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Résumé

La théorie des graphes est un domaine important des mathématiques discretes.
C’est un domaine particulierement intéressant parce qu’il a beaucoup d’appli-
cations. Deux des principaux problemes de la théorie des graphes sont la
coloration et la recherche de circuits hamiltoniens.

Le chaptire [1 donne des définitions de bases de la théorie des graphes,
telles que la coloration, la coloration bornée par un entier b et les circuits et
chemins hamiltoniens. Nous y présentons également les algorithmes online
et en particulier la coloration online.

Le chapitre 2 commence par quelques remarques générales a propos des
recouvrements online de graphes par des ensembles de tailles bornées (tels que
la coloration bornée ou le recouvrement par des cliques de tailles bornées):
nous y montrons une méthode simple pour transformer un algorithme de
recouvrement online en un algorithme de recouvrement online borné, et pour
calculer le rapport de performance du nouvel algorithme borné en fonction
de celui de 'alorithme non borné. Nous montrons par la suite que cette
transformation donne souvent lieu a des algorithmes online optimaux. De
plus, nous présentons dans ce chapitre quelques résultats préliminaires sur
le recouvrement borné: pour tout graphe, le rapport de performance est
inférieur ou égal a % + g et pour b = 2, ce rapport est optimal.

Dans la deuxieme partie de ce chapitre, nous nous intéressons a la col-
oration online de graphes de co-intervalles. En nous basant sur deux appli-
cations industrielles, nous étudions deux versions différentes de ce probleme.
Dans le cas ou les intervalles sont présentés dans l'ordre croissant de leurs
extrémités gauches, nous montrons que le rapport de performance est 1 dans
le cas non borné et 2 — % dans le cas borné. Dans le cas ot les intervalles peu-
vent etre présentés dans n’importe quel ordre, nous montrons que le rapport
de performance est plus petit que 3 dans le cas borné.

Dans le chapitre[3, nous nous intéressons a la coloration online des graphes
de permutations et des graphes de comparabilité. Tout d’abord, nous mon-
trons que l'algorithme First-Fit a un rapport de performance de O(y/n) pour
les graphes de permutations bipartis et que cette borne est atteinte méme



pour certains ordres de présentation simples. Ensuite, nous montrons que,
pour les deux classes de graphes, le rapport de performance est inférieur a
X1 dans le cas non borné et que le rapport de performance de First-Fit est
égal a % + % dans le cas borné.

Dans la deuxieme partie de ce chapitre, nous nous intéressons a la co-
coloration des graphes de permutations. Nous montrons que le rapport de
performance est exactement %4—% et nous donnons de meilleures bornes dans
des cas particuliers.

Le chapitre [4 est consacré a une application de la coloration online:
I’affectation de voies ferroviaires a des trains. Selon les hypotheses que I'on
fait, ce probleme peut étre modélisé par de la coloration online de graphes
de permutations ou de graphes de chevauchements d’intervalles.

Nous montrons que, si un graphe de permutations est présenté d’ouest
en est sur un plan quadrillé, alors le rapport de performance est exactement
2 — m, ou k est la meilleure borne supérieure connue au nombre chro-
matique borné. Nous montrons également que si un graphe de permutations
est présenté sur un plan quadrillé en commencant par I'origine, puis en pro-
gressant en direction de 'ouest et, indépendamment, en direction de 1’est,
alors le rapport de performance est exactement 2 — %

Dans le cas des graphes de chevauchements d’intervalles, nous montrons
que le rapport de performance n’est pas borné par une constante, méme si
le graphe est biparti et est présenté dans l'ordre croissant des extrémités
gauches des intervalles. Dans ce cas particulier, nous montrons que First-
Fit a un rapport de performance de O(y/n). Nous nous intéressons ensuite
au cas ou les longueurs des intervalles sont comprises entre 1 et un nombre
M. Dans ce cas, nous montrons que le rapport de performance est borné
supérieurement par 2v/M si M < My, et par log M ([log M/ loglog M + 1)
si M > My, olt My est tel que 2v/My = 3log(My). Si M est grand, alors le
rapport de performance est O(log® M/ loglog M).

Dans le chapitre |5, nous nous intéressons a la coloration online d’arbres,
de foréts et de graphes scindés. Nous montrons que pour les arbres et les
foréts, le rapport de performance est exactement %logQ(Qn) dans le cas non

% dans le cas borné. Pour les graphes

borné et est inférieur ou égal a 1+
scindés, nous montrons que le rapport de performance est exactement 1 + i
dans le cas non borné et est inférieur ou égal a 2 + % — % dans le cas borné.

Dans le chapitre (6, nous présentons une classe de graphes orientés: les
graphes quasi-adjoints. Ces graphes forment une super-classe des graphes
adjoints ainsi que des graphes utilisés pour un algorithme de séquencage
d’ADN dans (Blazewicz, Kasprzak, “Computational complexity of isothermic
DNA sequencing by hybridization.”, 2006). Nous y donnons un algorithme
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polynomial en O(n?) pour les reconnaitre et un autre algorithme polynomial
en O(n* + m?) pour y trouver un circuit hamiltonien ou affirmer qu’il n’y
en a pas. De plus, nous y étudions quelques problemes liés, tel que celui de
trouver un chemin eulérien tout en respectant certaines transitions interdites.

Mots-clefs: coloration online, couverture par cliques online, circuit hamil-
tonien, graphes de permutations, graphes de comparabilité, graphes de co-
intervalles, graphes d’intervalles, graphes de chevauchement d’intervalles, ar-
bres, foréts, graphes scindés, graphes quasi-adjoints






Abstract

Graph theory is an important topic in discrete mathematics. It is particularly
interesting because it has a wide range of applications. Among the main
problems in graph theory, we shall mention the following ones: graph coloring
and the Hamiltonian circuit problem.

Chapter [1 presents basic definitions of graph theory, such as graph col-
oring, graph coloring with color-classes of bounded size b, and Hamiltonian
circuits and paths. We also presents online algorithms and online coloring.

Chapter [2 starts with some general remarks about online graph cover-
ing with sets of bounded sizes (such as online bounded coloring): we give
a simple method for transforming an online covering algorithm into an on-
line bounded covering algorithm, and to derive the performance ratio of the
bounded algorithm from the performance ratio of the unbounded algorithm.
As will be shown in later chapters, this method often leads to optimal re-
sults. Furthermore, some basic preliminary results on online graph covering
with sets of bounded size are given: for every graph, the performance ratio
is bounded above by % + % and for b = 2, this bound is optimal.

In the second part, online coloring of co-interval graphs is studied. Based
on two industrial applications, two different versions of this problem are
discussed. In the case where the intervals are presented in increasing order
of their left ends, we show that the performance ratio is 1 in the unbounded
case and 2 — % in the bounded case. In the case where the intervals may be
presented in any order, we show that the performance ratio is at most 3 in
the bounded case.

Chapter 3] deals with online coloring of permutation and comparability
graphs. First, we give a tight analysis of the First-Fit algorithm on bipartite
permutation graphs and we show that its performance ratio is O(y/n), even
for some simple presentation orders. For both classes of graphs, we show
that the performance ratio is bounded above by XTH in the unbounded case
and that the performance ratio of First-Fit is equal to % + % in the bounded
case.

In the second part of this chapter, we study cocoloring of permutation
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graphs. We show that the performance ratio is 7 + % and we give better
bounds in some more restricted cocoloring problems.

Chapter |4 deals with an application of online coloring: the online Track
Assignment Problem. Depending on the assumptions that are made, the
Track Assignment Problem can be reduced to coloring permutation or overlap
graphs online.

We show that when a permutation graph is presented on a latticial plane,
from west to east, then the performance ratio is exactly 2 — m, where
k is the best known upper bound on the bounded chromatic number. We
also show that, when a permutation graph is presented on a latticial plan,
starting from the origin and growing, simultaneously or not, towards west
and east, then the performance ratio is exactly 2 — i

We also show that online coloring overlap graphs does not have a per-
formance ratio bounded by a constant, even if the overlap graph is bipartite
and presented in increasing order of the intervals left ends. In this special
case, we show that First-Fit has a tight performance ratio of O(y/n). We
consider coloring overlap graphs online where the intervals have a bounded
size between 1 and a given number M. In this case, we show that the
performance ratio can be bounded above by 2v/M if M < M,, and by
log M ([log M/loglog M| + 1) if M > My , My being defined by the equation
2v/My = 3log(Mj). For large values of M, the ratio is O(log* M/ loglog M).

Chapter 5 is about online coloring of trees, forests and split-graphs.
For trees, we show that the performance ratio of online coloring is exactly

5 log,(2n) in the unbouded case and at most 1+ M in the bounded case.
For split- graphs we show that the performance ratio of onhne coloring is
exactly 141 N in the unbounded case and is at most 2+ E — 5 in the bounded
case.

In Chapter 6, we present a class of digraphs: the quasi-adjoint graphs.
These are a super class of both the graphs used for a DNA sequencing algo-
rithm in (Blazewicz, Kasprzak, “Computational complexity of isothermic
DNA sequencing by hybridization.”, 2006) and the adjoints. A polyno-
mial recognition algorithm in O(n?), as well as a polynomial algorithm in
O(n* + m?) for finding a Hamiltonian circuit in quasi-adjoint graphs are
given. Furthermore, some results about related problems such as finding a
Eulerian circuit while respecting some forbidden transitions (a sequence of
two consecutive arcs) are discussed.

Keywords: online coloring, online clique covering, Hamiltonian circuit,
permutation graphs, comparability graphs, co-interval graphs, interval graphs,
overlap graphs, trees, forests, split graphs, quasi-adjoint graphs
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Introduction

Combinatorial optimization deals with problems which have a countable
number of solutions. They are frequently used for modeling several real
world problems occurring in various domains such as genetics, chemistry,
telecommunication, transportation, robotics, inventory control or scheduling.
Indeed, setting an appropriate model for a particular problem is a difficult
task; but, often, solving it in an efficient way appears to be an even harder
problem. This is why the combinatorial optimization problems are at the
heart of many research topics in discrete mathematics.

Most combinatorial optimization problems of great practical relevance are
shown to be extremely hard to solve; this means, with a very strong evidence,
that there is no polynomial time algorithm to solve them (in an exact way).
These problems are said to be NP-hard and the time required to obtain their
optimal solutions grows very quickly beyond the time limits of human life.
Of course, not all combinatorial optimization problems are hard to solve; for
some of them, there exists algorithms that can produce an optimal solution
in polynomial time.

Real world problems, before being analyzed as combinatorial optimization
problems; have first to be modeled. A powerful tool to do this is graph theory.
Its origin goes back to the year 1736 when Leonhard Euler published a paper
on the seven bridges of Konigsberg problem [Eul36]. Nowadays, graph theory
is one of the fastest growing areas of modern mathematics.

One of the most famous problems in graph theory is probably the graph
coloring problem, which consists in associating a color (or an integer) to each
vertex of a graph in such a way that any two adjacent vertices (i.e. vertices
which are linked by an edge) get different colors. Graph coloring with a
minimum number of colors is known to be NP-hard for general graphs.

For real-world applications, such as those mentioned above, the classical
graph coloring problem may sometimes be a too limiting model. These ap-
plications naturally provide the requirement to consider online versions of
this problem, for which decisions must be taken while the complete data is
not known yet. In an online problem, the instance is presented step by step.
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Whenever a new part is presented, the solution dealing with this part is ir-
revocably decided by an online algorithm. In this context, the usual version
of the problem, where the instance is fully known in advance, is referred to
as the “offline” version. Most combinatorial problems can be studied in an
online version [Alb03, BEY05]. In this dissertation, we will concentrate on
online graph coloring, where the vertices of the graph are presented one by
one, and must get a color as they are presented.

Online graph coloring has been widely studied in general graphs [HS94,
KPT94, LST89]. The results obtained so far point out that only very loose
bounds can be achieved. It is thus natural to look at particular classes
of graphs; in particular, classes of graphs that can be used to model real
world applications. Some classes have already been studied in online cases,
such as interval graphs [BBE'03], triangle-free graphs [GKL99] or Ps-free
graphs [KPT95]. This work studies co-interval graphs (Chapter 2), compa-
rability graphs (Chapter[3), permutation graphs (Chapter[3/and Chapter 4),
overlap graphs (Chapter 4), trees (Chapter 5), and split-graphs (Chapter 5).

Another famous problem in graph theory is the Hamiltonian circuit prob-
lem. A Hamiltonian path in a graph is a path which visits each vertex ex-
actly once. A Hamiltonian cycle (or Hamiltonian circuit) in a graph is a
cycle which visits each vertex exactly once and also returns to the starting
vertex. Determining whether such paths and circuits exist in graphs is the
Hamiltonian circuit problem, which is NP-complete.

The Hamiltonian circuit problem also has interesting applications in logis-
tics. More interestingly, it has been shown [BHKdW99, BK06] that it can be
used in order to solve a problem of DNA sequencing. For this, these papers
exhibit classes of graphs in which the Hamiltonian circuit problem is solv-
able in polynomial time. Chapter [6] characterizes the quasi-adjoint graphs,
which generalize the classes discussed in the two papers mentioned above,
and shows how to solve the Hamiltonian circuit problem in polynomial time
in these graphs.

12



Chapter 1

Basic Definitions

1.1 Graph Theory

In this section, we give some fairly standard definitions on graph theory.
More specific notions will be defined in corresponding chapters.

Let us start with a definition that is not restricted to the domain of graph
theory, but which we will use in this work, in particular in Chapter [6: NP-
complete problems are a famous class of equivalent decision problems with
open complexity status. In fact, it is unknown whether they can all be solved
in time bounded by a polynomial in the size of the input or whether they are
all intractable, although the majority believes the latter. Optimization prob-
lems that are at least as hard as NP-Complete problems are called NP-hard
Formal definitions on NP-completeness can be found in [GJ79] or in [PS82].

Definition 1.1 (graph). A graph G = (V, E) is defined by the sets V =
{vi,...,v,} and E = {vjv; : v,,v; € V}. The elements of V are called
vertices and the elements of E are called edges. If the pairs in E are ordered,
they are denoted by parenthesis (v;,v;) and are called arcs; G is then called
a directed graph or a digraph.

Remark 1.2. Of course, (v;,v;) # (v;,v;) while v;v; = vjv;.

In this work, graphs are simple (no multiple edges, no loops), unless
otherwise stated. Figure(l.1 shows an example of graph where some pairs of
vertices are linked by an edge.

The size n of a graph G = (V, E) is the cardinality of V. Furthermore,
m is the cardinality of F.

We say that two vertices are adjacent if they are linked by an edge. A
neighbor of a vertex v is a vertex which is adjacent to v. N(v) denotes the
neighborhood of v, i.e., the set of all neighbors of v. The cardinality of N(v)
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Chapter 1

Figure 1.1: A graph with 5 vertices and 8 edges.

is called the degree of v and is denoted by d(v). A(G) is the maximum
degree of a vertex in GG. The non-neighborhood of a vertex v is given by

N(v) =V \ (N(v) U{v}).

Two edges are said to be adjacent if they have a common vertex. Also,
we say that an edge v;v; is incident to v; and v; (or equivalently v; and v;
are incident to the edge v;v;).

Definition 1.3 (complement). G = (V, E) is the complement of V = (V, E)
ifUZ'Uj € F =4 V;U; ¢ FE.

Remark 1.4. If G is the complement of G, then G is the complement of G.

Definition 1.5 (chain). A chain in a graph G = (V, E) is a sequence
(v1,...,vg) of distinct vertices from V' such that, for alli € {1,...,(k—1)},
vV € E. We say that the length of the chain is (k — 1).

Definition 1.6 (cycle). Let G = (V, E) be a graph. Let (vy,...,v) be a
sequence of distinct vertices such that viv; 1 € E forallti=1,...,k—1 and
v € E. Then, it is a cycle of length k, denoted by Cj.

Definition 1.7 (simple path). A simple path P in a digraph G = (V, E) is
a sequence (vy,...,vx) of distinct vertices from V' such that (v;,v;11) € E for
1 <i < k—1. Furthermore, if the number k of vertices of P is specified, P
is denoted Py, and we say that the length of Py is (k—1).

Definition 1.8 (circuit). Let G = (V| E) be a digraph. Let (vy,...,vx) be
a sequence of distinct vertices such that (vi,vi41) € Eyi=1,...,k—1 and
vy € E. Then, it is a circuit of length k.

Definition 1.9 (Hamiltonian path). Let G = (V, E) be a digraph. A Hamil-
tonian path in G is a simple path that includes all the vertices of V.

14



Basic Definitions

Definition 1.10 (Hamiltonian circuit). A Hamiltonian circuit in a digraph
G = (V,E) is a circuit that includes all the vertices of V.

Definition 1.11 (clique). Given a graph G, a clique is a set of pairwise
adjacent vertices of G.

Definition 1.12 (stable set). Given a graph G, a stable set is a set of
pairwise non-adjacent vertices of G.

Definition 1.13 (proper coloring). A proper coloring of a graph G = (V, E),
sometimes simply called a coloring, consists in a partitioning of V into stable
sets. Fach stable set is associated with a color.

Definition 1.14 (k-coloring). A k-coloring is a coloring that uses at most k
stable sets.

Definition 1.15 (k-colorability). k-colorability is the problem of deciding
whether a given graph admits a k-coloring.

Definition 1.16 (chromatic number). The chromatic number x(G) of a
graph G is the smallest number k such that G admits a k-coloring.

Definition 1.17 (Min Coloring). Given a graph G, Min Coloring is the
problem of finding a proper coloring of G with x(G) colors.

3-colorability is known to be NP-complete [GJS76], implying that Min
Coloring is NP-hard in general.

Definition 1.18 (clique covering). A clique covering of a graph G = (V, E)
consists in a partition of V into cliques.

Definition 1.19 (k-clique covering). A k-clique covering is a clique covering
that uses at most k cliques.

Definition 1.20 (clique cover number). The clique cover number 6(G) of a
graph G is the smallest number k such that G admits a k-clique covering.

Given a graph G, w(G) and a(G) denote respectively the size of a largest
clique and the size of a largest stable set in G. «(G) is also called the stability
number of G. Clearly, for every graph G, x(G) > w(G) and 0(G) > o(G).
Given a graph G, finding w(G) or a(G) is NP-hard.

Remark 1.21. If G is the complement of G, then 0(G) = x(G) and a(G) =
w(G).
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Chapter 1

Definition 1.22 (Min Clique Covering). Given a graph G = (V, E), Min
Clique Covering is the problem of partitioning V' into 0(G) cliques.

Clearly, covering a graph G with cliques is equivalent to coloring its com-
plement G. Thus, Min Clique Covering is also NP-hard in general.

Definition 1.23 (color-class). Given a graph partitioning problem, a color-
class is a set that is used to partition the graph.

Typically, a color-class will be a stable set (in a coloring) or a clique (in
a clique covering). In practical cases, it is sometimes convenient to consider
that a color-class may not contain more than a given number of vertices. In
this case, we talk about bounded coloring or bounded clique covering.

Definition 1.24 ((k,b)-coloring). A (k,b)-coloring is a coloring that uses at
most k stable sets and where each set has a size of at most b. Such colorings
are also called bounded colorings.

Definition 1.25 (bounded chromatic number). The bounded chromatic
number x,(G) of a graph G is the smallest number k such that G admits
a (k,b)-coloring for a given integer b.

Definition 1.26 (Min Bounded Coloring). Given a graph G, Min Bounded
Coloring is the problem of finding a (xu(G),b)-coloring of G' for a given in-
teger b.

Similarly, one can have the following definitions:

Definition 1.27 ((k,b)-clique covering). A (k,b)-clique covering is a clique
covering that uses at most k cliques and where each clique has a size of at
most b (b is given).

Definition 1.28 (bounded clique cover number). For a given graph G and
a given integer b, the bounded clique cover number 0,(G) is the smallest
possible k for which a (k,b)-clique covering exists.

Definition 1.29 (Min Bounded Clique Covering). Given a graph G and an
integer b, Bounded Clique Covering is the problem of finding a (0,(G),b)-
cliqgue covering of G.

Min Coloring (respectively Min Clique Covering) can easily be reduced
to Min Bounded Coloring (respectively Min Bounded Clique Covering) by
setting b = n. Therefore, Min Bounded Coloring and Min Bounded Clique
Covering are also NP-hard in general.

For the sake of simplicity, all numbers which are a function of a graph (for
example x(G), 0,(G), etc), are sometimes written without the “(G)” when
there is no possible confusion on the graph.
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Basic Definitions

Perfect graphs. For a set V' C V, G[V’] denotes the subgraph of G
induced by V', meaning that G[V'| = (V' E') where E' = {vv; : v; €
V' v; € V' and vv; € E}. Whereas a partial subgraph of G has a vertex set
and an edge set, which are respectively subsets of the vertex set and the edge
set of G. In what follows, a subgraph H of GG, denoted by H C G, is always
an induced subgraph of GG, unless otherwise stated. Note that we sometimes
denote G[V \ {v}] and G[V \ V'] respectively by G \ v and G \ V', for the
sake of simplicity.

Let G and H be two graphs. We say that G is H-free if G does not
contain H as an induced subgraph.

In the analysis of problems such as Min Coloring or Min Clique Covering,
there is a particularly important class of graphs, called perfect graphs.

Definition 1.30 (Perfect graphs). A graph G is perfect if and only if for all
H C G, we have x(H) = w(H).

