewer patent secondary follicles, but those that 

were patent could mature normally, were ovulated, and could be fertilized. Embryonic masses 

naturally implanted in the uterus and partially developed, but all eventually miscarried; there 

were no successful births despite a normal number of uterine implantation spots. The absence 

of new lymphatics in the ovary appears mainly to disturb progesterone and estradiol levels 

during pregnancy. As these hormones are sourced from the copora lutea, it is likely the 

follicular lymphatic capillaries are necessary in regulating a hormonal environment conducive 

to normal pregnancy maintenance.  
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The ovarian microvasculature is critical in regulating hormonal transport during 

pregnancy. Normally, as follicles mature, the theca layers become vascularized by blood 

vessels (44) and support follicles by synthesizing estrogen (45); abnormalities in the theca cell 

layers can result in infertility (46). Post-implantation, proper blood vascularization is 

necessary for successful pregnancy (3) and blocking blood vessel formation in the corpus 

luteum leads to pregnancy failures (5). The developing blood vasculature of the corpus luteum 

permits this pseudo-organ to function properly, supplying increased progesterone and 

estrogen to the uterus to maintain pregnancy (5, 34, 47). New lymphatic capillaries must 

supply a route by which hormones produced within the ovary enter systemic circulation (25). 

Additionally, it has also been suggested that retrograde transfer of prostaglandin E2 – 

involved in many crucial processes of pregnancy, including maintenance of the corpora lutea - 

from the uterus to the ovary may occur via lymphatic transport (24, 34). Indeed, our data 

demonstrates that ovarian lymphatic vessels and lymphangiogenesis are essential for 

reproduction. The poorly connected granulose of isolated follicles and lower levels of 

progesterone and estradiol during pregnancy are likely related (48). The blocked growth of 

lymphatic capillaries during folliculogenesis disturbs the hormonal balance, as evidenced by 

reduced estardiol with VEGFR-3 neutralization. The lymphatic vasculature of these follicles 

is then insufficient to modulate the copora lutea and their hormone secretions during 

pregnancy. As VEGFR-3 signaling, and therefore, lymphangiogenesis, was only blocked prior 

to mating, oocytes are ovulated and fertilized and embryos implant normally in the uterus, we 

have isolated a developmental period in which lymphangiogenesis appears to most critically 

occur.  

Another important role of lymphatic vasculature is to maintain fluid balance and 

interstitial fluid pressure (IFP). Throughout the body, these roles are inherently tied to 

lymphatic function. In the ovary, follicles become increasingly vascularized as they grow and 

a fluid-filled antrum is formed. The IFP in antra of developing follicles is approximately 15 

mmHg regardless of size and drops rapidly to 5mm Hg immediately preceding ovulation (49). 

Post-ovulation, the IFP in the highly vascularized corpus luteum has been reported at a very 

high 50 mmHg (49). Ovarian lymphatics clearly must play a role in modulating fluid 

pressures. Furthermore, concurrent lymphangiogenesis is likely necessary to drain 

extravasated fluid from the newly formed blood capillaries (21) and may help to regulate 

morphogenetic processes and signaling on the luteal cells by controlling interstitial flow, an 

important morphoregulator for many cell types (50). 



 213

Lack of ovarian lymphatics have also been reported in ADAMTS-1 knockout mice (1) 

and Frizzled4 knockout mice exhibit low levels of ovarian VEGF-C, the primary ligand to 

VEGFR-3 (51). Both of these strains are infertile, despite normal mating behavior; infertility 

in these mice was concluded to be the result of failed hormone transport, intrafollicular 

pressure modulation, or maintenance of the corpus luteum. Mice possessing mutations in 

VEGFR-3 such that their lymphatic capillaries are present but poorly functional can 

reproduce, albeit at a lower success rate than wildtype mice (52, 53).  

 

In conclusion, our data demonstrate that VEGFR-3-mediated lymphangiogenesis in 

the ovary is necessary for pregnancy by modulating levels of progesterone and estrogen from 

the corpora lutea. With anti-lymphangiogenic therapies aimed at preventing tumor metastases 

proposed as a cancer therapy (32, 33, 54) and pro-lymphangiogenic therapies proposed for 

treating lymphedema (52, 55, 56), it is critical to understand the role of lymphangiogenesis in 

the ovary and the role of lymphatics in fertility. Moreover, an increased knowledge of the 

physiologic role of lymphangiogenesis in the ovaries may provide insight into causes of 

infertility (and potential therapeutic strategies) and permit a more careful examination of 

angiogenesis and lymphangiogenesis inherent with ovarian cancers. 
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FIGURE LEGENDS 

 