In particular, for the class of perfect graphs, the stability number as well
as the chromatic number can be determined in polynomial time (see [GLS84]).
It was shown by Lovéasz in 1972 [Lov72| that a graph G is perfect if and only
if its complement is perfect; this was known as the weak perfect graph con-
jecture (see [Ber76]). Therefore, a graph G is perfect if and only if for all
H C G, we have §(H) = a(H). Let us also state the following theorem
known as the Strong Perfect Graph Conjecture from 1961 (formulated by
Berge [Ber61]) until it was proved by Chudnowsky, Robertson, Seymour and
Thomas in 2002 [CRST06].

Theorem 1.31 ([CRSTO06]). A graph G is perfect if and only if it does not
contain any odd hole (i.e., Copi1,k = 2), or odd antihole (i.e., the comple-
ment of Cory1,k = 2) as an induced subgraph.

Note that in this dissertation, we will be dealing mostly, but not always,
with subclasses of perfect graphs.

A graph G is called connected if there is a path linking any pair of vertices
in G. A connected component of GG is then a maximal connected subgraph of
G. A graph which is not connected is called disconnected.

A class of graphs G is called hereditary if every subgraph of a graph in G
also belongs to G. Note that in this dissertation, only hereditary classes of
graphs are considered, unless otherwise stated.

See [Ber76]| for all graph theoretical notions not given here.

17



Chapter 1

1.2 Online Coloring

An online problem can be seen as a two players game involving an adversary
and an algorithm. The adversary presents the instance and the algorithm
gives the solution. The online problem is generally characterized by the
underlying offline problem and two sets of rules that have to be respected by
the adversary and the algorithm, respectively.

Definition 1.32 (performance ratio). Online algorithms are traditionally
evaluated according to their performance ratio. Let A be an online graph-
coloring algorithm. Then xa(G) denotes the mazimum number of colors A
uses to color G over all online presentations of G respecting the given rules.
An online algorithm is said to guarantee a performance ratio of p(G) if, for
every graph G, xa(G) < p(G)x(G). If there exists an instance for which
xa(G) = p(G)x(G), we say that this bound is tight. For simplicity, the
performance ratio is sometimes noted p.

Some authors [KPT95] use an alternative way to characterize the perfor-
mance of an online algorithm: a class of graphs G is said to be x-bounded if
the performance ratio for G only depends on y. It means that there exists a
function f such that for all G € G, xa(G) < f(x(G)).

Definition 1.33 (Exact and optimal online algorithms). An online algorithm
is called exact (or solves the problem exactly) if it computes the optimal
offline solution for any online instance (it has a performance ratio of 1). It
15 called optimal if its performance ratio cannot be improved by any other
online algorithm.

The performance ratio is sometimes called the competitivity ratio. An
algorithm which guarantees a performance ratio of p is then said to be
p-competitive.

In this dissertation, unless otherwise stated, we consider an online model
consisting of the following sets of rules:

e The adversary presents the vertices one by one, along with the arcs or
edges connecting them to the vertices already presented. The adversary
sees the decision taken by the algorithm and may adapt the instance
it presents to these decisions.

e The algorithm must assign a color to a vertex as soon as it is presented
and may not change its decision in the future.
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In some cases, we will specify further rules to define a special case of the
problem. In particular, we may specify that the adversary must present an
instance in a given order.

A very common algorithm for coloring graphs is the greedy algorithm
First-Fit, denoted by FF.

Definition 1.34 (First-Fit). First-Fit considers the vertices one after the
other and puts each one in the first possible color-class.

First-Fit is very popular for its simplicity and since, for some classes
of graphs, it is easy to find an ordering which makes First-Fit exact. The
class of graphs without induced Py, called cographs, is known to be char-
acterized by the fact that First-Fit will find an optimal coloring no mat-
ter the order in which it takes the vertices [Chv84]. The only minimal
configuration for which First-Fit may find a non-optimal coloring is the
graph Py = ({a;b;¢;d}, {(a,b); (b,c); (¢,d)}). More precisely, if the adver-
sary presents the vertices in the order (a,d, b, c), then, First-Fit uses three
colors while two are sufficient.

Definition 1.35 (perfect ordering). Perfect orderings are orderings on the
vertices of a graph G such that First-Fit solves Min Coloring on G and all
its induced subgraphs exactly.

In an online framework, First-Fit is a very natural algorithm, but its
behavior depends on the order of presentation of the vertices. While it is
exact for cographs, independently of the order of presentation of the vertices,
it can be very bad for other classes of graphs. As will be shown in Chapter (3,
it is simple to see that P is a permutation graph. Thus, permutation graphs
do not have the nice property that any order is perfect.

Remark 1.36. First-Fit can trivially be adapted to partitioning a graph into
cliques by considering that the color-classes mentioned in Definition|1.534) are
cliques. The algorithm s then denoted FF}.

Remark 1.37. Similarly, First-Fit can be adapted for the problem of bounded
coloring (respectively bounded clique covering): it puts a new vertex in the
first possible color-class which contains less than b vertices. The algorithm is
then denoted FF, (respectively FFyy).
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Chapter 2

(General Remarks and
Co-interval Graphs

As mentioned in the definitions on graph theory (Section [1.1), coloring a
graph is equivalent to covering its complement with cliques. Covering interval
graphs with cliques has industrial applications (see for example [FJQS04],
|Gol04] or [Jos06]), two of which will be presented here. Furthermore, it
is very easy to represent an interval graph by drawing the corresponding
intervals along an axis. For these two reasons, this chapter will approach the
problem of online coloring a co-interval graph from its complementary side:
online covering an interval graph with cliques.

Related works. The challenges of covering interval graphs with cliques
have been the subject of many recent studies, in addition to the ones cited
above. In [GJQO7], Gijswijt, Jost and Queyranne have studied clique parti-
tioning of interval graphs with submodular costs on the cliques. Chan and
Zarrabi-Zadeh have studied online partitioning into cliques in a generaliza-
tion of interval graphs [CZZ07]. Zarrabi-Zadeh has also given interesting
results in the particular case of unit-interval graphs in [ZZ07]. Jaromczyk,
Pezarski and Slusarek have studied online covering of interval graphs with
cliques in [JPS03] and have pointed out a performance ratio of 2 if there is
no limit on the sizes of the intervals nor on the sizes of the cliques and if the
intervals may be presented in arbitrary order.

Main results. First, we show that, for any class of graphs, if A is an
online graph covering algorithm with performance ratio p and Ay is the simple
transformation of A which cuts the color-classes given by A in chunks of sizes
at most b, then the performance ratio py4, of A, is at most (1+p) — m,
where &, is the minimum number of color-classes of size at most b needed
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to cover a given graph G. In particular, this holds for coloring and clique
covering. Then, we generalize a result giving an upper bound of g+ % on the
performance ratio of FIF, on general graphs.

Furthermore, we show that if an interval graph is presented online in
increasing order of the intervals left ends, it can be covered with cliques
of bounded size b with a performance ratio of 2 — % and that this result
is optimal. Finally, if an interval graph is presented online in a random
order, we give a nearly tight bound for the performance ratio pgp,, of FF:
3 — 93—b < prry, <3 — elb’ thus showing that the performance ratio p of this

problem is 2 < p < 3 elb'

2.1 Introduction

We consider various models of online clique covering of interval graphs, where
the size of the cliques is upper-bounded by a given integer b. These models
are motivated by two industrial applications which are described below.

The first application is the following: consider a large biology research
center. Scientists use many different objects that need to be properly cleaned
between two different uses, in order to avoid any infection of one organism
by an other. To be cleaned, the objects are put in a big recipient, where
they are sprayed with disinfectant and shortly heated up to kill bacterias.
The scientists bring each object o; at unpredictable time [; to the cleaning
department and specify a time r; when they need the object back. Activat-
ing the cleaning machine costs energy and disinfectant and, therefore, the
accountant of the research center wants to minimize the number of times the
machine is activated.

This problem can be modeled this way: Let G be the interval graph
with vertices 01,09, ...,0, and connect two vertices o; and o; whenever the
intersection of the intervals [I;, ;] and [I;, r;] is non-empty. By the Helly prop-
erty [Gol04], {0i,,04,,...,0;,} is a clique of G, then the intervals {[l;,, ;] :
j=1,2,... k} will have a common point of intersection. Thus, a solution
to the minimization problem will be obtained by solving Min Clique Cover-
ing on GG. Since the objects are delivered in an unpredictable manner, this
problem is an online problem.

The second application is described in [Gol04]. We rewrite it here for the
sake of completeness.

Suppose ¢q, Ca, . . . , ¢, are chemical compounds which must be refrigerated
under closely monitored conditions. If compound ¢; must be kept at a con-
stant temperature between [; and r; degrees Celsius, how many refrigerators
will be needed to store all the compounds?
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Let G be the interval graph with vertices ¢y, co,. .., ¢, and connect two
vertices whenever the temperature intervals of their corresponding compounds
intersect. Again, by the Helly property, if {c;, ¢y, ..., ¢, } is a clique of G,
then the intervals {[l;;,7;,] : j = 1,2,...,k} will have a common point of
intersection t. A refrigerator set at a temperature of ¢ will be suitable for
storing all of them. Thus also, a solution to the minimization problem will
be obtained by finding a minimum clique cover of G.

There is an important difference between the two applications: in the Bi-
ology Research Center Problem, the intervals represent time-intervals. There-
fore, they are presented in the increasing order of [;. On the other hand, in
the Chemical Compound Storage Problem, the compounds (and thus also
the corresponding intervals) are presented in an arbitrary order.

In both cases, it is natural to consider that the size of a clique may have
to be bounded. Indeed, a cleaning recipient may not be able to contain more
than a given integer number b of objects. Similarly, a fridge may not be
able to contain more than b compounds containers. This work will take a
particular look at this.

This chapter is organized as follows: Section 2.2 contains some general
remarks about graph covering with sets of bounded size. Section [2.3| deals
with the Biology Research Center Problem and Section [2.4 considers the
Chemical Compound Refrigeration Problem.

2.2 About Graph Covering with
Sets of Bounded Size

2.2.1 A Simple Transformation

Consider an online algorithm A such that, if G’ is an subgraph of G induced
by a given set of color-classes used by A on G, then applying A on G’ will
not change the coloring of the vertices of G'. Suppose that A guarantees a
performance ratio p on some online graph covering problem P. Let P, be the
same problem with the additional constraint that the sizes of the color-classes
may not exceed a given bound b. Let A, be the simple transformation of A
which cuts the color-classes given by A in chunks of sizes at most b, without
re-grouping any chunks.

Let £ (respectively &) be the minimum number of color-classes (respec-
tively of bounded size b) needed to cover a graph G. We can now formulate
Theorem 2.1:
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Theorem 2.1. The competitive ratio pa, of Ay on Py is bounded above by:

1
pAbg(l—i_p)_j

where [ = min {&,, %}

Proof. Let A4, (G) be the number of color-classes returned by A on the graph
G. We call saturated the color-classes which contain exactly b vertices and
unsaturated the color-classes which contain strictly less than b vertices. We
denote by S the set of saturated color-classes and by S the set of unsaturated
color-classes. Furthermore, we define Ng = |S| (the number of saturated
color-classes) and Ng = |S| (the number of unsaturated color-classes). Of
course, the following equality always holds:

)\Ab(G) :N5+N§ (21)

Let Gg be the subgraph induced by the color-classes in S. Since the
color-classes are unsaturated, A, behaves just like A on Gg. Therefore,

Ns = A(Gs) < pé(Gs) < pE(G) < p&(G) (2.2)

Since color-classes in Ng are non-empty, we have:

n = bNg + N3 (2.3)
ot 3] s
Vo< - | %] 25)

Combining (2.1), (2.2) and (2.5), we deduce:
)\Ab(G) < & — ’V —‘ g (2.6)
< & [”ﬂ ot 2.7)

< G(l+p) - Mﬂ

Two cases are possible:
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1. If p& < m, then "p%q =1 and

A (G) <61 +p) — 1 (2.9)
and .
pa, < (1+p) — g (2.10)
2. If p& > m, then
par < (L4p) =% (2.11)
U

Corollary 2.2. If First-Fit guarantees a competitive ratio p on the problem
of covering a graph of a given class G with cliques, then FF, guarantees a

performance ratio of ppp, on the problem of covering a graph of G with cliques

of bounded size b, where ppr, < (14 p) — } and | = min {Gb, %

2.2.2 On the Bounded First-Fit Algorithm

Bouille and Plumettaz have studied the problem of coloring permutation
graphs online with color-classes of bounded size b and have shown that FF;
guarantees a performance ratio of at most % + % Although not mentioned
in their work, their proof shows that this bound remains true for general
graphs. For the sake of completeness, we provide a proof of this result here.

Theorem 2.3 ([BP06]). FF, guarantees a performance ratio ppp, < 2 + %
on the Online Bounded Graph Coloring problem with bound b > 2.

Proof. Suppose that we have a graph G = (V| E). Let us estimate \, the
maximum number of colors that FF, may need to use on GG. We consider A,
the number of color-classes of size 1, and A>9, the number of color-classes of
size at least 2.

The vertices in color-classes of size 1 must all be adjacent, otherwise FF;
would put them in the same color-class. Thus, GG contains a clique of size at
least \; and thus x;, > A;. The remaining vertices are put in color-classes of
size at least two. Since |V| < x,b, there number of remaining vertices is at
most xpb — A1. Thus Aso < (xpb — A1)/2 and therefore,

b— A\ A b
wb=A A b

A< A = 2.12
T 2 2 (2.12)
Therefore, the performance ratio pgp, is
A
PFrR, & — (2.13)
Xb
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A b 1 b
—+-< -+ 2.14
PFR, S ™ + 2 513 (2.14)
This ends the proof of Theorem 2.3 O

Since coloring a graph is equivalent to covering its complement with
cliques, it is easy to derive the following corollary:

Corollary 2.4. FFy, guarantees a performance ratio prr,, < % + L on Min

2
Bounded Clique Covering with b > 2.

When dealing with problems of covering graphs with color-classes of
bounded size, the case b = 1 is of course trivial and therefore not inter-
esting. If b = 2, covering a graph with a minimum number of cliques is
equivalent to finding a maximum matching in this graph. In this case, we
can state the following lemma:

Lemma 2.5. Online Min Bounded Clique Covering with b =2 can be solved
with a performance ratio of % by FFy, and this bound is optimal.

Proof. The upper bound is given by Corollary 2.4/ with b = 2. This bound
can be reached with the following instance: present two vertices v; and v,
and the edge vivy. If the algorithm puts v; and vy in the same color-class,
present v3 and the edge vsv; and v, and the edge vovy; otherwise, present v
and the edge v9v3 and vy and the edge v3vy. ]

Remark 2.6. The instance presented to show the lower bound of Lemma 2.5
can be repeated indefinitely, so it holds for any 0, > 2. The upper bound is
also valid for any 0,. Thus, so is Lemma 2.5.

Again, since coloring a graph is equivalent to covering its complement
with cliques, we have:

Corollary 2.7. Online Min Bounded Coloring with b = 2 can be solved with
a performance ratio of% by FF, and this bound is optimal.

Therefore, when dealing with bounded coverings of graphs, this work will
concentrate on cases where b > 3.

2.3 The Biology Research Center Problem

Min Clique Covering on interval graphs has been studied before in its of-
fline version and it is known that it can be solved polynomially [Sch03].
Recently, it has also been studied in the case where the cliques have a max-
imum size b [FJQS04]. In both cases, the intervals are covered with cliques
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using the First-Fit algorithm after sorting the intervals in increasing order
of their right ends. This allows us to claim that First-Fit also finds an exact
solution in the online case, when the intervals are presented in increasing
order of their right ends.

Online, however, this model is not very natural. On the contrary, the
Biology Research Center Problem shows a very natural reason to study online
Min Clique Covering on interval graphs when the intervals are presented in
increasing order of their left ends.

For technical reasons, let us start by considering the case where the size
of the cliques is not bounded.

Lemma 2.8. If an interval graph G is presented online from in increasing
order of the interval’s left ends, then First-Fit gives an exact clique covering

of G.

Proof. Consider the time when interval I; = [l;, r;] is presented. If First-Fit
opens a new color-class K, then, there exists an interval I; = [l;, ;] in Kq,_y)
such that r; < [;. Because of the order of presentation of the intervals, no
interval presented after I; will overlap I}, and thus no interval presented after
I; will be put in K,_y).

Suppose that, each time a new color-class K, is opened for some interval
I;, one interval of K(,_;) which does not overlap /; is marked in red. Suppose
also that the last presented interval is marked in red. Then, at the end of
the algorithm, the intervals marked in red form a stable set and the size
of this stable set is equal to the number of color-class opened by First-Fit.
Therefore, the number of cliques is optimal. O

It is now possible to state the following theorem:

Theorem 2.9. If the intervals are presented in increasing order of their left
ends, the competitive ratio p, of online Min Bounded Clique Covering on an

. - 1
interval graph is 2 — .

Proof. Using Corollary 2.2 and Lemma 2.8 it is obvious that

1
Py <2 — 5 (2.15)
Note that in the case where 6, < b, we have p < 2 —1/0, < 2—1/b. We
must now prove that p, > 2 — 1/b for any online algorithm. The instance
presented by Adversary (1l reaches that goal.

Since the cliques K; are of size b, any algorithm A will use at least two
colors for each i € [1..(b—1)]: one for K; and one for I; if K is of type 3, two
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Adversary 1
Input: An online algorithm A for covering an interval graph presented in
increasing order of the left ends of the intervals with cliques of bounded
size b.
Output: An instance on which A will achieve a performance ratio
oy =2—1/b.
1. Let [l1,7] be a large interval.
2: Repeat
3: forie[l.(b—1)] do
4:  Present a clique K; of b intervals [l;, ;].
: e« Hch
6: if A has put all intervals of K; in the same color-class then /*We say

that K; is of type 5%/

7: Present a small interval I; = [l;, (I; + 10¢)]
8: l(i+1) — l;+11e

9: 741y < (1 +1;)/2

10:  else /*We say that K; is of type o™/

11: l(i—i—l) — (’I“i +lz)/2—|—€

12:  end if

13: end for

14: Present one interval [l,, 7).

or more for K; if K; is of type « (in this case, I; is not presented afterwards).
In addition, since the interval presented at Step [14 overlaps only intervals
belonging to K;s of type 3, it will be put into a new clique. Thus, the number
A4 of color-classes used by A on this instance will be:

A=20b—-1)+1=2v—1 (2.16)

Let us suggest a different solution. For each K; of type 3, put (b — 1)
intervals of K; plus the interval I; into one color-class. For each K; of type
a, put K; into one color-class. There remains exactly one interval for each
clique K; of type 3 (at most (b — 1)), plus the interval presented at Step [14.
They can all be put in one color-class. This solution shows that the instance
can be covered with exactly b color-classes of size at most b. Therefore,

2b—1 1
= =2— - 2.1
Po 2 2 (2.17)
Together with (2.15), ends the proof of Theorem [2.91 O

Remark 2.10. If b is large, Min Bounded Clique Covering tends to be the
same as Min Clique Covering. However, the performance ratio given in The-
orem 2.9 then tends to 2, and not to 1 as one might expect. One must see
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—A
Jé; : : e
! ! =
I 1 @)
I ] K
T 1 &
e
P 3
%
o — =
— =
S
— 2
—
—
6] —
—
—
|_|
—

Figure 2.1: [llustration of an instance presented by Adver-
sary'1 for b =5, supposing that A puts the in-
tervals of the cliques K;, i € [1..4] as indicated
on the left: K; is of type o if A has put its in-
tervals in two or more different color-classes; it
is of type B if A has put all its intervals in the
same color-class.

that, if b becomes large, the adversary will chose a larger graph (Figure[2.1)
to achieve the lower bound of 2 — 1/b. If the size of the graph is bounded,
and b is large compared to that size, 2 — 1/b may not be achieved as a lower
bound, however, it remains an upper bound.
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2.4 Chemical Compounds Refrigeration

This section studies the Chemical Compounds Refrigeration Problem: Inter-
vals are presented in arbitrary order and the complete set of intervals must
be covered online with cliques. Remember that this problem differs from
the Biology Research Center Problem, where the intervals are presented in a
specific order.

2.4.1 Analysis of First-Fit

It has been proved in [JPS03] that the performance ratio of online Min Clique
Covering on interval graphs is 2 if the intervals are presented in arbitrary
order. and that this bound is achieved by FF}. Using this result and Corol-
lary 2.2, we have that the performance ratio pgp,, of FFy, on the online Min
Bounded Clique Covering problem on an interval graph is:

1 1
PFFy, <3—— <3—— (218)
l O
where [ = min{6,, 2} again.

Remark 2.11. This upper bound enhances Kouakou’s result [Kou07] slightly.
He showed an upper bound of 3.

Let us now prove that this bound is nearly tight.

Proposition 2.12. The performance ratio pgr,, of FFy, on the online Min
Bounded Clique Covering problem on an interval graph is:

3
3 9(, PFFy, 3 9(,

Proof. Consider the instance presented by Adversary 2. First-Fit will use
three color-classes for each i: one for the clique K;, one for both intervals
I;1) and I(; ) and one for the interval I(;3). Thus, the total number A, of
color-classes used by FFj, will be :

Ay = 3k (2.19)

Consider this alternative solution: for each i, put I(;1), L2 and (b — 2)
intervals of K; in one color-class. There remains at most b intervals which can
also be covered with one color-class. This solution uses k + 1 color-classes.
Thus, 6, < k + 1. This result, together with (2.19) implies that

3k - 3

> >3- = 2.20
PFFy, k+1 eb ( )

Together with (2.18), this concludes the proof of Proposition [2.12. O
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Adversary 2
Input: The algorithm FFj,.
Output: An instance on which FF},;, will have a performance ratio of at least
3— 2.
1: Let [l;,r;] be a large interval.
2: k «— L%J
3: for i € [1..k] do
4:  Present a clique K; of b intervals [l;, r;].
e nh
Present I(;1) = [l;, l; 4 3¢]
Present 1(;2) = [l; 4+ 2¢, 1]
Present I(;3) = [l;,l; + €]
lig1 < l; + 4e
10: Tiv1 < T
11: end for

—
I 1
— o
2
(o
@
I ] =
| I o
I 1 —
E e
I 1 S
I | 2
I ] ::‘)
I 1 <
— =
@]
=
: |
: |
: |
: |
: |
—
—

Figure 2.2: Illustration of the instance presented by Adver-
saryl2.
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2.4.2 A Lower Bound For All Algorithms

The following proposition is given by Kouakou. We translate it here for the
sake of completeness.

Proposition 2.13 ([Kou07]). For alle € Ry and b € N,b > 3, no algorithm
can guarantee a performance ratio p, = (2—¢) on online Min Bounded Clique
Covering on interval graphs.

Proof. Consider the instance presented by Adversary [3 with the following
notation: for each 4, if Ay puts I(; 1) and I(;2) in the same color-class, we say
that I(; 1y and I(;2) form a clique of type 3. Otherwise, we say that I(; ;) and
I(; 9) form a clique of type a.

Let A\, be the number of color-classes used by A, on the instance presented
by Adversary (3. At the end of the execution, let N, (respectively Ng) be the
number of cliques of type « (respectively ). We have that N,+Ng = k. The
cliques of type 8 are put in Ng color-classes. The cliques of type « are put in
2N, color-classes. For each i, I;3) is only presented if I(; 1) and I(;2) form a
clique of type 3. I;3) does not overlap I(; 5. Therefore, A, will need to open
a new color-class for each I(;3). There are Ng intervals I(;3). Similarly, the
interval presented at Step (32 must also be put in a new color-class. Thus,

M =2Ny+ Ng+ Ny +1=2k+1 (2.21)

Consider this alternative solution: Put all cliques of type a in one color-
class. For each 7 such that I(;;) and I(;9) form a clique of type 8: put I 1
and I(;3) in one color-class K; and, if ¢ # k, add I(; 9y to K}, where j is the
smallest p such that p >4 and I, 1) and I(;2) form a clique of type 3. This
solution uses N, + N3+ 1 =k + 1 cliques. Thus,

2k +1
> 2 — 2.22
2T T E (2.22)
This ends the proof of Proposition [2.13! O

Remark 2.14. Proposition|2.13 and Proposition |2.12 show that the perfor-
mance ratio py, of the problem of online covering an interval graph with cliques
of bounded size is

1
2 < pp<3— — (2.23)
0

32



General Remarks and Co-interval Graphs

Adversary 3

Input: An online algorithm A, for covering an interval graph with cliques

and a real positive number .

Output: An instance on which A, will have a performance ratio striclty

greater than (2 — ¢).

1: Let [l(1,1),71,1)] be an interval of any length.
2: LetkENbesuchthatk>(——1)
3: i1 /*A counter*/

4: loop

5. 0 1y Z 1 — L1y /*The length of an interval*/

6 p— 12 /*A small number used to make the intervals overlap or not.*/
7 l(@g 161 — 2u

8: T(3,2) < l(i72) +6

9:  Present intervals I;; 1y = [0y, 76,1)) and L2 = [ls2), 76,2))

10:  while Ay covers I(; 1y and I(; 9y with two different clique do
11: i« 1+ 1;if i > k then goto (30|

12: l(z 1) < T3E-1,2) + Q,u

13: T(i1) < l(u +0

14: l(2’2 =T — 2u

15: T(3,2) < l (i,2) T )

16: Present intervals 1; 1) = [li1), 7¢,0)] and L0y = [li,2), 7(0,2)]
17:  end while/*See Figure 2.3 for an zllustmtwn */

18:  while A, covers I; 1) and I(; 2y with the same cliques do

19: 1«1+ 1;if 7 > k then goto 30

20: l(z‘,l) S T(-1,2) — 2,u

21: T(i,1) < l(z,l) + 6

22: l(@g) Ty — 20

23: T(i,2) < l (i,2) T )

24: Present intervals I;; 1y = [l.1), 7¢0)] and 12 = [ls,2), 7(,2)]
25:  end while/*See Figure[2.]] for an zllustmtwn */

26: i<« 1+ 1;if i > k then goto[30

27: ) < Ta-2,1) T U

28 16— ey + o

29: end loop

30: for each i such that I ;) and I; 2 form a clique of type 3 do
31:  Present an interval I(;3) of length 0 centered on ;)

32:  if i = k then Present an interval of length  centered on r; 1
33: end for
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Figure 2.3:

T

T2

Hlustration of Step |16/ of Adversary [3: Here,
Iy and 19 form a clique of type . There-
fore, Ii;i11) does not overlap 1; 9.

Figure 2.4:

Tiy12)

Hlustration of Step |24 of Adversary|3. Here,
Iy and 1) form a clique of type 3. There-
fore, Iiiy11) overlaps I(; o).

Figure 2.5:

34
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Tiy12)

Hlustration of the steps 27 and [28 of Adver-
sary|3: They make sure that any upcoming in-
terval will be presented within interval I,
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2.5 Conclusion

Table 2.1 summarizes the known results on online covering interval graphs
with cliques, or online coloring co-interval graphs. The upper bound on
Min Bounded Coloring on a co-interval graph presented in arbitrary order is
achieved by FF, and this bound is tight.

Presentation model
Increasing order of Random
l; T
Coloring | Unbounded 1 1 2
Case Bounded | 2 — % 1 2< pp <3 — el_b

Table 2.1: Performance ratio of the problem of online color-
ing co-interval graphs
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Chapter 3

Comparability and
Permutation Graphs

In this chapter, based on [DLBO07], we consider online coloring of two classes
of graphs, namely comparability graphs (graph representation of partially or-
dered sets)'l and permutation graphs (graphs of inversions in permutations).

Note that permutation graphs are a subclass of comparability graphs
|Gol04]. Therefore, some results that are valid for one class are also valid for
the other class.

Furthermore, we also study a generalization of the coloring problem,
called cocoloring. Both coloring and cocoloring in the considered classes of
graphs have applications in industrial contexts [DEdW07, DSKLZ06, SM04,
SMOT7].

From the point of view of theory of ordered sets, this work can be seen as
online partitioning of posets into antichains (or into chains and antichains).

Section 3.1 gives some definitions and notations. Online coloring is stud-
ied in Section 3.2 and online cocoloring is studied in Section 3.3\

Related works. Besides the papers cited above, most of which are studies
in offline cases, several online problems have been studied on posets (See for
instance [BR97]). In particular, online partitioning posets into chains has
been widely studied [Fel97, Kie81, KPT94|. From a graph theoretical point
of view, it consists in covering comparability graphs with cliques online. To
our knowledge, online coloring of comparability graphs has been essentially
studied in the particular case of permutation graphs [NP00, DSKLZ06].

L All notions will be formally defined in section [3.1]
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Main results. For online Min Coloring, we study the First-Fit algorithm
in several different models and give a tight analysis. Among others, we show
that even in some restricted models, First-Fit has a performance ratio that
is at least O(y/n). We then devise an algorithm with a performance ratio of
XTH in the general model. Moreover, we analyze the behaviour of First-Fit
on online Min Bounded Coloring and show that it has a performance ratio
of % + % For the online cocoloring problem, we show that the performance
ratio is § + 1 and we give better bounds in some more restricted cocoloring

2
problems.

3.1 Definitions and Notations

Definition 3.1 (Orientation and transitive orientation). Given an undirected
graph G = (V, E), G* = (V, E%) is called an orientation of G if

vy € E < (v1,v5) € E% xor (vg,v,) € B
Moreover, if
(v1,v9) € E* and (vy,v3) € E* = (vy,v3) € E*
then this orientation is transitive.
Cocoloring was introduced in [LS77].

Definition 3.2 (Cocoloring). Cocoloring a graph G = (V, E) is partitioning
V into cliques and stable sets. The cochromatic number of a graph G, de-
noted by z(QG), is the smallest number of such sets needed to cover all vertices.
A k-cochromatic graph is a graph G such that z(G) = k and a k-cocolorable
graph is a graph G such that z(G) < k.

Definition 3.3 (Comparability graph). A comparability graph is an undi-
rected graph which admits a transitive orientation.

Every transitive orientation of a comparability graph can be seen as the
graph representation of some partially ordered set (poset), where the vertices
represent the elements of the set and there is an arc from a to b if a < b and
no arc between a and b if these elements are not comparable.

Clearly, in comparability graphs, a clique of order k corresponds to a chain
of length (k—1). Moreover, a stable set in a comparability graph corresponds
to an antichain in the related poset. Consequently, a coloring (resp. a clique
covering) on a comparability graph is equivalent to a partitioning of a poset
into antichains (resp. chains). Cocoloring a comparability graph is equivalent
to partitioning a poset into chains and antichains.
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0 1 2 3 4 5 6

Figure 3.1: A lattice representation of the permutation

T =14,2,6,3,5,1].

Definition 3.4 (Permutation graph). A permutation graph is an undirected
graph for which there exists a permutation such that every vertex of the graph
corresponds to an element in the permutation and two vertices are adjacent
if and only if the corresponding elements appear in reverse order in the per-
mutation.

Note that permutation graphs are comparability graphs. More precisely,
a permutation graph is a comparability graph, the complement of which is
also a comparability graph (co-comparability graph) [Gol04]. Consequently,
every hardness result stated for permutation graphs also holds for compa-
rability and co-comparability graphs; conversely, every competitive analysis
on comparability graphs also holds for permutation graphs. Coloring a per-
mutation graph is equivalent to partitioning a permutation into increasing
subsequences. Cocoloring a permutation graph is equivalent to partition-
ing a permutation into monotone subsequences; in some works, cocoloring a
permutation is called monotone partitioning [DSKLZ06].

Both permutation graphs and comparability graphs are perfect graphs.
Coloring such graphs offline can be done optimally in polynomial time [Gol04].
On the other hand, cocoloring permutation graphs (and consequently com-
parability graphs) is NP-hard [Wag84].

In our online model, the graph is presented together with a transitive
orientation; consequently, this work can be seen as online partitioning of
posets into antichains (or into chains and antichains).

Definition 3.5 (Lattice representation). Throughout this work, we will use
a very common representation for permutation graphs, called the lattice rep-
resentation. The permutation is represented in a two-dimensional plane: the
y-axis represents the values of the elements of the permutation and the x-axis
represents the position of these elements. A point (x,y) in the plane means
that an element of value y is at position x in the permutation.
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MO

NE(v)

Nl

o

Figure 3.2: The four cardinal regions defined for the wver-
tex v.

This means that, whenever a new point is presented, we are given its
position relatively to points previously presented along each axis but not its
absolute position in the permutation. It is equivalent to present a permu-
tation graph G together with a transitive orientation and also a transitive
orientation of G or to present a sequence of numbers one has to decom-
pose into monotone sequences. The related permutation can be computed
when all elements are known. In the last section of this chapter, we men-
tion the discrete latticial model, where the latticial representation is drawn
in {1,...,n}% n being the order of the graph.

Given the lattice representation, for each vertex v, we denote by v, and
v|, the coordinates of vertex v in the latticial representation of the graph.
Furthermore, we define four regions of the plane, which are inspired from the
four cardinal points:

Definition 3.6 (Cardinal regions).

NWw) = {(z,y):z <v|, andy > v|,}
NE(v) = {(z,y):z>v|, andy > vl|,}
SW(w) = {(z,y):z <v|, and y < v|,}
SE(w) = {(z,y):z>v|, andy < v|,}

It is immediate to see that
(v,w) is an arc < w € SE(v) & ve NW(w) (3.1)
We will also use this terminology to specify directions on the plane.
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3.2 Coloring

In(3.2.1, we define a way to present a permutation graph in a given direction
and characterize the directions making First-Fit exact. In[3.2.2) we propose
an analysis of First-Fit for bipartite permutation graphs. In we devise
an algorithm which significantly improves the bound for online Min Color-
ing in comparability and permutation graphs. Finally, in 3.2.4, we analyze
First-Fit on online Min Bounded Coloring of comparability and permutation
graphs.

3.2.1 Preliminaries

Given the lattice representation of a permutation graph G, it is well known
that it can be colored exactly if the vertices are presented from west to
east, since First-Fit colors G exactly using this order [Gol04]. This order of
presentation corresponds to presenting the permutation from left to right.
Considering this, it is natural to wonder whether it is easy to color a permu-
tation graph online if the vertices are presented in some other direction. It
can be presented, for instance, from east to west, from south-west to north-
cast and so on. More precisely, given a fixed direction # € R?, the graph is
said to be presented in the direction u if

(V1] v1ly) - @ < (Ve|s, v2ly) - W= vy is presented before vy
If (v1]s, v1]y) - 4 = (ve|s, v2|y) - @, then v; may be presented before or after v,.

Proposition 3.7. If a permutation graph G s presented from north-west to
south-east or from south-east to north-west (i = (z,y) such that x -y < 0
and (x,y) # (0,0)) in a latticial model, then First-Fit colors G exactly.

Proof. This proof is inspired from Chvétal’s proof [Chv84]. Let us suppose
x>0,y <0and (z,y) # (0,0). Then, for all vertices v; and vy such that
vg € NW(v1)) and vy # vg, vy is presented before v.

Let us suppose that the color £ is attributed to v,. Then, there exists a
point v,_; with color (k — 1) such that vy_; is presented before v and the
related vertices in G are linked. Thus, vy_; € NW (vg).

By the same argument, we show that there exist v;, 1 <¢ < k — 1, where
v; is of color ¢ and v; € NW (v;41).

Then {v;},i € {1,...,k} constitute a clique of order k

The proof is similar if z < 0, y > 0 and (x,y) # (0,0). O

Corollary 3.8. If a graph G is presented from west to east, from east to
west, from south to north or from north to south on a latticial plane, then
First-Fit finds the exact solution of Min Coloring on G.
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Proposition 3.9. If a permutation graph G is presented from south-west to
north-east or from north-east to south-west (x -y > 0) in a latticial model,
then no algorithm can guarantee an optimal coloring for any arbitrary com-
parability graph G, even if G is a Pj.

Proof. Let us suppose x = 1 and y = 1. The proof is similar for other cases.
Let us present vy at (1,3) and v at (4, 1). vy is given color 1 and vy is given
color 2. Present vz at (5,4). Three cases are possible.

1. If vg is given color 3 then three colors are used already. Present M, at
(9,2), it will be given color 2 or 4.

2. If w3 is given color 1 then present vy at (3,8). vy must be given color 3.

3. If w3 is given color 2 then present vy at (9,2). v, must also be given
color 3.

In all cases, the graph presented is a bipartite P, and is colored with at least
3 colors. 0

Let us conclude the preliminaries with some remarks about symmetries.
Consider two permutation graphs G = (V, E) and G’ = (V', E'), where the
latticial representations of G and G’ are symmetric to each other with respect
to the z-axis (or y-axis). For any vertex v of G, let v be its symmetric vertex
in G'. Clearly, (u,v) € E < (u/,v") ¢ E'. Thus, G’ is the complement of G.

Consider now a permutation graph G” = (V" E”) obtained from G by
symmetry respectively to the axis given by the vector @ = (1, 1). Clearly, G”
is isomorphic to G.

Thus, we can deduce proposition [3.10.

Proposition 3.10. Any algorithm for coloring permutation graphs presented
in direction @ = (x,y) is equivalent to an algorithm for partitioning permu-
tation graphs presented in direction @' = (—x,y) (or (xz,—y)) into cliques. It
is also equivalent to an algorithm for coloring permutation graphs presented
in direction 0" = (—x, —y).

We then deduce from propositions 3.7, 3.9 and [3.10:

Corollary 3.11. A permutation graph presented from south-west to north-
east or from north-east to south-west (@ = (x,y) with xy > 0 and (z,y) #
(0,0)) can be partitioned into cliques exactly by FFy, while no online algorithm
can partition a permutation graph presented from south-east to north-west or
from north-west to south-east exactly.
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3.2.2 Competitive Analysis of First-F'it

In 2000, Nikolopoulos and Papadopoulos have shown that First-Fit is not
x-bounded if the presentation order is arbitrary [NP00]: for any integers
X > 0 and k, there exists a permutation graph G such that x(G) = x and
XFE(G) = 3((X*+x) +k(x*—x)). In this section, we study the performance
of First-Fit according to different presentation orders.

We first note that it achieves a competitivity ratio of 7 + % for general
graphs and that this bound is tight even for bipartite graphs. We then
focus on bipartite permutation graphs and show that First-Fit is O(y/n)-
competitive for this class.

First-Fit is known to guarantee a ratio close to 2 for general graphs.
Indeed, Miller [Mil04] shows that a ratio lower than % cannot be achieved
even for bipartite graphs and the j-competitiveness is mentioned by Lovész
et al. [LST89]. Since we did not find a proof for this claim in the literature,
we give it here, and take this opportunity to slightly precise this result.

w33

Proposition 3.12. (See [LST89, Mil04]) First-Fit guarantees a competitivity
ratio of § + % for every graph of order n and this bound s tight even for
bipartite graphs.

Proof. The proof of the lower bound is inspired from Miller’s proof and im-
proves it a little by showing that the performance ratio of First-Fit can be
as bad as 7 + % for bipartite graphs.

We construct a bipartite graph G = (V, E) on 2t vertices and give an
ordering on V' that forces First-Fit to use ¢ +1 colors. We define G by letting
V= A{v,...,v,wy,...,w} and E = {(v;,w;) : @ # 5} U {(v, w)}. Now
consider running First-Fit using the ordering {vy, wq, va, wa, . .., vy, wy }.

Clearly, First-Fit will assign color ¢ to vertices v; and wy;, for ¢ < t. It will
assign color ¢t to v, and color ¢t 4+ 1 to w;. Since the graph is bipartite, it can
be colored with two colors. Therefore, the performance ratio p of First-Fit
isp> =00yl

We prove now that the claimed competitivity ratio is guaranteed. Let
us consider an online instance consisting in a graph G of order n presented
vertex by vertex in an arbitrary order.

Note first that if x(G) = 1, then First-Fit is exact. So we can assume
that x(G) > 2.

Let k& be the number of color-classes containing only one vertex. First-Fit
is conceived in such a way that the related vertices constitute a clique of
order k and consequently x(G) > k.

On the other hand, the number of colors used by First-Fit is at most

k;+"T_k<g—l—§.Consequently,p<%+%<%+%. ]
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Since the negative result already holds for bipartite graphs, we focus in
our next analysis on bipartite permutation graphs.

Theorem 3.13. The performance ratio of First-Fit on online Min Coloring
on a bipartite permutation graph is O(y/n) and this bound is tight, even if
we impose a direction of presentation i = (z,y), -y > 0.

Proof. We start by proving that O(y/n) is an upper bound for the perfor-
mance ratio of First-Fit using Claim [3.14. We then prove that the given
bound is tight using Adversary (4.

Consider a bipartite permutation, that is a permutation which can be
partitioned into two increasing subsequences. Let C; and C3 be the two
colors obtained by applying First-Fit in the direction @ = (1,0) on this
permutation. Recall that in this case, C; and C represent an exact coloring
of this graph. Without loss of generality, we can suppose that for every arc
(v1,v9) of the associated permutation graph, we have v; € C; and vy € Cs.

An increasing subsequence (v;); is alternating with respect to C and Cy
if [(Ugi)i € C; and (Ugi+1)i € 02] or [(Ugi)i € Cy and (Ugi+1)i € Cl]

Claim 3.14. Suppose that First-Fit, applied online to the permutation, gives
color k > 3 to an alternating increasing subsequence of size P. Then First-
Fit must have given color (k — 1) to an alternating increasing subsequence
of size P and color (k — 2) to an alternating increasing subsequence of size
P+1.

Proof. Without loss of generality, we can suppose k = 3. Suppose P = 2p
(The case P = 2p + 1 is similar) and let vy, ..., vy, be the increasing alter-
nating subsequence of size P colored with color 3. Without loss of generality,
we can suppose vg;11 € C1,i=0,...,p—1and vy € Cy, i =1,...,p (in the
other case, the proof is identical). We have that

Vi Jwgiy1 € SE(vVeiv1), Wy colored 2, wo;yq € Cy (3.2)
Vi Jwq; € NW(vg;), wy; colored 2, wq; € Cy (3.3)

Thus,
Wj+1 <@ V2i+1 <® V2i+2 < W2;42 <@ W2;+3 (3.4)

(a) Because wy;y1 € SE(vi41)-
(b) Because (v;) is increasing.
(¢) Because wo;19 € NW (v9i49).
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(d) Because wy;y3 is on the right of vg;,3, thus to the right of we; 9; and
(w;) is increasing, since all its elements have the same color.

Thus, the (w;); are all different and form an increasing alternating subse-
quence colored with color 2, wy; € C' and wy; 1 € Cs.

Similarly, the existence of the subsequence (v;) proves the existence of an
increasing alternating subsequence (uy,) of size P and of color 1 with uy; € Cy
and ug; 11 € Cs.

Similarly again, the existence of the subsequence (w,) proves the existence
of an increasing alternating subsequence (u}) of size P and of color 1 with
uy; € Cy and uh, € Cy.

In addition, u; # ) because u; € Cy and u) € (4.