Fig. 1. Ovarian and follicular lymphangiogenesis, but not blood angiogenesis, was inhibited 

by VEGFR-3 blockade in the ovary, preventing successful pregnancy. A) Ovarian lymphatic 

vessels (green, LYVE-1) are VEGFR-3 (red) positive (arrowheads). Some non-lymphatic 

associated VEGFR-3 is found on the vessels within the copora lutea (arrows) B) Blood 

vessels (green, CD31) are mostly negative for VEGFR-3 (red), with the exception of those 

within the corpora lutea (arrow). As lymphatic vessels also express CD31, the strong VEGFR-

3 colocalization is likely marking lymphatics (yellow arrows). C) The extent of lymphatic 

vasculature (green, LYVE-1) normally developing within the ovary, left, was reduced in 

VEGFR-3 blocked ovaries, right; the blood vasculature and blood angiogenesis (red, CD31) 

were unaffected by the treatment. Bars=200μm. D) Quantification of lymphatic vessel 

coverage in (i) preantral follicles, (ii) small follicles with formed atrium, (iii) large follicles 

with significant atrium and (iv) corpora lutea (Supplemental Figure 1) demonstrated the 

significant reduction in lymphatic vessels at each maturation state with VEGFR-3 blockade. 

E) Blood vessel coverage was not statistically affected by VEGFR-3 blockade, despite some 

vessels expressing VEGFR-3. Notice the normal increase in vascularization of the follicles 

with maturation for both lymphatic and blood vessels. *P<0.05 between treatments.  

 

Fig. 2. Pregnancies occurred after lymphangiogenesis was blocked, but embryonic 

development was severely impaired in the womb. A) In mice treated with mF4-31C1 prior to 

fertilization, few bodies remained within the uterus at pregnancy day 17, and they were scored 

as normal, (i) normal sized but discolored, (ii) deficient size and underdeveloped and (iii) 

identifiable cell masses. B) Fetuses extracted at pregnancy day 17 from treated animals 

displayed a marked deficiency from control animals. Grid=4mm. C) 2-cell embryos were 

extracted from fertilized VEGFR-3 treated mice and culture in vitro. The appearance of both 

2-cell embryos and blastomeres appeared identical to those taken from control animals. Scale 

bar=100μm. 

 

Fig. 3. Secondary follicles, once retrieved from the ovaries of treated mice, matured normally 

in vitro. A) Fewer patent follicles were successfully separated from collected ovaries in 

treated mice. B) Patency was not determined by basal lamina quality, as collagen IV staining 

(green) displayed intact basement membranes in both control and treated follicles (arrows). 

Bar=100μm. C) Follicles and their oocytes separated from ovaries of VEGFR-3 treated mice 
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survive normally in vitro. Surviving germinal vesicle (GV) oocytes from treated and control 

mice mature to germinal vesicle breakdown (GVBD) and metaphase II (MII) stages using the 

in vitro drop culture technique at equal rates. D) Survival of secondary follicles directly 

treated with the VEGFR-3 blocking antibody in vitro was unihibited. E) Maturation potential, 

as determined by follicle size, was also unaffected by direct VEGFR-3 treatment on the 

follicles. 

 

Fig. 4. Macrophage recruitment, lipid accumulation, and cell apoptosis in the ovary appeared 

to be unaffected by VEGFR-3 blockade. A) Macrophages (red, F4/80) present in the ovary 

was limited to follicular peripheries in both control and treated ovaries. Bar=100μm. B) The 

total number quantified within the ovary was unchanged. C) The ovaries contain large amount 

of lipids (red, Oil Red O), particularly in the copora lutea (arrowheads). Bar=300μm. D) Lipid 

accumulation in the ovary was not significantly different without lymphatics. E) Apoptotic 

cells (green, TUNEL) were limited to interior granulosa cells (arrows) of regressing follicles 

and regular apoptosis of regressing corpora lutea and corpus hemorrhagicum (arrowheads) in 

both treatments. Bar=100μm. F) No difference was measured in the number of apoptotic cells 

within the ovary with mF4-31C1 treatment. 

 

Fig. 5. Blockade of lymphangiogenesis led to reduced systemic estradiol levels in mice 

following fertilization and decreases in both eastradiol and progesterone during pregnancy. A) 

Serum progesterone levels in control and mF4-31C1 treated mice were normal at pregnancy 

day 2, but significantly reduced at pregnancy day 17. Since treatment was halted before 

mating, and since no difference was seen in serum levels at day 2, the mF4-31C1 treatment 

did not directly affect these hormones. B) Estradiol levels were significantly reduced during 

pregnancy when ovarian lymphangiogenesis was blocked. *P<0.05 between treatments. C) 

The blood vasculature (red, CD31) corpora lutea in the ovaries of pregnant mothers at day 17 

was normal in mice when lymphangiogenesis was blocked prior to mating. In normal 

mothers, lymphatic vessels (arrows) (green, LYVE-1) surround the corpus luteum and other 

follicles. Bar=200μm. 