If u; < uj, the subsequence uy,uf, ... uy, is increasing, alternating and
of size P+ 1. If u] < uy, then the subsequence u},uy,...uy, is increasing,
alternating and of size P + 1.

This ends the proof of Claim [3.14 for the case P = 2p + 1. The proof is
similar if P = 2p. U

To conclude the competitive analysis, we distinguish two cases:

1. If First-Fit colors the permutation with two colors, the competitivity
ratio is one.

2. If First-Fit uses k > 3 colors, then by iteratively applying Claim 3.14,
we see that the number n of vertices is such that n > [£] ([4] 4+ 1) >

(5)%

Thus k& < 2y/n. This inequality still holds for & = 2. This proves that a
performance ratio of \/n is guaranteed.

In order to conclude the proof of Theorem [3.13| let us use Adversary 4,
illustrated in Figure(3.3/to prove that the bound is tight. This proof is given
here for the direction @ = (1, 1); by a simple rotation, one can easily see that
it holds for any @ = (z,y), x > 0, y > 0.

For any k and any j, the vertex v ;) is given color j because it is the
smallest color that is admissible in this region. Thus, at each step k, a new
color-class is opened. Let Ay be the total number of color-classes opened
when the step k is reached. We have A\, = k.

Also, at each step k we add k vertices, the number n; of vertices used is

thus n; = ni_1 + k, which induces that nj = k(k;l). We have A\, = O(\/ng).

This is true in particular at the last step: let the total number of colors used
be A and the total number of vertices be n, we have A = O(y/n) and this
concludes the proof of Theorem [3.13. O
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Adversary 4
1: Draw two parallel lines L; and Ly on a plane, such that L; is above
Ly and their direction vector has two positive components. These lines
represent the colors of the vertices in an optimal offline coloring.

2. k=1

3: j =1

4: Present a vertex v ;) on Ly. It will be given color 1.

5: for k:=2..K do

6: ] =k

7. if vg_1j_1) is on Ly then

8: Present v ;) on Ly such that U(k,j)|m = U(k_17j_1)|m —¢
9: else /fvg_1j-1) is on L1 */

10: Present v ;) on Ly such that vy )|y = vg—1,-1)|y — €
11:  end if

122 for j:=(k—1).2do

13: if v(_1,-1) is on Ly then

14: Present v, ;) on Ly such that vg_1jy|e < Vj)le < V—15-1)|e
15: else /*vg_1,-1) is on L1 */

16: Present v, ;) on Lo such that vg_q )|y < v j)ly < Vg—1,-1)ly
17: end if

18: end for

19: ] =1

20:  if v(r_1) is on Ly then

21: Present v ;) on Ly such that v j)|e = vg—15)]e +€
22:  else /fug_1;) is on L1*/

23: Present v ;) on Ly such that v(kvj)|y = v(k_ld-)ly + €

24: end if
25: end for

A co-bipartite graph is a graph which can be partitioned into two cliques.
By Remark 1.36/ and Proposition 3.10, we get:

Corollary 3.15. The performance ratio of FF} for online partitioning of a
co-bipartite permutation graph is O(y/n) and this bound is tight, even if we
impose a direction of presentation i = (z,y), v -y < 0.

Remark 3.16. For the bipartite case, the result of Nikolopoulos and Pa-
padopoulos [NP0OO] states that online coloring does not admit a constant per-
formance ratio. Our result improves it to O(y/n).
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Figure 3.3:

B

Hlustration of the principle of Adversary 4.
The vertices are presented from South-West to
North-East (@ = (1,1)). The numbers close to
them represent their colors attributed by First-
Fit. The dotted lines are level-lines representing
the x or y coordinates of the vertex they cross.
The only purpose of these lines on this figure is
helping to see whether a given vertex is to the
left or the to right of some other vertex. The
dashed lines show that each group of vertices
with k =constant is presented after the group
of vertices with k — 1 in the direction of u.
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3.2.3 A Better Performance Ratio

Given a comparability graph, it is well known that an exact k-coloring
C1,...,Cy can be found such that, for every arc (v,w), v € C; and w € C;
with ¢ < j [Gol04]. We call such a coloring an increasing coloring. This
notion will be useful to understand the algorithm used in the proof of the
following theorem.

Note added in proof. Theorem|[53.17 is a result in [Tro95]. It was found
independently by the author in this thesis.

Theorem 3.17. There exists an online algorithm for coloring comparability
graphs (presented with a transitive orientation) gquaranteeing a competitivity
ratio of XTH and this bound is tight, even for permutation graphs presented
in a latticial model.

Proof. Let us consider Algorithm |5, which computes a proper coloring for
a comparability graph presented vertex by vertex together with a transitive
orientation.

Algorithm 5
Input: A comparability graph G delivered online, vertex by vertex.
Output: A w—coloring of G, where y is the chromatic number of G. x
is unknown before the end of the algorithm.
1: while G is not completely presented do
2:  Let G’ be the subgraph of GG induced by the currently presented ver-
tices. Define k := x(G’) and accept a new vertex v*.
3:  In the graph defined by G'U{v*}, consider a longest path P containing
v*. Let [ be the number of vertices in P.
4: if [ > k then rename all the currently attributed colors as indicated
here: for each vertex v, rename its color by concatenating the name
C(v) of its color with C.(v) + 1 on the right. Increase k by 1.
5. Let p be the rank of v* in P. Give color p...(k — 1+ p) to v*.
6: end while

Colors used by Algorithm [5 are named by ascending sequences of con-
secutive integers. If C'(v) is the color of a particular vertex v, we will call
C,(v) the right-most integer of C'(v) and C;(v) the left-most integer of C'(v).
Sometimes, when there is no ambiguity on the vertex, we might just note
C,Cy and C,. Note that C' is a color (thus a sequence of consecutive inte-
gers), while C; and C, are integers. The principle of the algorithm is the
following: at each online step, the color assigned to the vertex presented
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12(O—()2 123(O)—() 23

1O

2

1O—0)12 12(O—()123
(a) (b)

Figure 3.4:

Figure 3.5:

Hllustration of Step |4 of Algorithm|5. The col-
ors next to the nodes represent the colors at-
tributed by Algorithm'5. Part (a) represents the
graph before the presentation of vertexr v and
part (b) the same graph after the presentation of
v (marked in gray). Since the chromatic num-
ber of the graph has increased, the colors are
renamed.

O0—0O0—0—0—-0

O—0—0O

234

Hlustration of Steply of Algorithm!5. This graph
contains two cliques. One of size 5 and one of
size 3. For the sake of wvisibility, not all arcs
of the cliques are drawn on this picture. The
gray vertex is the newly presented vertex. In an
optimal increasing coloring, it could be in Cy,
Cs or Cy. Therefore, Algorithm |5 assigns color
234 to it.
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is the sequence of integers corresponding to the possible colors the vertex
can be assigned in every optimal increasing coloring in the already presented
graph. The current coloring is also renamed in such a way that the sequence
used to color every vertex always contains the possible colors in an optimal
increasing coloring of the current graph.

Note that, at each step, Algorithm [5 has to compute a longest path
containing v* in a comparability graph. This can be done in polynomial time
by computing a maximum clique in the neighborhood of v*. The complexity
of the steps2 and3lis O(|V’|+|E’|) each [Gol04]. Thus, the whole complexity
of Algorithm [5 at each online step is also O(|V'| + |E'|).

The proof of Theorem [3.17 is based on three claims.

Claim 3.18. If any vertex v in the comparability graph is part of two different
paths, both of maximum length, then v will hold the same rank in both paths.

Proof. Assume v does not have the same rank in both paths. Let P; be the
path where v has the smallest rank and P be the other path. We can make
a new path consisting of all elements of P, preceding v, v and all elements
of P, with a rank larger than v. This path will be longer than both P, and
Ps, which is in contradiction. O

Claim 3.19. For every vertex v with color C, there exists a path with length
X(G") + C; — C,., where v is ezxactly at rank Cj.

Proof. This is obviously true when v is first assigned a color. Afterwards,
every time y(G’) increases by one, C, also increases by one by Step [4]of the
algorithm. So the sequence which was used in Step [3 will always verify this
property. ]

Claim 3.20. Algorithm |5 computes a proper coloring.

Proof. Let v* be the last introduced vertex. Let v be a vertex with the same
color as v*; we have to show that v and v* are not in a same path.

By contradiction, let us first suppose that v is before v* on some path
P. By Claim [3.19, v and v* both belong to a path (P,, P,- respectively) of
length x(G') + Ci(v*) — C,.(v*) at position C)(v*). Moreover, P, is a path
containing v* of maximum length in the already presented instance.

The path consisting of the elements of P, preceding v, v, v* and the
elements of P,« with a rank larger than v* would be longer than P,., which
is a contradiction.

A similar argument holds if v is after v* on K. O
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Adversary 6
1: for k:=1..K do
2:  for x:=k..0 do
3: y=k—=x
4: Put a vertex at coordinate (z +¢,,y — £,), where

- 0 if y =0,
- ey1<ey<eg1++ ify#O0.

0 if x =0,
£p 1= .
o1 < €y < g1+ = ifx#0.

5.  end for

6: end for
\\ .
J1 |
,,,,, O\
~ 12 \32
Q ,,,,,,,, Q
‘123 i3 N i3
Qg
v 11234 N 1234 N 34 4
Yo 0O Q

Figure 3.6: [llustration of the Adversary 6. Vertices are
inserted in the order south-west to north-east,
and on each line in the order given by the arrow.

The colors used by the algorithm are all subintervals of [1,..., x]. There
are exactly x(x + 1)/2 such subintervals. This concludes the analysis of
Algorithm

Let us now show that the bound is tight, even for permutation graphs.
Adversary |6 presents a graph G in a continuous latticial model, such that
X(G) = K and Algorithm 5/ will use all subintervals of [1..K] as colors. This
ends the proof of Theorem [3.17. O
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Corollary 3.21. (Theorem 3.17, by Proposition 3.10) There exists an online
algorithm for partitioning co-comparability graphs (presented with a transitive
orientation of a complementary graph) into cliques guaranteeing a competi-
tivity ratio of ”Tl and this bound is tight, even for permutation graphs. In
particular, it gives an algorithm for partitioning permutations into decreasing
sequences.

Remark 3.22. [t is known that the performance ratio of online Min Coloring
on a co-comparability graph is an exponential function of x [Kie81, KPT94].
Moreover, with some restrictions on the order of presentation of the vertices,
it 18 possible to guarantee a performance ratio that is a polynomial function of
x [Fel97]. For the case of permutation graphs, which are comparability and
co-comparability graphs, we achieve a performance ratio which is a polynomial
function of x for a quite general online model.

Remark 3.23. Theorem 3.17 tells us that the class of comparability graphs
1s x-bounded by the binding function @ For comparability graphs with
a bounded chromatic number, it leads to a constant competitivity ratio. In
particular, Algorithm |5 guarantees 3 colors for bipartite graphs, which is
optimal by proposition|3.9, and 6 colors for 3-colorable comparability graphs.
It is worth noting that the class of bipartite graphs (and thus also the class of
comparability graphs) is known to be not x-bounded [GL8S] if the transitive
orientation is not given. This hypothesis on the online model allows us to
reduce the best known bound [Mil04] for online coloring of bipartite graphs
from 2logyn to 3.

Lemma 3.24. No online algorithm guaranteeing 1 color on stable sets and
3 colors on bipartite permutation graphs (given with a transitive orientation)
can guarantee less than 6 colors for 3-colorable permutation graphs.

Proof. If x(G) = 3, we devise an adversary that presents the vertices as
shown on figure [3.7. The letters near the vertices represent their order of
presentation and the numbers represent the colors that any admissible algo-
rithm, in the sense of Lemma [3.24, would have to attribute to these vertices.
Vertex €’ is not actually presented and is only used for the proof. Let us
explain for each vertex why it can get only one color:

vertex a is the first vertex; it is given color 1. When vertex b is presented,
G is still 1-colorable. So, in order to respect the 1-bound, b must be given
color 1. Vertex c is adjacent to vertex a; it must be given color 2. Vertex d
could not be given color 3, because if it was, an adversary could present the
vertex €/, which would then have to be given color 4, thus not respecting the
3-bound on 2-colorable graphs. Vertex f must be given color 3. Vertices g,
h and 7 can be given only one color each. O
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Figure 3.7: Graph delivered to force any admissible algo-
rithm to use at least 3(x — 1) colors on a x-
colorable graph G. The letters near the ver-
tices represent their order of presentation. The
numbers represent their colors. The proof of
Lemma|3.24 explains why vertex d cannot be col-
ored with color 8. The dotted lines are a help to
visualize the placement of vertices relatively to
each-other.
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3.2.4 Bounded Coloring

In [DEAWO07], Demange, Ekim and de Werra mention that Min Coloring on
permutation graphs has applications in robotics, namely for deciding how
many robots are needed to collect objects of different sizes disposed along
a line. It is natural to consider that a robot may not be able to transport
more than a given amount b of objects. One then has to solve Min Bounded
Coloring on permutation graphs. In [SM07], Spieksma and Moonen mention
a similar application in the steel industry for online Min Bounded Coloring on
permutation graphs. This section studies the behavior of First-Fit on online
Min Bounded Coloring on both permutation and comparability graphs. We
consider that the vertices may be presented in any order.

Theorem 3.25. For any b > 3 the performance ratio ppr, of FF, on a

permutation graph is
b 1+ 1 < < b 1

[N}
DO

Proof. The upper bound is given by Theorem 2.3l Let us show the lower
bound by considering the instance presented by Adversary [7. Note that on
lines (7], 8, [13] and [14] of Adversary 7,

X—i—j 22 V(iyj) (3.5)

For an easier understanding of the equations hereafter, the reader can
always assume that terms in € are negligible compared to terms in 7, which
are themselves negligible compared to terms in natural numbers.

Let us now prove that vertices ul( i ik)’ where k is a strictly positive natural

number such that the vertex u!, exists and [ € {1,2}, are all linked by

(i,5+k)
2
an edge to ug -

u%i,jJrk)ll’ =x—i+in+2(+ke=x—i+in+2je+e+ (2k—1)e (3.6)
u%i,j+k)|9ﬂ = u%i,j)|:r +(2k = 1)e

U jmle > Uil

(

(
u%i7j)|yzx—z'—j+i77—|—2je+6>2+i77+2j€+6 (3.
ulply = 1+in+2je+e+1>14in+2je + ke (3.10
3

u?@,j)|y > “%i,j+k)|y (3.
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Adversary 7

Input: A natural number b > 3
Output: A permutation graph G presented online such that b-FF will have

[\]

10:
11:
12:
13:

14:

15:
16:
17:
18:
19:

: b 1
a performance ratio of 5 + o

: Let p be any odd natural number.

X — V”’Z—HJ /*Once completely presented, G will be a graph with chro-

matic number x, as usually.*/
Let 1 be a real number such that n << i
€ 5
for int i = 0..(x — 2) do
forint j =0..(x —2—1) do
1

Present a vertex u; ;) = (x — i+ in + 2je, 1 +in + 2je)

Present a vertex “21‘,]‘) = (x—i+in+2jete,x—i—j+in+2je+e)
end for
end for
for int i = 0..(x — 2) do
forint j =0..(x —2—1) do
Present a vertex v(lm) =(x—i+xn+0G+1)n—2je,1+xn+ (i+
1)n — 2je)
Present a vertex vy = (j + 14+ xn+ (i +1)n — 2je + &, 1+ xn +
(i+1)n—2je+¢)
end for
end for
for int i =0..(x — 1) do
Present a vertex w} = (x — i+ xn+in+¢e,1+xn+in+¢)
end for

95



Chapter 3

Figure 3.8: Illustration of loop|d tol10 of Adversary|7. The

o6

oblique lines represent the color-classes in an of-
fline exact coloring; they have a slope of 1. The
vertical lines represent the two vertices presented
at steps|7 and|8: u%m.) is at the southern end of
the line and u%m.) s at the northern end of it;

of course, u? ) 18 slightly more to the east than

u%i’j). The ;ﬁoup a represents the first passage
through the loop 6 tol9 (i = 0) and the group b
represents the second passage through this loop
(i = 1). Note that, for the sake of visibility, €
has been made very big on the picture. It must
in fact be very small, as described in the adver-

sary.
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Figure 3.9: Illustration of loop|11 to16 of Adversary 7. The
oblique lines represent the color-classes in an of-
fline exact coloring; they have a slope of 1. The
vertical boxes represent the sets of points pre-
sented at steps |yl to 10 (see Figure|3.8). The
horizontal lines represent the two vertices pre-
sented at steps|13 and|1/: v(lm.) is at the eastern
end of the line and 0(22‘,3') 1s at the western end of

it; of course, v(2i7j) 15 slightly more to the south
on the vertical axis than v(lm). The group a rep-
resents the first passage through the loop to
15 (1 = 0) and the group b represents the second
passage through this loop (i = 1). Note that, for
the sake of wvisibility, € has been made very big
on the picture: the correct value of € is given in

the adversary.
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Figure 3.10: Illustration of loop 17 to of Adversary 7.
The oblique lines represent the color-classes in
an offline exact coloring; they have a slope of
1. The vertical (respectively horizontal) boxes
represent the sets of points presented at steps
5 to 10 (respectively11to[16) (see Figurel3.8,
respectively Figure 3.9). The small circles rep-
resent the vertices w;

i

(3.8) and (3.11) show that u%m.) and u%erk) form a clique.

Ul jiile = Ul jle + 2ke > uf; (3.12)

Wl = X =i = (k) +in+2(j+k)s +e (3.13)

Wiy = X =i = +in+2je + e~k + 2ke (3.14)
gl

u%i,j+k)|y < u%i,j)ly (3.15)

(.3.12D agd (3.15) show that u%m.) and u%i’ﬂk) f(?rm a clique. Thus, for a given
i, each time the adversary enters the loop starting at Step|6, a new color-class
is opened.

We now want to prove that the vertices ul(Z thja) AT€ always linked to the

vertices u%m.b) for all natural number k, j,, j, such that the vertices ul(z )
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and u!. . | exist and [ € {1,2}. First, note that
(7'7.7b)

2ja€ — k- kn < 2jb€ Vkajaajb (316)
Wishgoyle = X = 1+ 0+ 2ja = k + k1 (3.17)
Ui gle = X = i+ i + 2joe (3.18)

Thus, by (3.16), u%i+k7ja)|m < u%i7jb)|m. Note now that, for all j, and j,,

kx > jb — jo. Thus, 2kxe > 2(j, — jo)e and kn > 2j,e — 2j,¢. Besides that,

Witk ly = 140 + 2ja + kn (3.19)
Uigly = 1+ + 2pe (3.20)
Thus, u( 0y > Usply and g, ;) and ug ;) are always linked by an
edge for all k, j,, j». Let us now look at u? . ..
(i+k.ja)
Wiskgoly = X = (0 + k) = Jo + (i + K)n + 2o + € (3.21)
Since x — (i + k) — jo = 2,
Uiihinly = 140+ 2jae + 1+ kn+e > 1+ i+ 2je (3.22)
u%z+k’.]a)|y > u:(ll,jb)ly (3.23)

And
Urkgole =X — i+ in+2jee —k+kn+e<x—i+in+2e  (3.24)

Uil < Uiy lo (3.25)
Thus, ul(Z ) and u%z ) form a clique for all k, j,, 7, such that the vertices
uéz ) and u%@ jy) €xist. Each time the adversary passes through Step (5, a

new set of colors must be introduced. Furthermore, for every pair (i, j), u%i,j)
and u%z ;) arein a stable set. Since they are presented consecutively, they are
colored with the same color.

One can prove similarly that, each time the adversary goes through

Step a new color must be introduced and that v(li i) and v(2i ;) are col-
ored with the same color. In addition, the same reasoning can be used to

prove that:

2

o All vertices v(l ) are linked to the vertices ug

i0.da ) for all 7 < 1.

o All vertices U(l , are linked to the vertices u% ) for all i > 4q.

i07ja i7j
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2

o All vertices Vi o

) are linked to the vertices u( for all e < x—jo— 1.

e All vertices ’U(Z- o) ATe linked to the vertices u for all i > x —jo — 1.

Thus, the vertices v may not have the same colors as the vertices u. Finally,
all vertices w;, are linked to:

e All vertices u( for all g < i.

e All vertices ul .

(id) for all iy > 1.

e All vertices v?2 .

i) for all 9 <1

e All vertices v(lij) for all 79 > 1.

The total number of colors used by First-Fit on this instance is thus X(X_l)

for the loop starting at Step (5], X(X U for the loop starting at Step 11, and %
for the loop starting at Step 17, for a total of x? colors.

Let us now look for an exact unbounded coloring of this instance. First,
draw x straight lines on the plane with equations di :y=x—1i,1 € [0..(x—1)]

It is easy to verify that the vertex u( ;) s on the line d,_;_; and that the

vertex u%z ;) Is on the line d;. Thus, on each line, there are x — 2 vertices of

type u.

Similarly, the vertex v/, ., is on the line d,_,_; and that the vertex v( i)
is on the line d;. Thus, on each line, there are y — 2 vertices of type v.

Finally, the vertex wZ is on the line dy_;—;. Thus, on each line, there is
exactly one vertex of type w.