 

Fig. 6. All embryos – normal and treated – implanted into treated recipient mothers were 

insufficiently developed despite normal uterine vasculature. A) Both normal and treated 

embryos implanted into normal, pseudo-pregnant recipient mothers developed into normal, 

viable fetuses by day 17. In pseudo-pregnant mothers pre-treated with mF4-31C1, no embryos 
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developed into normal fetuses, despite normal implantations. Grid=4mm. B) The distribution 

of fetal quality at day 17 following normal embryo transfer to mF4-31C1 treated recipients 

closely replicated that of in situ fetal development, as reported in Figure 2. C) Blood (red, 

CD31) and lymphatic (green, LYVE-1) capillaries in the uterine wall appeared normal in both 

mF4-31C1 treated and untreated mothers, further supporting an ovarian cause. Bar=200μm. 

 

Supplemental Figure 1. Follicular vasculature was calculated for four stages of follicle 

maturation. A) Follicles exist in various maturation states within the murine follicle with 

increasing vasculature with maturation. Follicles that had reached preantral status were 

identified for quantifying their surrounding vasculature. B) Each follicle was first identified 

and numbered on hematoxylin labeled sections, where follicular structure was easier to 

recognize. C) On the corresponding fluorescence image, each follicle was then outlined in 

Metamorph software (white lines indicate the concept) and the percent area of lymphatic and 

blood vessel coverage within each region of interest was quantified. Bars=200μm. 
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CHAPTER 9: 
CONCLUSIONS & FUTURE DIRECTIONS 

 

 Research in lymphatic biology has been rapidly growing as the importance of the 

lymphatic circulation is increasingly appreciated. Fundamental work in lymphatic 

development, interstitial fluid balance, lymphatic vessel pumping, and tumor 

lymphangiogenesis has laid the critical groundwork, but more research is necessary to 

elucidate the role played by lymphatic capillaries. These vessels act as the entry point of 

interstitial fluid, immune cells, and lipids into the lymphatic system, thus placing lymphatic 

capillary biology at the intersection of many essential physiologic processes and diverse fields 

of study. It is therefore an important step in understanding lymphatic biology to explore the 

interactions between potential molecular and mechanical regulators of lymphatic capillary 

function. The overall aim of this thesis was to do just that, specifically: identifying 

contributing factors to lymphangiogenesis during wound healing, determining the lymphatic 

capillary and tissue response to lymphedema, developing a model to quantify lymphatic 

capillary fluid uptake and tissue hydraulic conductivity, and defining a role for lymphatic 

capillaries in reproduction. In accomplishing these aims, this thesis contributes a significant 

body of original and important knowledge towards furthering our understanding of lymphatic 

capillary biology. 

 By taking an integrative biomedical engineering approach to studying lymphatic 

capillary biology in vivo, novel mechanisms of lymphatic capillary biology were elucidated. 

We believe that this approach has allowed us to place our results in a more physiologically 

relevant context than what would have been possible in vitro; indeed, there is no in vitro 

technique that can recapitulate a functional lymphatic capillary. In lymphangiogenesis, our 

model of skin regeneration in the mouse tail provided a unique platform in which to study not 

only the growth factors and proteases essential for the growth of new lymphatic capillaries, 

but also the importance of interstitial flow as an organizational guiding force. Interstitial flow 

is absolutely essential for LEC organization into functional lymphatic capillaries and the tail 

model, as a virtue of its reproducibility and resultant well-defined stepwise lymphatic 

regeneration was able to elegantly illustrate that VEGF-C signaling only initiates 

lymphangiogenesis. These key findings – the first to demonstrate that a biomechanical force 

guides lymphangiogenesis - have several immediate implications. Firstly, as described in this 

thesis, we now know why, in lymphedema, lymphatic capillaries become hyperplastic and 

highly dysfunctional despite the presence of high concentrations of growth factor: there is no 
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flow to guide proper cellular organization. Hence, VEGF-C to VEGFR-3 signaling initiates an 

exaggerated proliferative response, but without interstitial flow LECs remain in situ and 

generate tortuous hyperplastic vessels. Secondly, we demonstrate that growth factor therapies 

to cure diseases of lymphatic dysfunction (e.g., lymphedema) will have limited success due to 

the lack of flow necessary to organize a functional vasculature. Our additional findings in 

lymphedema – the massive breakdown and remodeling of the ECM – have identified another 

roadblock to successful remediation of edematous tissue: lymphatic dysfunctionality is further 

worsened by connective tissue destruction and the resultant loss of intimate connections 

between LECs and ECM that permit drainage. In primary lymphedema, where lymphatic 

capillaries were never present in the dermis, we found that different animal models exhibit 

different tissue adaptations to modulate capillary extravasation and interstitial transport. The 

combined findings in our integrative models of lymphangiogenesis and lymphedema demand 

that any future approach to therapies for lymphatic pathologies must seek to (a) restore 

interstitial flow and (b) remediate the matrix morphology; growth factor therapy alone will be 

insufficient. One potential means to grow new lymphatics, restore flow, and remodel the 

matrix might be to purposefully target antigen-presenting cells (APCs) in the tissue (i.e., 

dendritic cells and macrophages) to stimulate migration by alternative activation (anti-

inflammatory activation) and the secretion of pro-lymphangiogenic factors. Therefore, 

utilizing immunobiomaterials to target APCs in the tissue that normally migrate via the 

lymphatics might simultaneously provide sufficient proteolytic remodeling of the matrix and 

lymphatic capillary growth. 

 Our model of dermal interstitial transport and lymphatic capillary uptake provides a 

starting point for future studies that question which molecules play a role in LEC biology and 

lymphatic function. Studies utilizing either transgenic mouse models or the delivery of 

agonistic or antagonistic molecules can now readily determine not only a yes-or-no as to 

which molecules are important to lymphatic capillary function, but also the quantitative extent 

to their functional modulation. In the ApoE-/- mouse, for example, we found the dyslipidemia 

or hypercholesterolemia resulted in significantly decreased uptake by lymphatic capillaries. 

Not only did this verify the applicability and functionality of the model, but also opened a 

whole new realm of research in lymphatic-lipid interplay. If dyslipidemia alters lymphatic 

vessel function, the opposite might also be true: lymphatic dysfunction leads to lipid 

metabolic disorders. Currently, we are beginning to explore more deeply this interplay. One 

approach is to quantify if correction of the lipid metabolic disorder (e.g., via delivery of 

cholesterol medication) improves lymphatic function. Another is to determine if lymphatic 
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dysfunction, as in the Chy or K14-VEGFR-3-Ig mouse, leads to dyslipidemia. The exciting 

potential of these interactions has significant implications ranging from lymphatic therapies to 

obesity.   

Finally, we have identified a new role for the lymphatic circulation: modulation of 

hormone levels during pregnancy. With this work, we are only just beginning to scratch the 

surface of lymphatics in reproduction. We have successfully demonstrated that 

lymphangiogenesis occurs within the ovary during folliculogenesis, that this is essential for 

pregnancy, and that this is likely the cause of a systemic decrease in estrogen; just how the 

lymphatic circulation modulates this is still unknown. Also, as lymphatic vessels are critical in 

inflammation and fluid balance, there is even more potential for reproductive lymphatic 

circulation to control the complex processes of folliculogenesis, ovulation, and pregnancy. 

Some researchers describe ovulation as a massive inflammatory event: the modulation of 

pressures within the antrum of developing follicles, the massive secretion of hormones, and 

the eventual rupture of the ovarian capsule should present an almost insustainable 

inflammatory environment. Clearly, lymphatic vessels have the potential to modulate these 

factors as would occur in other tissues. Further examination of intrafollicular pressures, 

granulose cell molecular expression and hormone secretion, and hormonal rescue therapy may 

elucidate the roles of ovarian lymphatic capillaries more sufficiently. 

 In summary, this thesis has produced a series of significant and unique contributions to 

our understanding of the dynamism of lymphatic capillary biology and the complex 

biochemical and biomechanical environments in which they reside.  Specifically, we 

demonstrated, for the first time, that:  

• Lymphangiogenesis requires interstitial flow as an organizational guiding force 

• VEGFR-3 signaling is only required for LEC proliferation and migration in the initial 

stages of lymphangiogenesis 

• Lymphedema therapy requires an integrative approach targeting both the restoration of 

interstitial flow and matrix remediation for success 

• Matrix remodeling, lymphedema, and dyslipidemia reduce lymphatic capillary 

function 

• Lymphangiogenesis within the ovary is an essential process in reproduction 

Within various realms of biological research, the lymphatic circulation has become 

increasingly appreciated. As the initial component of the lymphatic circulation and a critical 

mediator of the interstitial environment, the functional behavior of lymphatic capillaries 

demands further attention, and has implications not only to the lymphatic research 
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community, but also to those interested in inflammation, immunology, lipid metabolism, and 

reproduction.  
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