On each line d;, there are thus 2y — 1 vertices. In an exact increasing
unbounded coloring, each line could be used as one color, and all colors would
have the same size. Let us suggest the following bounded coloring: consider
the color-classes of this exact increasing unbounded coloring and cut them
in chunks of sizes at most b. Since y = L%J, this gives us a solution with
Ay = px colors. On each line, at most one chunk will have a size strictly
smaller than b (note that, if b is odd, x = b'p2+1, all chunks have exactly size
b and this solution is optimal). The performance ratio p of FFy is thus

2 2 b 1
p>X_>X_:K:_<1+ ) (3.26)
Xo  px P2 2x —1
This ends the proof of Theorem [3.25. O

Corollary 3.26. For any b > 3 the performance ratio pgp, of FF, on a
comparability or co- compambzlzty graph is

b 1+ ! b+
5 2 — 1 < PR, S

DO |
N —
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3.3 Cocoloring

The problem we deal with in this section is a generalization of Min Coloring.
Roughly speaking, given a graph, we want to cover its vertex set not only
with stable sets but also with cliques. When dealing with cocoloring, each
color-class is either a clique or a stable set.

Definition 3.27 (Min Cocoloring). Given a graph G = (V, E), Min Cocol-
oring is the problem of partitioning the verter set V into a minimum number
of color-classes.

Definition 3.28. A k-cocolorable graph is a graph that can be partitioned
into k color-classes.

Remark 3.29. First-Fit can trivially be adapted to partitioning a graph into
color-classes. Let us denote it by FF,. FF, puts each vertex in the first
possible color-class as it 1s presented.

Remark 3.30. As long as a color-class contains only one vertex, it is not
determined whether this color-class is a stable set or a clique.

In the offline case, cocoloring is known to be more difficult than coloring
in comparability graphs (NP-hard) [Wag84|. A natural question is whether it
is also more difficult in the online case. Indeed, in this section, we will point
out that online cocoloring is as difficult in permutation graphs than in general
graphs. For this reason, we will restrict us to permutation graphs and we will
consider some relaxations of the online model allowing interesting results. We
restrict ourselves to 2-cocolorable graphs. We first consider restrictions on
the way the adversary may present the graph: we adopt the discrete latticial
model and the permutation graph is presented from west to east. The second
relaxation gives more freedom to the algorithm: we allow it a bounded delay
before deciding the color of the presented vertices.

3.3.1 A Dramatic Bound

Di Stefano et al. [DSKLZ06] have shown that two natural greedy algorithms
can guarantee a performance ratio of %+% for the problem of online cocoloring
of a permutation graph. One can observe that this result also holds for
general graphs. In what follows, we point out that no algorithm can guarantee
a better ratio, even for split permutation graphs. We recall that a graph is
called split if its vertices can be partitioned into one clique and one stable
set.
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o P, N W b~ O 0 N

0 1 2 3 4 5 6 7 8 9 10

Figure 3.11: Illustration of the proof of Proposition |3.31.1i.
The numbers of the wertices represent the
color-classes attributed by the adversary. The
light gray (respectively dark gray) region repre-
sents the region where all vertices will be pre-
sented by the adversary after a second vertex
has been put in color-class 1 (respectively 2).

Proposition 3.31.

i. FF, guarantees a performance ratio of +% for online cocoloring gen-
eral graphs.

1. No algorithm for online cocoloring graphs can guarantee a performance
ratio better than %—F% even for split permutation graphs presented from
west to east on a latticial plane.

Proof.

. This proof is very similar to the proof given in [DSKLZ06]. It is
straightforward to verify that FF, cocolors exactly graphs with cochromatic
number 1. So, we can assume that the cochromatic number is at least 2.
Then, it is very simple to see that FF, leaves at most one vertex alone in its
color-class, since any two vertices form either a clique or a stable set. Thus,
the ratio 2 + 7 immediately follows (2 if n is even).

2t. We devise an adversary which presents a split permutation graph
and forces [5] colors: The adversary delivers the latticial representation of
the permutation from west to east. While the algorithm makes color-classes
of size one, the elements can be presented at any y-coordinate. As soon
as the algorithm makes a color-class of size two (increasing or decreasing),
all the upcoming elements must be presented strictly within the interval of
the two elements of this color-class, thus making it impossible to put any
upcoming element in this color-class (See Figure [3.11). Thus, no color-class
has a cardinality larger than 2, and the number of color-classes used is bigger

or equal to [§]. O
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Remark 3.32. Note that Proposition|3.31.7. holds even if the graph repre-
senting the permutation is a threshold graph (A threshold graph is a graph
that can be partitioned into one clique and one stable set, such that for each
pair of vertices v1 and vy of the stable set, N(vi1) C N(vq) or N(vy) € N(vy).
On a lattice plane, a permutation threshold graph has the highest element of
the stable set lower than the lowest element of the clique).

3.3.2 Split Permutation Graphs in a Discrete Latticial

Model
Let us now consider the discrete latticial model, where the vertices have
coordinates in {1,2,...,n}? n being, as usual, the size of the vertex set V.

Moreover, the vertices are presented from west to east.

Di Stefano et al. [DSKLZ06] prove that one can force 1°g22" colors on a
3-cocolorable permutation graph. A slight modification of their proof allows
to enhance their result with the following lemma, which can be seen as the
“discrete counterpart” of Proposition [3.31:

Lemma 3.33. It is possible to force logT?" colors on a permutation split graph,

_— 1
thus achieving a lower bound of %

coloring on permutation split graphs.

on the performance ratio of Min Co-

Proof. Consider Adversary 8| that presents split permutation graph of size
n = 2P, from west to east, where p is a positive integer.

Adversary 8
1: [« 0; h « 2P,
2: repeat
3:  m <« round (

Lth
thy,

4:  Introduce a vertex v with v|, = m.

5. if vertex v is put in a color-class of type clique then

6: h+—m-—1

7. else /*vertex v is put in a color-class of type stable set or in a new
color-class™/

8: l—m+1

9: end if

10: until (I =m or h =m)
11: Fill the positions that have no vertex with a stable set above m and a
clique below m.

It is straightforward to see that at most log, n = p vertices are presented
before Step 11 is executed. Moreover, these log, n first vertices are assigned
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to at least IOgT2" color-classes. To complete the proof, we just have to note

that it is always possible for the adversary to correctly execute Step [11] by
filling the remaining positions with a stable set above m and a clique below

m. Since the complete graph is 2-cocolorable, we have the competitive ratio

of logT?". O

Theorem 3.34. The performance ratio of cocoloring split permutation graphs
presented from west to east on a discrete latticial plane is bounded above by
logy(n) + 2.

Proof. In order to prove Theorem 3.34) we use Algorithm (9, which, as will
be shown here, guarantees this bound, and the two following claims.

Algorithm 9

Input: A permutation graph of size n presented online from west to east on
a discrete latticial plane.

Output: A cocoloring of this permutation graph using at most 3 4+ 2log, n
color-classes.

1: Introduce a dummy vertex at (—1,—1) and put it in color-class s;.

2: Introduce a dummy vertex at (—1,n + 1) and put it in color-class ¢;.
for each new vertex v,, do /*Vertices are numbered according to their
z-coordinate: vyl = m*/

S MaXy,, {v], : W' € NE(v)}
Cp < ming,,,, {v], : ' € SE(v)}
if S,, < C,, then
if (Cpy — Umly)® < (S — Umly)” then /*v,, is closer to C,, */
Put v,, in the first available color-class c;.
else /*v,, is closer to S,,*/
10: Put v,, in the first available color-class s;.
11: end if
12:  else /%S, > C,,, so the point where the stable set crosses the clique
has passed™/

i

13: if v,,|, > S;, then

14: Put v,, in the first available color-class s;.
15: else /*v,|, < Cp,*/

16: Put v,, in the first available color-class c;.
17: end if

18: end if

19: end for

Let s,, (respectively ¢,,) be the vertex at height S,, (respectively C,,).
We say that a vertex is clique (respectively is stable) if it must be put in the
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clique (respectively in the stable set) in all possible split decomposition of G.

Claim 3.35. If S,, > C,,, then no vertex v will be presented between S,,
and Cy, (Cy, < vy, < Sp) in the future. Moreover, all vertices that will be
presented in the future above S, (respectively below C.,) constitute a stable
set (respectively a clique) and will be colored as such by Algorithm'9.

Proof. Suppose S,,, > Cy,. 3s), € NE(s,,) and 3¢, € SE(c,,). Since G is a
split graph, one of the vertices s/, and s,, is stable and one of the vertices ¢/,
and ¢, is clique. A vertex v such that C,, < v|, < S, would be adjacent to a
vertex that is stable (s, or s/,) and thus be clique; furthermore, it would be
non-adjacent to a vertex that is clique (¢, or ¢, ) and thus be stable, which
is a contradiction.

Vv € NE(s,,) presented when S, > C,, v € NE(c,,)NNE(c),). Thus, v
must be stable in all possible split decompositionS of G. A similar reasoning
shows that Vv € SE(¢,,) must be clique in all possible split decompositions
of G. O

Since S, increases and C),, decreases along the execution of the algorithm,
as soon as the condition at Step 6] is false, the rest of the graph is covered
with at most 2 new color-classes. Let us now calculate the number of colors
used before this condition is evaluated to false.

Remark 3.36. As long as Sy, < Cp,, SE(S8y) N NE(cy,) contains ezactly 1
verter.

Claim 3.37. We note A] the difference (Cpn, — Sm,;) at the time when color-
class s; was opened. We define AS similarly for color-class c;. Then, if s;,
1> 2 18 opened,

1
A < §Affl (3.27)
and if cj, j = 2 is opened,
(& 1 (&

Proof. We will prove Claim [3.37 for Af. The proof for Af is similar.

At the time when a first vertex v; is put in s;, there exist v;_; in s;_1,
with v;_y € NW(v;). Let S}, and C;, _ be the values of S,,, and C,,, when
v;_1 was presented.

A > ‘O;M — S (3.29)
Since v;_1 was put in color-class s;_1,
vietly = Sh| < [Chuy = vl (3.30)
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Now, v;], < vi_1|y and v;|, > vi_1]s-
Let ¢; and s; be the vertices such that S,,, = s;|, and C,,, = ¢|,. Ac-
cording to Remark 3.36, ¢,,, < v;_1],. Thus,

S !
Ai < vi—lly - Smi,1

<

mi—1 mi—1

1
Smes = O | < 30T (3.31)

1
2

O

Suppose now that the algorithm uses ¢ color-classes before the condition
at Step 6/ evaluates to false, and that these colors appeared in the order
ki, ko, ... ki Vi, k; € S (Stable colors) or k; € C' (Clique colors). We note
A; the difference C,,, — S,,, at the time when k; was used for the first time.
A >0 > AL

Since, out of 3 colors, at least two are of the same type, Claim tells
us that

Agpy1 < %AQk—l (3.32)
Now, A; < n. Thus,
Aggi1 < 2%71 (3.33)
and .
Aggya < R (3.34)
So .
A< S (3.35)

Since A; > 1, 2821 < p and % — 1 < logy n. Thus,
t <2logy,n+1 (3.36)
Altogether, Algorithm 9 has used at most 3 + 2log, n colors. O

Corollary 3.38. Algorithm 9 can be transformed into an online algorithm
for cocoloring 2-cochromatic graphs with at most 7 + 2log, n color-classes,
leading to a competitivity ratio of % + logy n.

Proof. The modified algorithm begins as First-Fit until it needs a third color,
then it switches to FFj until it needs 5 colors and finally it turns to Algo-
rithm [9 by using the 5 color as a first color of Algorithm [9. Since the
graph is revealed along the direction (1,0), First-Fit and FF are exact. If
the graph is bipartite it will be colored exactly; if it is cobipartite, it will be
colored with 4 color-classes and if it is a split graph, it will be colored with
at most 7 + 2log, n color-classes. O
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3.3.3 Delayed Cocoloring

Next, we look at two relaxations of online Min Cocoloring where the al-
gorithm is allowed a delay before deciding the color-class of the presented
vertices. We consider that one vertex is delivered at each time unit.

We start with a case where the graph presented is a split permutation
graph, presented from west to east. The algorithm is allowed to wait for at
most one time unit before deciding the color-class of each vertex presented.

Theorem 3.39. Online Min Cocoloring on a split permutation graph G deliv-
ered online from west to east on a latticial plane can be exact if the algorithm
1s allowed a delay of one time unit before deciding the color-class of each
vertex presented.

Algorithm 10
Proof. Input: A split permutation graph G presented online from west to
east on a latticial plane.

Output: An exact cocoloring of G.

1: for each new vertex v do

2: if v cannot be put in color-class ¢, respectively s then

3: Put v in s, respectively in ¢

/*The next test is for the case of G being a threshold graph*/

4:  else if v is the last vertex of G then
5: Put vinsorinc

6: else

7 Wait for the next vertex v’ to be presented
8: if v € NE(v) then

9: Put v in color-class s

10: else /%' € SE(v)*/

11: Put v in color-class ¢

12: end if

13:  end if

14: end for

Algorithm [10 gives an exact cocoloring of any split permutation graph
G delivered online from west to east on a latticial plane. We prove this by
induction on v.

Suppose the already attributed color-classes correspond to an admissible
split-decomposition of G. v has been presented, but not yet assigned to a
color-class, and v’ is being presented.
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If v is above the lowest vertex in color-class ¢ or below the highest vertex
in color-class s, then we are in the case of Step 2, and the assignment of v is
still admissible.

Suppose v is above the highest vertex in color-class s and below the
lowest vertex in color-class c¢. Suppose v € NE(v) (the proof is similar if
v' € SE(v)). If there exist a representation for which v can be put in the
color-class ¢, necessarily, the color-class of v' will be s (because v is non-
adjacent to a vertex in the color-class ¢). But in this case, one could change
the color-class of v into s and still have an admissible cocoloring. Thus,
putting v in the color-class s is never wrong.

Initialization of the induction: the same reasoning holds for the first two
vertices. We can consider that there is a vertex with color s at (0, —oco) and
a vertex with color ¢ at (—1, +00). O

Given this surprising result, we look now at a less relaxed model, where
the presented graph G may not be covered with less than 3 color-classes.

Theorem 3.40. Even if an algorithm is allowed to wait for (n—4) time units
before coloring a wvertex, it is not possible to find an exact cocoloring for a
3-cocolorable graph presented online, even if it is presented from west-to-east
on a latticial plane.

Proof. The proof uses Figure The vertices without label represent a
stable set of size n — 5. The vertices are presented from west to east. a is
in color-class 1. Once the vertices of the stable set are presented, b must
be assigned to a color-class. If a and b are put in the same color-class, the
adversary will present vertices ¢, d and e. Else, the adversary will present f,
g and h. In any case, the algorithm will have to use at least four color-classes
on the graph, while three would have been sufficient. O

3.4 Conclusion

In this chapter, we have given a tight analysis of First-Fit for the problem
of online coloring comparability and permutation graphs and have shown
that its performance ratio is O(y/n). We also have presented an algorithm
which dramatically improves the performance ratio of this problem to XTH,
and have given a tight analysis of it. Furthermore, we have shown that
First-Fit has a performance ratio between % + ¢ and g + % on Min Bounded
Coloring in permutation and comparability graphs. The next chapter shows

an application for these results.
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Figure 3.12: Illustration of the proof of Theorem|3.40. The
vertices without label represent a stable set of
sizen—>5. The vertices are presented from west
to east. a is colored 1. Once the vertices of the
stable set are presented, b must be colored. If
a and b are colored with the same color-class,
the adversary will present vertices ¢, d and e.
Else, the adversary will present f, g and h.

Finally, we have analyzed online Min Cocoloring on the same type of

graphs: we have given the exact performance ratio (% + %) of online Min

Cocoloring in permutation and comparability graphs and have given results
for some variations of the same problem.
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The Track Assignment Problem

This chapter, part of which is based on [DDSLBO07], intends to initiate an
analytical study of the computational complexity of some online shunting
problems. Consider a train station consisting of a set of parallel tracks.
Each track can be approached from one side only or from both sides. The
departure times of the trains are fixed according to a given time table. The
problem is to assign a track to each train as soon as it arrives to the station
and such that it can leave the depot on time without being blocked by any
other train; the total number of used tracks must be minimized.

We show that this problem can be modeled with online coloring of graphs.
Depending on the constraints, the graphs can be overlap graphs! or permu-
tation graphs. Thus, this chapter shows a nice application for the results of
Chapter 3. More importantly, since it is natural to consider that the number
of trains per track is limited, this application provides a nice framework for
the analysis of the bounded version of online coloring of the involved graphs.

Related works. The track assignment problem is closely related to the
more general shunting problem, that concerns the rolling stock allocation on
a railway infrastructure under time, space and operational constraints. The
shunting problem occurs in practical optimization problems like, e.g., the
storage of trams or buses in a depot outside the rush hours, the rearrange-
ment of railroad cars among different trains, the freight car distribution, and
also the assignment of trains to platforms in a station [BBH*t99, CDS07,
DHMRO00, DPvHKZ96, DSK04, FLKH05, GM01, HDM*06, HDS07, HSC00,
Ros03, WZ00).

LOverlap graphs are also known as circle graphs [Gol04].
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Main results. Starting from the Online Track Assignment Problem, this
chapter studies online coloring of permutation and overlap graphs.

We show that if a permutation graph is presented from west to east on a
latticial plane, then online Min Bounded Coloring has a performance ratio of

— m, where k is the best known upper bound on y;. We note that this

result also holds for a comparability graph presented in a perfect order. If a
permutation graph is presented on a latticial plane, starting from the origin
and growing towards both east and west, we show that online Min Coloring
has a performance ratio of 2— i These results are applied to an online version
of the problems described in [CDS07], and give an optimal solution for the
Train Depot and the Big Train Station, both with the Midnight Condition.
We show an upper bound of 2 for the Small Train Station Problem.

The results on overlap graphs provide bounds for the Train Depot Prob-
lem when the Midnight Condition is not fullfiled:

i. Unbounded online coloring of an overlap graph has no constant com-
petitive ratio: the ratio is at least O(y/n), even for a bipartite overlap
graph presented in increasing order of the left ends of its intervals.

ii. The performance ratio can be upper-bounded by 2v/M if M < M,
and by log M ([log M/loglog M| + 1), if M > My; where M is the
maximum length of the intervals, 1 is the minimum length, and M,
is such that 2¢/M, = 3log(My), For large value of M, the ratio is
O(log® M/ loglog M).

4.1 Introduction

Consider a train station. In the general case, the train station has two ends.
Trains arrive from one end and leave from the same or from the other end.
While the trains are in the station, they are stored on a track, which may be
along a platform (for a station), or not (for a train depot). In order to save
upkeep costs, one wants to use as few tracks as possible, under the condition
that, at the time of leaving, a train is never blocked behind another train.

Since the trains may accumulate lateness during the day, the time of
arrival of each train is unpredictable. The tracks must thus be assigned
online, as the trains arrive, on the basis of departure times and previous
assignments.

In some cases, we also take into account the finite length of a track:
tracks have a finite capacity and may contain only a bounded number of
trains. Throughout this work, we consider that this bound is fixed to an
integer b.
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This problem can be derived into several different models, which will
be considered in this paper. As will be shown, these cases are equivalent to
online graph coloring problems, on overlap or permutation graphs, depending
on the exact model. For each model, we will show the equivalence with the
appropriate online graph coloring problem and give an analysis of it.

As mentioned in Chapter [3, coloring a permutation graph is equiva-
lent to partitioning a permutation into increasing subsequences [DSKLZ06].
E.g., [3,6,5,10,7,1,11,8,2,12,9,4] can be decomposed into [3,6,10,11,12],
[5,7,8,9] and [1,2,4]. Also, a bounded coloring of a permutation is a decom-
position of the permutation into increasing sequences, each with a limited
number of elements.

As mentioned above, this chapter deals with overlap graphs. Here is
a formal definition. Considering two intervals on a line, we say that they
overlap if and only if they share at least one common point, and none is
included in the other.

Definition 4.1 (Overlap graphs). An overlap graph is an undirected graph
for which there exists a set of intervals on a line such that every vertex of the
graph corresponds to an interval and two vertices are adjacent if and only if
the corresponding intervals overlap.

In [CDS07], Cornelsen and Di Stefano studied an offline version of our
problem. They used the following notations: a train is of type XY if it enters
the station from side X and leaves it from side Y. X and Y can take values
R (for right) or L (for left).

4.2 Permutation Graphs

In many situations, the track assignment problem can be reduced to coloring
a permutation graph; this section concentrates on these situations. In each
case, we show the equivalence between the given problem and online coloring
of a permutation graph.

4.2.1 The Train Depot with the Midnight Condition

The first model that we study is a train depot. Trains must be stored during
the night on tracks. The tracks are organized as stacks, such that the last
train to enter must be the first to leave on the next morning. In order to
save time and energy, one wants to make sure that, when a train departs the
next morning, it is always at the top of the stack. Thus, all trains are of type
RR or all trains are of type LL.
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One can represent on a time-axis the intervals during which each train
must be stored in the depot. Two trains may be on the same track if their
intervals are completely disjoint or if the interval of one train is contained
in the interval of the other train (the first train arrives before and leaves
after the second). One can make a graph where each vertex represents an
interval and two vertices are joined by an edge if and only if the two intervals
overlap but have no containment relationship. Such a graph is called an
overlap graph. To model our track assignment problem, we can thus use
online coloring of overlap graphs. Since one gets the knowledge of a train
at the time when it arrives, the online model must state that the vertices of
the overlap graph are presented in increasing order of the left ends of their
corresponding intervals along the time axis.

The case of overlap graphs will however be studied in the next section.
For now, we make the natural consideration that there is a time in the night
at which all trains are in the depot. This is called the midnight condition
and it means that the intervals of the trains all share at least one point. It
has been proved [Gav73] that in this particular case, the overlap graph is a
permutation graph. Since we know the time of arrival and of departure of
our train (once they are presented), we consider that the permutation graph
is given on a lattice plan, where the x-axis represents the arrival time and
the y-axis represents the opposite of the departure time.

Because of the order of presentation of the permutation, the unbounded
version of this problem is straightforward and has a performance ratio of 1.
Indeed, there exists a polynomial algorithm which partitions a permutation
into a minimum number of increasing sequences by reading the permutation
from left to right [Gol04]. Therefore, we concentrate on the bounded version
of the problem.

Lemma 4.2. A lower bound for the performance ratio of online Min Bounded
Coloring on a (k,b)-colorable permutation graph is 2—1/1, where | = min{b, k},
even if k is not known a priori and even in the graph is presented from west
to east on a latticial plane.

Proof. Suppose that k is known and fixed a priori. We prove Lemma 4.2
with a permutation presented on its lattice representation described in Ad-
versary [11. The zone A represents the admissible zone where any element in
the future will be presented. At the beginning, A is the complete plane. Each
time the algorithm loops, A is reduced to a part of itself (see Adversary [11).

Let A\, be the number of colors used in all sequences of type o, Ag be the
number of colors used in all sequences of type # and A, be the number of
colors used on K. Finally, let A\ be the total number of colors used by the
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Adversary 11

1: repeat

2:  Present a stable set X of size b in A.

3:  If the vertices of ¥ are put two or more different color-classes, redefine
A as the part of A which is in SE(X), such that each future vertex in
A will be adjacent to each vertex in . 3 is said to be of type a. If
all vertices of ¥ are put in a same color-class, redefine A as the part
of A which is in NE(X), such that each future vertex in A will be
non-adjacent to each vertex in 3. ¥ is said to be of type f3.

4: until [ — 1 sequences > have been presented.

5: Let Ng be the number of sequences ¥ of type 3. Present a clique K, of

size N3+ 1 in A.

Figure 4.1: [llustration of Adversary!11. Zone A after pre-
senting one increasing sequence Y. The zone A,
(respectively Ag) represents A if ¥ is of type a

(respectively (3).
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algorithm. Clearly,
)\:)\a—i-)\ﬁ—l-)\»y (4.1)

The definition of A after a sequence ¥ of type « allows us to say that
each vertex presented after ¥ will be adjacent to each vertex of 3. Thus,
any color used in Y will never be used again on this instance. Besides that,
since the sequences have size b, a color used on a sequence Y of type [ is
saturated and may therefore not be used on any vertex not in . Thus, no
color is used in two different sequences. Therefore, if we call N, the number
of sequences of type av and Ny the number of sequences of type 3, we have:

)\a>2Na 3 )\ﬁ:Nﬁ 3 )\vaﬁ—Q—l (42)

and thus
A= 2N, +2Ng+1 (4.3)

Since the algorithm presents exactly | — 1 sequences of types a and [3,
2Ny +2Ng+1=2(Ny+ Ng) +1=2(l-1)+1=2[—-1 (4.4)

A2 -1 (4.5)

Let us now compute the bounded chromatic number x;, of the instance
presented above. Each sequence of type o contains b vertices and can thus be
colored with exactly one color. Thus, it is possible to use exactly N, colors
on these sequences. Consider now the subgraph induced by the vertices of
the sequences of type 3 and 7. By construction, we have that the sequences
of type B form one long stable set X3 of size Ngb and each vertex of K,
is stable with each vertex of . It is possible to cover this subgraph with
color-classes containing each at most b — 1 vertices of ¥3 and 1 vertex of
K.,. Since |Xg| < (I — 1)b and since | < b, at most |K,| = Nz + 1 such
color-classes will be needed. Thus, one can color this subgraph with Nz + 1
colors. Therefore

ngNa+Nﬁ+1<l (46)

From (4.5) and (4.6)), we can deduce that the performance ratio p of online
Min Bounded Coloring on permutation graphs presented from west to east

on a latticial plane is:
A 1
pz—=22-< (4.7)
Xb [
Remark 4.3. If k is unknown in advance, we can consider the same instance
as above with k > b and thus have p > 2 — 1/b.

Remark 4.3 and end the proof of Lemma [4.2. O
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Remark 4.4. Since permutation graphs are comparability graphs, the lower
bound given in Lemma also holds for comparability graphs. Note that
if considered as a comparability graph, and if the arcs are oriented towards
south-east, then the instance presented by Adversary!11 is presented in non-
decreasing order of the vertices’ ranks, which is a perfect order.

Lemma 4.5. The performance ratio of FFy, of online Min Bounded Coloring
onf a (k,b)-colorable permutation graph presented from west to east on a
latticial plane is at most 2 — 1/1, where | = min{b, k}.

Proof. The permutation is presented from west to east. Therefore, First-Fit
finds an exact solution for Min Coloring on this problem [Gol04], which is
equivalent to saying that it has a performance ratio of 1. By Theorem 2.1,
Lemma 4.5 holds. O

Remark 4.6. If the vertices are presented in nondecreasing order of their
ranks, which is a perfect order for comparability graphs, the reasoning made
for proving Lemma 4.5 gives the same upper bound for comparability graphs.

Theorem 4.7. The performance ratio of online Min Bounded Coloring a
(k,b)-colorable permutation graph presented from west to east on a latticial
plane is 2 — 1/1, where | = min{b, k}, and FF, achieves this ratio.

Proof. The proof is immediate from lemmas (4.2 and [4.5. O
By remarks|4.4/ and [4.6, we get:

Corollary 4.8. The performance ratio of online Min Bounded Coloring a
(k,b)-colorable comparability graph presented in increasing order of the ver-
tices’ rank is 2 — 1/1, where | = min{b, k}, and FF, achieves this ratio.

4.2.2 The Small Train Station

In this subsection, we consider a small train station where trains pass through,
but never turn back: they all are of type LR or RL. Again, the goal is to
minimize the number of tracks needed while making sure that at all mo-
ments in time, a train that is scheduled to leave the station is not blocked
behind another train. As this model corresponds to a typical small train sta-
tion, we call it the Small Train Station Problem. In [CDS07], this model is
called Without Turning Back Trains and it is shown that this problem is also
equivalent to the coloring of a permutation graph. Figure 4.2 summarizes
this proof and shows how the graph is built. Note that the midnight condi-
tion is not required here. In addition, here again, because of the dependence
on the time, the intervals are presented in increasing order of their left ends.
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disjoint, RL leaves first

LR RL LR RL
T 1 i i
— — e e
| A | A
If they intersect disjoint, LR leaves first

(a) (b)

Figure 4.2: Part (a) shows the conflict graph of the Small
Train Station Problem as well as its transitive
orientation. Part (b) shows a transitive orien-
tation of the complement, thus proving that the
graph is a permutation graph.

Proposition 4.9. the performance ratio of First-Fit is unbounded by a con-
stant on the Small Train Station Problem.

Proof. Consider Adversary [12. For any integer k, it is easy to verify that
First-Fit will use exactly ¢ colors on each stable set J;, and thus use exactly
k colors. The optimum on this instance, however, is to put all intervals of
type LR in one color, and all intervals of type RL in another color, thus
using exactly 2 colors. Thus, for any integer k, one can force First-Fit to a
performance ratio of g O

A much better performance ratio can however be obtained.

Proposition 4.10. The performance ratio ¢ of the Small Train Station prob-
lem is bounded above by 2.

Proof. The proof is straightforward by applying First-Fit separately on the
permutation given by the trains entering from one side and the permutation
given by the trains entering from the other side. If one never uses one track
for two trains of different types, then each permutation is partitioned op-
timally by First-Fit. Since the optimal number of tracks for the complete
permutation is at least as large as the optimal number of tracks of both
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Adversary 12

Input: An integer k.

Output: An instance of the Small Train Station Problem on which First-Fit

has a performance ratio of g

1— 1

T — LR

repeat
Present a stable set X; of ¢ overlapping intervals, numbered from I, ;
to I;; of type T such that no interval of 3; overlaps any interval of
type T in sets {3;]j < i}. In addition, make sure that each interval
I; ; overlaps with intervals I(;_y for all k& > j.

5. d«—i+1

. IfT=LR, then T « RL. Else, T+ LR.
7: until 1 = k

—
— }LR
— —
— —
RL
—
—

Figure 4.3: This figure illustrates the instance presented by
Adversary 12 (for k = 4).

sub-permutations, the total amount of tracks is at most twice as large as the
optimum. ]

Remark 4.11. In the conflict graph of the Small Train Station Problem, two
vertices are adjacent if and only if the corresponding intervals have a relation
of inclusion. Let us call this graph an inclusion graph As mentionned earlier
(see Figure 4.2), this graph is a permutation graph. It is possible to prove
that every permutation graph is also an inclusion graph:

Let w be a permutation containing n elements. For each element of the
permutation, we note i its position and (i) its value. On the azis of the real
numbers, for each element of 7, draw an interval [(—n + 7(i)),d]. Clearly,
two intervals have a relation of inclusion if and only if the corresponding

elements of m appear in reverse order in the permutation. This allows us to
build Table 4.1.
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— oy
= Corresponding graph
0 0 0 Stable set
0 0 1 Co-interval C comparability graphs
0 1 0 Overlap graphs
0 1 1 Co-inclusion = permutation graphs
1 0 0 Inclusion = permutation graphs
1 0 1 Co-overlap graphs
1 1 0 Interval graphs
1 1 1 Clique

Table 4.1: Graphs of intervals on a real line. Each graph is
built the following way: V' is the set of intervals,
and two intervals are adjacent if there is a 1 in the
column corresponding to their relative position.
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4.2.3 The Big Train Station

Let us study the case of a big train station, where trains may enter from
both sides and leave from both sides: each train may be of type LL, LR, RL
or RR. We also assume that the midnight condition is fullfilled. We call this
problem the Big Train Station Problem. As shown in [CDS07], this problem
is again equivalent to coloring a permutation graph.

The corresponding permutation is built in the following manner: The
trains departing to the left are labeled in increasing order of their departure
time followed by the trains departing to the right in decreasing order of their
departure time. This is exactly the order in which the trains can be positioned
on one track such that they can leave on time. For the permutation, the
trains arriving from the left are ordered in decreasing order of their arrival
time followed by the trains arriving from the right in increasing order of their
arrival time. This corresponds exactly to the order in which the trains would
be positioned at midnight if only one track was given.

Here is an illustration of how the permutation for the Big Train Station
Problem is built:

1. First the trains are labeled according to their departure direction and
time (the intervals represent the arrival and departure times).

1:[-4,1]RL, 2: [-2,2]RL, 3: [-1,4]LL, 4 : [-3,3]RR

2. Then they are permuted according to their arrival direction and time.

3:[-1,4]LL, 1: [-4,1]RL, 4 : [-3,3]RR, 2 : [-2, 2]RL

Hence the resulting permutation is

(3,1,4,2]

Online, using the above definition, the presentation of the corresponding
permutation starts from a point in the middle. The left part of the permuta-
tion is then presented in increasing order of the position and the right part
is presented in decreasing order of the position. There is no relation between
the time of presentation of one element of one part and one element of the
other part.

We slightly improve the result of [CDS07] and show that it is optimal.

Theorem 4.12. The performance ratio of the Big Train Station Problem is

9_1
<
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Proof. Tt is always possible to guarantee at most 2 colors on the permutation
by separately coloring the left part of the permutation and the right part of
the permutation, with two different sets of colors and the First Fit algorithm.
Since they are both presented in a perfect order, the coloring on each part will
be optimal and therefore we will use at most 2y colors. In addition, the color
given to the first element can be used in both sets, since any element that can
be colored with this color on the left will be in an increasing sequence with
any element that can be colored with this color on the right. Doing this saves
one color and uses at most 2y — 1 colors, thus guaranteeing a performance
ratio of at most 2 — i

On the other hand, for any given Yy, it is possible to force any algorithm
to use at least 2y — 1 colors. Consider Adversary (13, which presents such a
permutation on the latticial plan.

Adversary 13
Input: A natural number y > 2.
Output: A permutation graph delivered online such that any algorithm will
have a performance ratio of at least 2 — i
1: Let y; < 0; yp, < 10; ¢ «— 0
2: for i in [1..x] do
3: repeat

Lyt

5 Present a vertex v at (z,y)

6: r—ax+1

6 if (color(v) = i), then y, < y; else, y;, — y

7. until color(v) = ¢

8: end for

9: Present a clique of x — 1 elements of coordinates (x,y) with —1 <z <0
and y; <y < yp.

Adversary [13 ensures the existence of one stable set ¥ of size y, colored
with y different colors by the algorithm, even though they could all have the
same color in an exact increasing coloring. Each element of the clique that is
then presented at step 9 is linked to each element of ¥ and must therefore be
colored with a new color. The algorithm must therefore use at least 2y — 1
colors, and thus has a performance ratio of at least 2 — % This ends the
proof of Theorem 4.12l. O
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10
20
70

50
40
30
20
10

f T

0

Figure 4.4: This figure illustrates an instance which could
be presented by Adversary[13. The adversary
first presents the element on coordinate 0, then
the elements with a positive x-coordinate, and fi-
nally the elements with a negative x-coordinate.
The numbers next to the elements are the colors
given by the algorithm.

4.3 Overlap Graphs

The Midnight Condition, although very natural in some train stations, may
not always hold. As shown in Section 4.2.1, when this condition is not satis-
fied, the Train Depot problem is equivalent to studying online Min Coloring
on overlap graphs, where the intervals are given along a real axis in increasing
order of the left ends of the intervals. This section focuses on this problem.

Clearly, overlap graphs are not perfect, since C’s, the cycle of 5 vertices, is
an overlap graph. In 1980, Garey et al. have shown that finding the chromatic
number of an overlap graph is NP-hard [GJMPS80]. In 1992, Unger has given
a polynomial algorithm for deciding whether an overlap graph is 3-colorable
and has shown that deciding whether a graph is k-colorable is NP-complete
for £ > 4 [Ung92].

Remark 4.13. Both classes of comparability graphs and overlap graphs con-
tain the class of permutation graphs. However, the classes of comparability
graphs and overlap graphs are different. Figure 4.5 shows two graphs: in
part (a), an overlap graph which is not a comparability graph and in part
(b), a comparability graph which is not an overlap graph. A polynomial algo-
rithm for recognizing comparability graphs (respectively overlap graphs) can

be found in [Gol04] (respectively in [GSH89]).

For every interval I;, we will call I; (respectively r;) the left (respectively
right) end of this interval. Formally, I; = [I;, r;].
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A, DK

(b)

Figure 4.5: Part (a): an overlap graph which is not a com-
parability graph. Part b: a comparability graph
which s not an overlap graph.

4.3.1 Unbounded Coloring of Overlap Graphs

Since online coloring of overlap graphs has, to our knowledge, not been stud-
ied before, we first give some results in the case where the tracks have infinite
length (or, say, a length n), which corresponds to unbounded coloring of over-
lap graphs.

As a first step, we show that the bounds for FF on permutation graphs
given in Theorem [3.13 still hold for overlap graphs:

Lemma 4.14. The performance ratio of First-Fit on online Min Coloring
on overlap graphs has a lower bound of O(\/n), even if one imposes that the
intervals are presented in increasing order of their left ends. This bound is
tight for bipartite overlap graphs.

Proof. Clearly, since O(y/n) is a lower bound for permutation graphs (See
Theorem 3.13)), which form a subclass of overlap graphs [Gav73], it is also a
lower bound for overlap graphs. We must now show that this value is also
an upper bound for bipartite overlap graphs.

In order to force color k£ on an interval [ in an overlap bipartite graph,
one needs a stable set Y, of at least £ — 1 intervals included in each other,
colored with all colors in [1...(k — 1)]. Since the intervals are presented in
increasing order of their left ends, all intervals of this stable set must contain
the left-most point of Ij. Similarly, to force color & — 1 on one of these
intervals, one also needs a stable set ¥;_; of at least £ — 2 intervals colored
with all colorsin [1...(k—2)]. Furthermore, ¥; and ¥;_; must be completely
disjoint since the graph is bipartite. Therefore, if we call n(k) the number of
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A\

Figure 4.6: Illustration of Claim [4.15: On the left of the
limit L, there can be anything. On the right side,
there is nothing but the three represented inter-
vals. All have a different color and the complete
graph is bipartite.

vertices needed to force color k to appear, we have n(k) > n(k — 1)+ k — 2.
Thus, O(n(k)) = O(k?) and k < O(y/n). Since the performance ratio ¢ is
equal to k/x, we have ¢ < k/2 < O(y/n). O

Although this performance is not very good, we would like to show now
that no algorithm can guarantee much better; more precisely, that no algo-
rithm can guarantee a constant performance ratio, not even a performance
ratio bounded by a function of y. We start with the following claim:

Claim 4.15. For any algorithm, it is possible to force a stable set ¥ of size at
least three on a bipartite overlap graph such that the corresponding intervals
are included in each other and there exists a limit L, such that for all intervals
I; ¢ ¥, r; < L and for all intervals I; € X,r; > L, and such that each element
of the stable set has a different color.

Proof. Adversary [14] forces the result described in Claim [4.15]

Note that the given overlap graph is bipartite. At the end of step [1, we
have a stable set of size two, colored with two different colors, and the limit
L is either Iy, if Is was colored 2, or ry if I, was colored 1. At the end of step
9, at least one interval must have been colored with color 3. Let I;, be this
interval. Since we do not present any interval I; such that ¢ > i3, we have a
stable set of size at least three colored with three different colors. Note that,
if I is colored 3, we have a stable set of size 4 colored with three different
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Adversary 14

Input: Any online coloring algorithm.
Output: A stable set as described in Claim [4.15.
: Present an interval Iy /*I; will have color 1.*/
Present an interval Is such that {; <l <1y <1y
if I, has color 2 then
I* — IQ
else
Present I3 such that lo <3 <19 and ry <1r3 <71y
I, « [ro, 3]
end if
Present I, such that [, <y <14 <7,
if I, has color 3, then STOP
. Let a be the color of I, /*a € {1,2}*/
: Present I5 such that Iy <5 <ryand ry <75 <1,
. if I5 has color 3, then STOP
: Let b be the color of I5 /*b € {1,2},b# a™/
. Present I such that ry < lg < rg < r;
. if I has color 3 then
STOP
. else if I has color a then
Present I such that lg < Iy < rg and r5 < ro < 7y
. else /*Ig has color b*/
Present I7 such that lg < l7n < rg and rg < l7v < 15
if I7» has color 3, then STOP
Present Ig such that rg < lg < ryv and r5 < rg < ry
. end if

N NN NN R RFRRFR R PR B B = &=
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Iy

I*

Figure 4.7: This figure illustrates steps 1| to |8 of Adver-
sary |14. At the end of this part, in I., there
are exactly two intervals, which form a stable
set but are colored with two different colors.

I*

Iy
—_
. Is |
Is

—

. Iy .
]7//

. Is .

Figure 4.8: This figure illustrates steps 9 to |24 of Adver-

sary|14. At the end of this step, in I, there are
three intervals colored with three different colors:
I, I or I3 and one element of {I;}i>4.
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>21

>E2

Figure 4.9: Illustration of the proof of Theorem |4.16.

colors. Thus, the size of the stable set is at least 3 and at most 4. Let X
be the considered stable set, we must set max {maxy,¢s 73, maxyex i} < L <
ming,exy {r;} to have the arrangement described in Claim [4.15. O

Theorem 4.16. For any online coloring algorithm, it is possible to force any
positive number of colors on a bipartite overlap graph.

Proof. We prove this by induction. Suppose that it is possible to force k
colors on a stable set X; as in Claim 4.15. Construct such an instance. Let
Imin1 be the interval of ¥; such that ryy,; = minges, {r;} and let L; be
the limit of 3y as in claim [4.15. In the interval [L;, rpin1], build a second
stable set Y5 of the same size as ¥; and with the same number of colors
on it. Let I,,2 be the interval of ¥y such that rp2 = min[jeEQ{rj} and
let L, be the limit of ¥5. Also, let I,.c2 be the interval of ¥5 such that
Tmax2 = MaxXyex, {75}

If the color-classes used on Y, are different from the ones used on ¥,
define ¥ = ¥, UX, and L = Ly and X is now a stable set of the form of
Claim 4.15/ and covered with at least k + 1 color-classes. If the color-classes
used to cover Y, are the ones used to cover ¥; are the same, present a new
interval Inew such that Ly < lnew < Tmin2 and Tmax2 < Mew < Tmini and
define ¥ = ¥y U {lnew} and L = 7ya.c0. X is a stable set of the form of
Claim [4.15 and covered with exactly k& + 1 color-classes.

Since it is possible for & = 3 (see Claim [4.15), Theorem 4.16 holds. [
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4.3.2 Overlap Graphs With Intervals of Bounded Size

Lemma 4.17. In the special case where all intervals have length 1, First-Fit
finds an exact coloring of an overlap graph presented in increasing order of
one of the interval ends.

Proof. In this case, if two intervals have the same starting point (and thus
also the same end point), it is possible to put them in the same color-class.
One can thus virtually consider two such intervals as just one interval, and
therefore consider that no interval contains another interval. Therefore, the
corresponding graph is also an interval graph. It is known that First-Fit
finds an exact coloring of an interval graph presented in increasing order of
the interval’s left ends [Gol04]. O

Lemma gives an interesting result because, together with Theo-
rem 4.16, it shows that there is a big difference between an overlap graph
with intervals of constant size and an overlap graph with intervals of arbi-
trary size. Considering this, it is natural to wonder what happens if the
size of the intervals is not constant, but bounded. In the remainder of this
section, we will concentrate on graphs where the ratio between the shortest
and the longest interval is smaller than or equal to some given integer.

Let us consider an online instance defined by a set of intervals presented
in increasing order of their left ends. We assume that every interval is of size
at least 1.

At each step t, interval I, = [l;, 7] is presented. At this step, we define
M(t) as the maximum length of intervals already presented, m(t) as their
minimum length, p(t) = log(M(t)) and p/'(t) = wp(t)/log(u(t)). Note that
()" ® = M(t). Note also that functions M and p are non decreasing and
that p/ is non decreasing for t, M (t) > 16. If the instance contains n intervals,
then we respectively denote by M, m, u, i/ the quantities M(n), m(n), u(n)
and £/(n). Let us prove the following:

Proposition 4.18. There is an online algorithm which, for every collection
of intervals presented from left to right, computes a coloring of the related
overlap graph with at most (xM)/m, where M is the mazimum length of
intervals, m s the minimum length and x s the chromatic number of the
related graph.

Proof. We prove Proposition 4.18 by giving such an algorithm: Algorithm/[15.
It uses several color boxes and makes a mapping R — N : C(z) = C;. It runs
as follows: for each new Interval I;, it applies First-Fit with the color box
C'(l;) while there is no inclusion. Whenever an inclusion arises for Interval
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I, then it changes C'(z) for all points = such that

x> ( max lh> +1 (4.8)

{In:ln<lt}

Algorithm 15

Input: An overlap graph G presented online from left to right.
Output: A yM/m-coloring of G, where M (respectively m) is the length of

1:

®

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

the longest (respectively shortest) interval of G.
Vi € N, let C; be a box of ordered colors such that the boxes C; are
disjoint from each other.
M — +o0
m «— 0
10
Clz) — C;Vz eR
for each new interval I, = [l;, ;] do
if I is shorter than m or longer than M then update M and m ac-
cordingly.
if I is included in one or more other intervals {I, = [l,,r,]} then
Let Z be this set of intervals and sort [, € Z in increasing order of
L.
i+ (t+1) mod [M/m]
for each I, € 7 do
Let ¢ be the color of I,.
if I; does not overlap any interval colored with ¢ then
Assign ¢ to I
C(x) « C;forall z € [l, + 1, +00)
Break; /*goto[19%/
end if
end for
if I; has not been assigned a color yet then
Color I, with the smallest possible color in C(l;)
C(z) — C; Vx> (maxqr,., <y ln) +1
end if
else
Assign the smallest possible color of C(l;) to I.
end if
end for

Claim 4.19. Between two updates of i, Algorithm |15 is exact.

90



The Track Assignment Problem

Proof. 1f there is no relation of inclusion, then an overlap graph is equivalent
to an interval graph and, as mentioned before, First-Fit (and therefore also
Algorithm [15)) gives an exact coloring.

Consider the first time that an inclusion occurs (a new interval I appears,
and I is included in some other interval). I will have the same color as one
of the intervals in which [ is included, and the coloring is still optimal. For
all intervals appearing after I but before the next update of ¢, one can notice
that they all share at least one point with I, which is the time where ¢ is
updated. Therefore, this subgraph respects the midnight condition, and is
thus a permutation graph, and is thus colored exactly with First-Fit (and
therefore also Algorithm [15). O

Since ¢ is updated at most after a length of 1, for any interval I; we have

H{C(x) :x e L}]| < % (4.9)

Therefore, one interval may never cross two different intervals for which ¢ has
the same value. Thus, the coloring of Algorithm/[15/is a juxtaposition of M /m
exact colorings of subgraphs of G' and therefore, the number of colors used by
Algorithm 15 is at most x M /m. This ends the proof of Proposition[4.18. [

The aim of the rest of this chapter is to provide an improved algorithm
for the case where [ > 1. We first propose an improved version of Proposi-

tion [4.18}

Proposition 4.20. Consider an online sequence of intervals I, = [l;, 1]
such that the sequence (I;); is non decreasing. Then, Algorithm[15 computes
a coloring of the related overlap graph with at most \ colors, where

A= X max {M(t)/rilllgl(rh - lh)} (4.10)

and x 1s the chromatic number of the related graph.

Proof. Color boxes used by Algorithm [15/ are denoted C;,i € N. As in
the proof of Proposition [4.18, it is assumed that Algorithm [15] is optimal
for the sub-instance colored with a given color box. Suppose that when
interval I; is presented, an inclusion occurs and that C(l;) = C;. Let I, =
arg maxyy, .1, <i,} ln- Algorithm 15 is conceived in such a way that when the
point [ + 1 is passed, one changes the color box. At this point in time, the
right-most point colored with color box C; is located at most at I, + M ().
Moreover, the intervals are presented in increasing order of their left ends.
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So after less than M (k)/[miny >, (r, — )] changes, one can use color box C;
again. So at most

m?X[M(t)/miItl(Th — )] (4.11)
color boxes are used, which concludes the proof of Proposition 4.20. O

Let us now show the following Theorem.

Theorem 4.21. Consider online Min Coloring on overlap graphs associated
to a collection of intervals of size at least 1 and presented in the increasing
order of their left ends. There is an online algorithm guaranteeing a perfor-
mance ratio of log M ([log M/loglog M| + 1), if M > My and of 2v/M if
M < My, where M is the mazimum length of intervals and My is such that
2v/ My = 3log(My). For large value of M, the ratio is O(log® M/ loglog M).

Proof. Let us show that Algorithm [16 is eligible for Theorem 4.21. It uses
interval sets S;, i € N and color boxes Cj, i € N, each containing colors. We
assume C; N C; = 0,7 # j. At the beginning sets S; are all initialized to

Algorithm 16

1: Let My be such that 2v/M, = 3log(M)
2: for each new interval I} = [l;, ;] do
3:  Update the values of M(t), u(t) and p/'(t).
if M(t) < M, then
Assign I; to S;, where j is either 2 if (r, — ;) < /M(t) or 3 if
(ry — 1) > /M(1)
else
Assign I; to the set S; such that p(¢)7~t < (ry — 1) < p(t)’
end if
Apply Algorithm 15 to the partial instance defined by S
10: end for
11: The solution is obtained by the addition of colorings computed on each
sub-instance S}, j < [¢']. The number of colors used is equal to the sum
of the numbers of colors used in boxes C1, ..., Cpn

Note first that for M < My, 2v/M < log(M)[log(M)/loglog(M)] and
for M > My,2v/M > log(M)[log(M)/loglog(M)]. My is approximatively
20,58. Note that, if M(t) > My, then j < [1/(t)] and moreover for every
j > [/ ()], we have S; = 0.

92



The Track Assignment Problem

Claim 4.22. Let us denote by x the chromatic number of the graph associ-
ated to the whole instance.

i. If M < My, then the number of colors used in box Cj,j = 2,3 is at
most v/ M.

. If M > My, then the number of colors used in box Cj,j < [/ ()] is at
most px for j & {1;2} and max(u, v/ Mo)x if j € {1,2}.

Proof.

i. We apply Proposition 4.20 on the sub-instance defined by S; and
S3. For the sequence of intervals in Sy, the minimum length is 1 while the
maximum length is v/M, consequently at most xv/M colors are used (more
precisely, Proposition [4.18 could be applied). For the sequence Ss, it is also
straightforward to verify that, for every interval I;, the following inequality
holds:

M(t)/ min(ry, — 1) < VM (4.12)

. Let j <[] and consider the sub-instance defined by \S;. For intervals
in Sj, the coloring is produced by Algorithm 15, using several color boxes
C}, ceey C’Jh, ..., all included in C;. We also apply Proposition on each
S;. Let us first consider j ¢ {1;2}, we then have for each I:

— i — < .
, gﬂ?z?ésj(rh In)/ hﬁ}fésj("’h In) < (4.13)

For i € {1;2}, we have

— i — < cu) < 1. .
hgl;r}fzi}ésj(rh lh)/h;}irésj(rh ln) < max(y/Mo; ) < 1.5u (4.14)

where the last inequality is due to the definition of M,. O

Since there are [y/] interval sets used, the number of colors used for the
whole instance is at most 2v/ My if M < M, and

(u(T'T +1))x = x[log M([log M/ loglog M + 1)] (4.15)
if M > My, which concludes the proof of Theorem [4.21. O

Remark 4.23. In many train depots, the trains only stay a limited amount
of time and this amount of time does not differ very much from one train
to the other. For such train depots, the results shown in Proposition [4.18,
Proposition .20 and Theorem|4.21 are relevant.
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Coloring case | Presentation order | Performance ratio p
Unbounded Perfect p=1
Arbitrary p= XTH
Bounded Perfect p=2-— m
Arbitrary p < % + %

Table 4.2: Permutation graphs and comparability graphs

4.4 Conclusion

In this chapter, starting from the Online Track Assignment Problem, we have
studied online coloring of permutation graphs and of overlap graphs.

Table 4.2/ summarizes the results found on permutation graph and compa-
rability graphs in this chapter and in Chapter [3. These results were applied
to an online version of the problems described in [CDS07], and gave an op-
timal solution for the Train Depot and the Big Train Station, both with the
Midnight Condition. They showed an upper bound of 2 for the Small Train
Station Problem.

The results found on overlap graphs provide bounds for the Train Depot
Problem when the Midnight Condition is not fullfiled.

Given the difficulty of online Min Coloring in overlap graphs, in the
next chapter, we will consider another subclass of overlap graphs: trees and
forests.
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Trees, Forests and Split Graphs

This chapter is a natural continuation of the previous chapters because it
explores online Min Coloring and online Min Bounded Coloring on two classes
of perfect graphs: forests and split graphs.

Related works. Online Min Coloring on particular classes of graphs has
been the subject of various studies, besides the previous chapters of this
thesis. Among others, the following classes have been studied: Ps-free graphs
[KPT95], Interval graphs [BBE'03] and H-free bipartite graphs [BCP06].
In [GL88], Gyarfas and Lehel have studied online Min Coloring on several
classes of graphs. In particular, they have given, without proof, an upper
bound on the performance ratio of this problem on split graphs, and have
shown that the performance ratio of online Min Coloring on trees is not
bounded by a constant.

Main results. For trees and forests, we prove that the performance ratio of

online Min Coloring is 1 log,(2n) and that the performance ratio of First-Fit

on online Min Bounded Coloring is p =1 + Uog;#.

We also show that it is possible to force First-Fit to use log,(2n) colors
on a bipartite overlap graph, even if the graph is presented in the form of a
family of intervals, in increasing order of the intervals left ends, and even if
the corresponding graph is a tree.

For split graphs, we prove that the performance ratio of online Min Col-

oring is 1 + i and that the performance ratio of First-Fit on online Min
3

Bounded Coloring is p = 2 + i — 2.
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5.1 Trees and Forests

Definition 5.1 (Tree). A tree is a connected graph that contains no cycle.
Definition 5.2 (Forest). A forest is a disjoint union of trees.

Trees and Forests are perfect graphs. They are bipartite. Coloring a
tree or a forest offline can be done in linear time. Justification and more
information can be found in [BLS99].

It is quite easy to see that every forest is an overlap graph. Since we
could not find a proof in the literature, we will show it here.

Lemma 5.3. The class of forests is strictly included in the class of overlap
graphs.

Proof. Tt is easy to see that every overlap graph is not necessarily a forest.
Consider the graph C; shown on Figure [5.1(a). It can be represented as a
set of intervals where each interval corresponds to a vertex in C4 and two
vertex are adjacent if and only if the two corresponding intervals overlab (see
Figure[5.1(b)). Of course, Cjy is not a forest, since it contains a cycle.

Let us now show that every tree is an overlap graph. Given a tree T' =
(V, E), choose a vertex vy € V. Draw an interval Iy = [ly,70]. For each
neighbor v; of vy, draw an interval I; centered on ry such that if v; and v; are
neighbors of vy, I; C I; or I; C I;. Repeat the same construction for each v;
(See Figure 5.2/ for an illustration). The result is a set of intervals such that
two intervals overlap if and only if the corresponding vertices are adjacent
in T. Of course, if T is a forest, it is possible to do the same construction
separately to each connected component of 7T'. O

In this section, we consider that the trees are presented vertex by ver-
tex. Before the tree is completely presented, the subgraph induced by the
presented vertices may not be a tree, but is of course always a forest.

5.1.1 Online Coloring of Trees

Lemma 5.4. For n > 2, First-Fit guarantees a performance ratio p <
%10g2(2n) on online Min Coloring on trees, where n is the number of vertices
of the tree.

Proof. First, remember that every tree of size n > 2 is bipartite. Thus,
to reach a performance ratio of %logz(Qn), one must force First-Fit to use
log,(2n) colors, or to use A colors with at most 2*~! vertices. We prove this
by induction on A.
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U2 U3 —_

V4 V2

(a) (b)

Figure 5.1: Part (a) shows the graph C,. Part (b) shows
the same graph represented as a set of intervals,

showing that Cy is an overlap graph.
Vo
U1 Vg U3

(1 Vs Ve U7 Ug

vo —m™mm

Us +—

Figure 5.2: This figure illustrates the construction used to
show that every tree is an overlap graph. Part
(a) shows a tree T. Part (b) shows T represented
under the form of overlapping intervals.
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To start the induction, let us note that 2! = 2 adjacent vertices are
enough to force First-Fit to use 227! = 2 colors. Thus, Lemma [5.4 is true for
A=2.

Suppose now that Lemma (5.4 holds for A = k. Let us show that it holds
for A=k + 1.

Suppose that there exists a tree T = (V, E) with |V| < 2* and an ordering
on the vertices such that First-Fit uses £ + 1 colors on T'. Let v, be the
vertex colored with color k£ + 1. v must be adjacent to a vertex colored
with color k; let v be this vertex. Now consider the forest 7" = (V, E’)
where ' = E — {vgvg41}. Presenting 7" using the same ordering on V' will
result on vi,; being colored with color k. Thus, we have two trees colored
with k colors each and by our induction hypothesis, each of these trees has
at least 2"~1 vertices, which makes a total of 2* vertices and constitutes a
contradiction. O

Lemma 5.5. For any A > 1, no algorithm can guarantee to use less than \
colors on a tree of size 2271,

Proof. Again, we prove this by induction on A. Of course, it is easy to
build a tree of size 2'7! = 1 on which any algorithm will use 1 color. Thus,
Lemma [5.5/ holds for A = 1.

Suppose that Lemma 5.5 holds for A < k; let us show that it holds for
A=k+1.

Present k trees T}, ¢ € [1..k], each one of size 2°~! such that, for each tree,
the algorithm will use at least ¢ colors. By our hypothesis, it is possible to
find k vertices v; such that v; € T; if ¢ # 7, then v; and v; have two different
colors. Present a new vertex vy and make it adjacent to each v;, i € [1..k].
The vertices v;, ¢ € [0..k] have k + 1 different colors. Besides that, the total
number of vertices n is:

k
n=1+) 27" =2 (5.1)
=1

O

Lemma 5.5 shows that no algorithm can guarantee a performance ratio

better than p = 3 = 1log,(2n). Putting this information together with

Lemma [5.4] allows us to state Theorem [5.6]

Theorem 5.6. Let n be the number of vertices in a tree. The performance ra-
tio of online Min Coloring on trees containing at least 2 vertices is % log,(2n)
and First-Fit achieves this performance.
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A forest is the disjoint union of trees. First-Fit, applied on a forest, will
behave on each tree independently from the other trees. Thus, the upper
bound given by Lemma 5.4 for trees also holds for forests. Since the class of
trees is a subclass of the class of forests, the lower bound given by Lemma 5.5/
for trees clearly also holds for forests. Therefore,

Corollary 5.7. If at least one of the trees of a forest contains at least 2
vertices, then the performance ratio of online Min Coloring on this forest is
%logz(Qn), where n 1s the number of vertices of the forest. First-Fit achieves
this performance.

As mentioned above, trees are overlap graphs. Section 4.3/studies overlap
graphs presented in increasing order of the left ends of the intervals. Let us
now see what happens if a tree is presented under the form of overlapping
intervals.

Proposition 5.8. It is possible to force First-F'it to use log,(2n) colors on a
bipartite overlap graph, even if the graph is presented in the form of a famaily
of intervals, in increasing order of the intervals left ends, and even if the
corresponding graph is a tree.

Proof. For each interval I;, let I; (respectively r;) be its left (respectively
right) bound. Formally, I; = [I;, 7).

It is easy to build a stable set of size two, such that the intervals forming
this stable set are included in each other and First-Fit will put these intervals
in two different color-classes (see Figure[5.3). One can then add an interval
I, that overlaps both intervals of the stable set and will get color 3. Thus,
Proposition 5.8/ holds for n = 4.

I3

Figure 5.3: This figure shows a stable set of size two (inter-
vals Iy and I3), such that the intervals forming
this stable set are included in each other and
First-Fit will put these intervals in two different
color-classes.
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It is then possible to repeat the construction of Figure in the interval
[max{ry, 3}, r4] and thus getting a stable set ¥ of size 3, such that First-Fit
will put each interval of ¥ in a different color-class.

Figure 5.4: Illustration of the proof of Proposition 5.8 for
the case n = 8. The numbers represent the col-
ors attributed by First-Fit.

To make First-Fit use color A = k, it is enough to repeat this construction
k — 2 times. Each time, the number of vertices doubles. Since n = 4 = 237!
for A = 3, we have n = 2¢~! for A = k. Each step presents two trees and one
vertex which is connected to both trees. Thus, the resulting graph is also a
tree. U

Remark 5.9. Lemma{.1]] shows that it is possible to achieve O(y/n) colors
on a bipartite overlap graph, which is larger than logy(2n) for large values
of n. Howewver, the graph used in the proof of this lemma is not a tree since
it contains a cycle. Theorem 5.6 shows that it is not possible to achieve the
result of Lemma 4.14 on a tree.

Remark 5.10. The number of vertices used to show Proposition!5.8 is much
smaller than to number of vertices used to prove Theorem .16, Besides that,
one can see that the construction used to show Theorem [4.16 is also a tree.
However, Theorem 4.16 holds for any algorithm.

Remark 5.11. Proposition|5.8 does not generalize to overlap bipartite graphs.
Indeed, Figurel5.5 shows such a graph with 15 < 257! vertices that First-Fit
will color with 5 colors.

Remark 5.12. When presenting a tree with n = 2* vertices such that First-
Fit will use A + 1 colors using the method shown in Theorem 5.6, the color
that will be used the most often by First-Fit is the color 1. It will be used
22 — 1 times.

Remark 5.12/ will be useful in the following section.
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1
[ 1 2
— 2
1
3
1
— 2
1
[ 1 4
—1
— 2
1
—3

Figure 5.5: [llustration of Remark|5.11. The numbers rep-
resent the colors attributed by First-Fit.

5.1.2 Online Bounded Coloring of Trees

For any bounded coloring of a tree using A\ colors, let S be the set of color-
classes containing exactly b vertices (saturated colors) and S be the set of
color-classes containing strictly less than b vertices (unsaturated colors). De-
fine Ng = |S| and Ng = |S|. Of course, A = Ng + Ng. Let Vs be the set of
vertices colored with saturated colors and Vs be the set of vertices colored
with unsaturated colors. Clearly, Ve NVg =0 and Vs U Vz = V.

Furthermore, let Gg = (Vg, Eg) be the subgraph of G induced by V.
Note that Gz is a tree or a forest.

Proposition 5.13. Let G = (V, E) be a tree and let Q2 be an ordering on
V' such that FF, uses A\ = Ng + Ng on G. If Ng > log,(b) + 1 then it is
possible to find another tree G' and an other ordering Y such that FF, will
use exactly Ng + 1 saturated colors and Ng — 1 unsaturated colors on G'.

Proof. Suppose that Ng > log,(b) + 2. By Theorem [5.6, we know that, to
make FF, use Nz colors, Vz must contain at least 2Vs~1 vertices.
Besides that, by the same theorem, there exists a tree with 2Vs=2 vertices
and an ordering on the vertices such that FFy will use Ng — 1 on this tree.
However,

2N§71 o 2N§72 — 2N§*2 < 210g2(b) — b (52)
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Figure 5.6: [llustrates of the proof of Proposition|5.13. As
for every tree, bNg + 2Vs71 < xpb. It is then
possible to build the tree shown in Figure|5.7.

*—o—0o 0o

- -~

b(Ng+1) vertices

Figure 5.7: The ellipse represents a tree with 2Ns=2) yer-
tices that FF;, colors with Ng — 1 colors.

It is thus possible to build a new tree on which FF, will use Ng + 1
saturated colors and Ng—1 unsaturated colors. Indeed, the fact that 2Vs—1 —
2Ns=2 < b allows us to saturate one more color. O

Figures|5.6 and 5.7/ illustrate the proof of Proposition5.13. In Figure 5.7,
the total number n of vertices of the tree is:

n=b(Ng+1)+2052 = pNg4b+ (201 - oWs-2))
= bNs+20570 4 (b —20572)  (5.4)

Since b — 252 < 0 by hypothesis, we have that:
n < xpb (5.5)

Lemma 5.14. FF, guarantees a performance ratio of at most 1+ % on
online Min Bounded Coloring on trees.
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Proof. Let us calculate A\, the number of colors that FFj uses on a tree. We
know that if Ng > |log,(b)] + 2, it is possible to find another coloring of the
same tree such that the value of A does not change and Ng < [log,(b)] + 2.
Since it is A that we want to compute, we can suppose that Ng < [log, () | +2.
Two cases are possible:

1. Ng = [log,(b)| + 2. We know that |V5| > 2¥s~1. However,
b < 2Ns—1 = gllos2(0)]+1  9p) (5.6)
V5| < xb — |Vg|. Thus,

(xo —2)b < |Vs| < (xo — 1)b (5.7)

But since Ng = @, we have Ng = xp — 2.

2. N3 < [logy(b)] + 1. |V5| = 2V5~1. But
0 < 2Vs=1 = gllee20] py (5.8)
Vs < xp - b — |Vg|. Therefore,
(xo — )b < |Vs] < xub (5.9)

[Vs|

But since Ng = 5%, we have that Ng < xp — 1.

Finally, in both cases,

O
Lemma 5.15. FF, has a performance ratio of at least 1+ % on online

Min Bounded Coloring on trees.

Proof. The tree shown on Figure 5.8 forces FF}, to use x, + [logy(b)] colors.
Again, let G5 the the partial graph represented by the ellipse on Figure[5.8.
We know by Theorem [5.6 that such a tree exists. Furthermore, we know
by Remark [5.12] that the most used color on Gg will be used ollog> (0] < gy
times. U

Remark 5.16. It is easy to see that lemma is true for any greedy
algorithm that opens a new color only when no other color can be used on a
vertezx.
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*—o—0 0 °

- -~

b(x»—2) vertices

Figure 5.8: The ellipse represents a tree with 2108201+ yer
tices such that First-Fit (and thus also FFy)
needs |log,(b) | + 2 color-classes to cover it.

Lemmas [5.14 and [5.15 allow us to make the following proposition:

Proposition 5.17. FF, has a performance ratio of exactly 1 + Llogx®)] 5y

X
online Min Bounded Coloring on trees. '

Proposition 5.18. The performance ratio of FF, on an overlap graph pre-
sented as a set of intervals in increasing order of their left ends is at least
log, (b
|, Logs0)]
Xb

Proof. Use the construction shown on Figure/5.8 and use Proposition 5.8 to
build a graph with less than 2b vertices on which FF, will use |log,(b)]| + 2
colors. O

5.2 Split Graphs

Definition 5.19. A split graph is a graph in which the vertices can be par-
titioned into a clique and a stable set.

Split graphs were first introduced by Foldes and Hammer in two papers
in 1977 [FH77a, FH77b], and independently by Tyshkevich and Chernyak in
1979 [TC79]. They are chordal graphs the complement of which is also a
chordal graph [FH77a]. Split graphs which are also permutation graphs have
been studied in Section [3.3.2. More on split graphs can be found in [BLS99].

5.2.1 Online Coloring of Split Graphs

Lemma 5.20. First-Fit guarantees to use at most x(G)+1 colors on online
Min Coloring on a split-graph G = (V, E). Moreover, in order to force First-
Fit to use x(G) + 1 colors, one needs to present at least x(G) + 2 vertices.
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Proof. Let K be the maximum clique of G and Y be the stable set induced
by the vertices of G which are not in K.

Let us prove the first part of the theorem by contradiction. Suppose that
First-Fit has colored G with striclty more than x(G)+ 1 colors. The vertices
of K are of course colored with |K| = w(G) = x(G) colors. So there are at
least two colors used on Y which do not appear in K. Let ¢; and ¢y be these
colors, with ¢; < ¢y. Also, let vy (respectively vy) be a vertex colored with
c1 (respectively ¢y). The vertex vy should be colored with ¢; by First-Fit
since no vertex of K is colored with ¢; and v; and vy are in X, thus are not
adjacent. Thus, there is a contradiction.

Let us now prove the second part of the theorem, by contradiction again.
Suppose that First-Fit colors a split graph of size x(G) + 1 with x(G) + 1
colors. Since each color appears exactly once in the coloring, there must be
a clique of size x(G) + 1, thus w(G) > x(G), which is a contradiction. O

Lemma 5.21. For all x = 2, no online algorithm can guarantee to use less
than x(G) + 1 colors to color a split graph, where x(G) = x, even if the size
n of G is smaller or equal to x + 2.

Proof. Consider the instance presented by Adversary [17.

If A never uses color ¢y at Step |5, then we have one clique of size k& and
one disjoint vertex, and A has used k-1 colors. Thus, the chromatic number
of the graph is x(G) = k and the number of colors is x(G) + 1. Besides that,
the size of the graph is n = x(G) + 1.

If A uses the color ¢y at a certain point in time at Step |5, then Adver-
sary [17 still presents a clique K of size k. However, since each vertex of K is
adjacent to either vy or v}, no vertex of K can have color ¢y. Furthermore,
the condition at Step (12 ensures that there is in K at least one vertex that is
not adjacent to v;+ and at least one vertex that is not adjacent to vy. There-
fore, G contains no clique of size larger than k and thus x(G) = w(G) = k
and the number of colors is k + 1 = x(G) + 1. The number of vertices is
n=x(G)+ 2. O

Theorem 5.22. The performance ratio of the problem of online coloring
split graphs is exactly 1 + % and First-Fit achieves this ratio. Furthermore,
a split graph with x(G) + 2 vertices is enough to force any online algorithm
to this ratio.

Proof. The proof is immediate from lemmas and [5.21! O
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Adversary 17
Input: An online coloring algorithm A and a natural number x > 2.
Output: A split graph G of size at most y + 2 and with chromatic number
x that A will color with at least x + 1 colors.
1: Present a vertex vg. Let ¢y be the color of vy.
2: 10
3: repeat
4: 1+—1+1
5. Present a vertex v; and an edge v;v; Vj € [1..(1 — 1)].
6
7
8
9

: until A puts v; in ¢y or i = .
. if i < x then /*Vertex v; is colored with c¢y*/

Let i* =1
repeat
10: 1—i+1
11: Present a vertex v;, and an edge vv; Vj € [1..(1 — 1)],5 # i*. Fur-
thermore,
12: if (¢ mod 2) = (i* mod 2) then
13: Present an edge v;v;
14: else
15: Present an edge v;vg
16: end if
7. until i =y
18: end if

5.2.2 Online Bounded Coloring of Split Graphs

For any bounded coloring of a split graph using A colors, let S be the set
of colors containing exactly b vertices (saturated colors) and S be the set
of colors containing strictly less than b vertices (unsaturated colors). Define
Ns = |S| and Ng = [S|. Of course, A = Ng + Ng. Let Vs be the set of
vertices colored with saturated colors and Vg be the set of vertices colored
with unsaturated colors. Clearly, Vs N'Vg =0 and Vs U Vg =V.

Furthermore, let Gg = (Vg, Eg) be the subgraph of G induced by Vi.
Note that Gz is a split graph.

Theorem 5.23. Let G = (V. E) be a split graph. FF, will use at most

LWJ + xp + 1 color-classes to cover it and this bound is tight.

Proof. We will prove Theorem [5.23 by contradiction. Suppose that FFj uses
more than {Xb(b%bl)_zj -+ X+ 1 color-classes to cover a split graph G presented
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Clique of size k Stable Set

Vertices
adjacent
to Vo

Vertices
adjacent
to (U

Figure 5.9: [llustration of the instance presented by Adver-

sary |17,

online. Let

xo(b—1) —2

)\:N5+N§:{ ;

J+Xb+1+£l: (5.11)

where z > 1.
Since Gz = (Vg, Eg) is a split graph, we know by Lemma [5.20 that
Ng < xp + 1. Thus, we can deduce from that:

Ng > {MJ + (5.12)

Suppose that

b

where y > x. There are two possibilities:

Ng = {MJ + v, (5.13)

1. Ify > 1.

Vs| = {MJ btyb>yv(b—1)—2+ @y —1)b  (5.14)
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Since GG has at most y,b vertices,

Vel < xob— Vsl <xpb— (xo(b—1) =24+ (y—1)b) (5.15)

< xp+24b—yb (5.16)
Moreover, Ng < |Vg|. Thus,
b—1)—2
N5+N§<{%J+y+xb+2+b—yb (5.17)
Thus
b—1)—2
N5+N§< \‘MJ—FXb—Fl—F (y+b—yb) . (518)
b NG

<0 since y, b > 1

which contradicts the hypothesis.

2. Ify=1,
Vs| > xp(b—1) —2. (5.19)
Since GG has at most y,b vertices,
[Vl < xob — [Vs| < xp + 2 (5.20)
By Theorem 5.20, Ng < x5. Therefore,
b—1)—2
Ns + Ng < L%J +xp+ 1 (5.21)

which contradicts the hypothesis.

This bound can be reached by presenting a stable set of size LWM

and then a split graph of size x + 2 that First-Fit will color with x + 1 colors
(see Theorem for the construction). O

Remark 5.24. Theorem[5.23 shows that the performance ratio p of FF, on
the problem of online coloring a split graph with colors of bounded size b is:
P2+ -3

5.3 Conclusion

Tables and 5.2 summarize the main results that were proved in this
chapter. In the bounded cases, the upper bounds are guaranteed by FF;, and
are tight.

Moreover, we have shown that it is possible to force First-Fit to use
log,(2n) colors on a bipartite overlap graph, even if the graph is presented
in the form of a family of intervals, in increasing order of the intervals left
ends, and even if the corresponding graph is a tree.
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Coloring case p

Unbounded 5 log,(2n)

Bounded

Llog(b)]
p< 1+ lou

Table 5.1: Performance ratio p of online Min Coloring on
trees and forests

Coloring case p
Unbounded 1+ %
Bounded p<2+i—%

Table 5.2: Performance ratio p of online Min Coloring on
split graphs
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Chapter 6

Finding Hamiltonian Circuits
in Quasi-Adjoint Graphs

This chapter is based on [BKLBAWO08]. It is motivated by a method used
for DNA sequencing by hybridization presented by Blazewicz and Kasprzak
in [BK06]. In this paper, the authors develop a formulation involving the
search of a Hamiltonian path in order to solve a problem of DNA sequencing.
They exhibit cases where the problem can be solved in polynomial time. The
graphs they use are a generalization of directed line graphs. It is interesting
to examine how we can generalize those graphs, while still being able to
solve the Hamiltonian Path or Circuit Problem polynomially. We give here a
characterization of quasi-adjoint graphs, and devise a polynomial algorithm
for finding a Hamiltonian circuit.

Related works. DNA sequencing problems have been widely studied and,
in particular, various formulations have been given in terms of combinatorial
optimization of graph theoretical flavor (see references in [BK03]).

The problem of deciding whether a graph has a Hamiltonian circuit (for
short, the Hamiltonian Circuit Problem) is known for a long time to be
NP-complete [Kar72].

The Hamiltonian Circuit Problem remains NP-complete even for graphs
having a specific structure, such as planar-cubic 3-connected graphs [GJS76],
bipartite planar graphs of maximum degree 3 [ANS80], grid graphs [IPS82],
maximal planar graphs [Chv85], chordal bipartite graphs and strongly chordal
split-graphs [Miil96] as well as line graphs [Ber81].

However, for some other classes of graphs, such as locally connected
regular graphs of degree 5 [Kik75], cographs [CLBS81|, proper circular arc
graphs [Ber83], interval graphs [Kei85], co-comparability graphs [DS94] or
directed line graphs [BHKdAW99], the same problem has been shown to be
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polynomially solvable.

Remark that directed line graphs are adjoints and therefore also quasi-
adjoint graphs. A different generalization of directed line graphs, the par-
tial directed line graphs, has been studied in 2007 by Apollonio and Fran-
ciosa [AF07]. However, these graphs are not related to quasi-adjoint graphs.

Main results. We present here a class of digraphs: the quasi-adjoint
graphs. These are a super class of both the graphs used in [BK06] and
the adjoints [Ber76]. A polynomial recognition algorithm in O(n?), as well
as a polynomial algorithm in O(n? + m?) for finding a Hamiltonian circuit
in quasi-adjoint graphs are given. Furthermore, some results about related
problems such as finding a Eulerian circuit while respecting some forbidden
transitions (a path with three vertices) are discussed.

6.1 Definitions and Characterization

Graph theoretical terms not defined here can be found in [Ber76].
Throughout this paper, the symbol C always refers to a strict inclusion.
If an inclusion is not strict, we will use the symbol C.
Furthermore, in the remaining part of this paper, we will only consider
directed graphs, even when not explicitly stated.

Definition 6.1. For any graph G = (V,U), we define m = |U|. As in
previous chapters, n is the cardinality of V.

Definition 6.2. A subpath of a path P is a sequence of vertices which are
consecutive in P.

Definition 6.3. A transition is a path consisting of 3 vertices and two arcs.

Definition 6.4. Let G = (V,U) be a graph and x € V. Define N*(x) and
N~(z) as follows:

N*(z) = {yeVl(z,y) €U}
N7 (z) = {yeVl(yz)eU}

N*(z) is called the set of successors of x and N~ (x) is called the set of
predecessors of x. For a set S of vertices,

NT(S) = UzesN™(2)
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Definition 6.5. Let G = (V,U) be a graph and z € V. We define the
outdegree d*(x) (respectively the indegree d—(x)) of a vertex x as the number
of arcs leaving (respectively entering) x. Formally:

dt(z) = H{ueUlu=(z,y) for somey of V}|
d (z) = HueUlu=(y,x) for somey of V}|

Remark 6.6. Graphs considered in this paper may be multigraphs. There-
fore, d*(xz) may be different from |[N*(z)| and d(x) may be different from
[N~ ()]

Definition 6.7. A graph is a quasi-adjoint graph if the family (N " (y)|y € V)
1s nested. In other words, if for any two vertices x and y the following prop-
erty holds:

Nt@)NNt(y)#0 = Nt (x)=N*(y) or
N*t(x) C N*(y) or
N*(y) C N*(x)

Remark 6.8. Berge [Ber76] gives the following definitions:

A graph is a p-graph if given any ordered pair x,y of vertices (x possibly
equal to y), there are at most p parallel arcs from x to y.

The adjoint G = (V,U) of a graph H = (X, V) is the I-digraph with
vertex set V' and such that there is an arc from a verter x to a vertexy in G
if and only if the terminal endpoint of arc x in H s the initial endpoint of
arcy in H.

A graph G is an adjoint if there exists some graph H such that G is the
adjoint of H.

Berge [Ber76] also proves that a 1-graph G = (V,U) is the adjoint of a
graph if and only if the following holds for any pair x,y of vertices in V :

N¥(x) NN (y) #0 = N¥(x) = N*(y)

Remark 6.9. This statement shows that, by definition, the class of quasi-
adjoint graphs strictly contains the class of adjoint graphs.

Remark 6.10. Quasi-adjoint graphs can be recognized in O(n?) time by look-
ing at every pair of vertices x and y and comparing N™(x) and N*(y).

The following constructions and definitions will be used for the search of
a Hamiltonian circuit in a quasi-adjoint graph G:

One can construct a new graph G’ by splitting each vertex z of GG into
two new vertices 2’ and z”, and replacing each arc (z,y) by the arc (", /).
An example of this is given in Figure/6.1.
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O O O OO

O
G G’

Figure 6.1: A quasi-adjoint graph G and the result of its de-
composition G'. This figure also illustrates Re-
mark!6.9: while adjoint graphs would only admit
complete bipartite graphs after a decomposition,
quasi-adjoint graphs also admit some incomplete
bipartite graphs.

Definition 6.11. Each non-trivial connected component (having at least two
vertices) of G' is called a cluster.

Remark 6.12. G’ is a collection of vertex-disjoint bipartite graphs and iso-
lated vertices. By definition, the clusters are the bipartite graphs.

For each cluster C', we divide its set of vertices into two parts: the left
part L(C) is the set of vertices having only outgoing arcs and the right part
R(C) is the set of vertices having only incoming arcs.

Note that the clusters resulting from the decomposition of a quasi-adjoint
graph are not necessarily complete, as they would be for the adjoint of a
graph. See Figure 6.1/ for an example. It is possible to group vertices of L(C')
into subsets such that, for any two vertices x and y from the same subset,
N*t(z) = N*(y). As a direct consequence of the definition of quasi-adjoint
graphs (Definition 6.7), each one of these subsets then belongs to one of the
following categories:

A. {z|N*(x) = R(C)} (x € L(C))
B. {x|3y,z: NT(y) C NT(x) C N*(2)} (x,y,z € L(C))
C. {z|3z: N*(x) C N*(z) and By : N*(y) € N*(2)} (z,y,2 € L(O))

Lemma 6.13. For every cluster C, there is at least one vertex x € L(C)
such that N*(x) = R(C).

Proof. Suppose there exists a cluster C' such that there exists no vertex
z € L(C) with NT(z) = R(C). Consider two disjoint maximal sets Y; and
Y5> such that Y; = NT(x;) for some z; € L(C). Since the family U;Y; is
nested, there is no chain going from x; to xo. Thus, the cluster is disjoint,
which is a contradiction. O
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6.2 The Hamiltonian Circuit Problem in Quasi-
Adjoint Graphs

Theorem 6.14. The Hamiltonian Circuit Problem in quasi-adjoint graphs
can be polynomially solved in O(n? + m?) time.

Proof. We prove this by giving Algorithm [18, which finds a Hamiltonian
circuit in a quasi-adjoint graph if there is one and gives a negative answer
otherwise.

This algorithm is based on the same construction as the one used for
adjoint graphs: transforming graph G into its original graph H (such that G
is the adjoint of H) and then looking for a Eulerian circuit in H. However,
since clusters of quasi-adjoint graphs are not necessarily complete, as shown
in Figure 6.1, we must introduce some artificial vertices to H to make sure
that the one-to-one correspondence between a Eulerian circuit in H and a
Hamiltonian circuit in G remains. In other words, do not make H Eulerian if
(G was not Hamiltonian, nor do make H not Eulerian if G was Hamiltonian.

Remark 6.15. In Algorithm 18, after Step each labeled arc in H corre-
sponds to a vertex of the same name in G.

Claim 6.16. Step[6 of Algorithm[18 constructs a directed tree T with root
Y1 and the sets of type C as leaves.

Proof. The arcs of T represent a relation of inclusion: an arc from Y; to Y;
implies that Y; C Y;. Furthermore, if Y; C Y}, then there is a path from Y; to
Y; in T'. Since Y) contains all other sets Y;, 7" is connected and Y; is a root
of T'. Since the sets of type C contain no other subsets, they are leaves of T
Finally, since an arc of T is a relation of strict inclusion, in the sense that
an arc from Y; to Y, implies that there is no set Y such that Y; C ¥, C V..
Thus, if Y; C Y;, then there is only one path from Y; to Y; in T" and therefore
T is a tree. U

Claim 6.17. At Steps| and 16, Algorithm |18 exits only if there is no Hamil-
tonian circuit in G.

Proof. Suppose there is a Hamiltonian circuit in G. By construction of the
cluster C', the edges that belong to both the Hamiltonian circuit of G and
the cluster C' define a perfect matching in C. If |L(C)| # |R(C)|, C' does not
admit a perfect matching and therefore, G does not admit a Hamiltonian
circuit. This ends the proof of Claim [6.17 for Step 4.
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Algorithm 18

Input: A quasi-adjoint graph G = (V,U).
Output: A Hamiltonian circuit in G or a claim of non-existence of such a

1:
2:

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

circuit.
Define an empty graph H = (V, UH) with V# « ) and U# « ()
For every x € V, introduce two vertices 2’ and 2 into V. For every
arc (z,y) € U such that x # y, introduce the arc (z”,y') in UX.
for each cluster C of H, do
if |L(C)| # |R(C)| then exit. There is no Hamiltonian circuit in G.
Decompose L(C') into sets of types A, B and C. The unique set of type
A is labeled X;. Label all other sets of L(C') with a unique identifier
X;. Let Y; «— NT(X)).
Sort sets Y; according to their inclusion relation: Construct a directed
tree T = (VT UT) with VT = U, {Y;} and
YV, Y))eUlT Y, CYi\NPL:Y;CY, CY,.
Delete all arcs of C.
For every leaf Y; of T, introduce a vertex k; in VH. For each vertex
2" € X;, add the arc (2", k;) to U and for each vertex y’ € Y;, add
the arc (k;,y') to U. Label the vertex Y; of T.
for each vertex Y; of T not yet labeled such that all elements of N*(Y;)
in T" are labeled do
Introduce a vertex k; into V.
For each vertex z” € X;, introduce the arc (z”, k;) into U*.
For each vertex y’ € Y; such that N~ (y') = 0, introduce the arc
(ki y') into U,
for each Y; € N*(Y;) in T do
0 d*(k;) — |1Xjl.
if 0; <0 then
exit. There is no Hamiltonian circuit in G.
else
add o; arcs (k;, kj) to UH.
end if
end for
Label the vertex Y; of T'.
end for
end for
In H, link each pair of vertices 2’ and 2" by the arc (z/,2”) and label
this arc x.
Search for a Eulerian circuit £& in H. If there is none, G contains no
Hamiltonian circuit. Otherwise, the (closed) sequence of labels of arcs
from & is the solution for the Hamiltonian Circuit Problem in G.
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[Y1] — Y2
A | X1] >
—|Ya| = |Y7|
[Y2| — | X5] — | X3] — | X2|
pu
‘X2‘= =#|Y2‘7‘Y3|
[Y3] — | X5| — [ X3|
Y
B < \X3\=>?===>IY3\*\Y5|
|Ys] — | X5] [Ya| — | Xe| — [ Xal
> X4l —=> |v3|
| X5 ——> |Ya| — |Ys]
|Ys| — | Xe|
C | X6 g= |Ys]
[Y7| — [ X7
| X7] Cy [Y7]
—

(b)

Figure 6.2: [llustration of the transformation of a cluster by
Algorithm [18 (Steps (3 to[23). Part (a) repre-
sents the original cluster coming from the de-
composition of graph G and part (b) represents
the resulting part of H. The numbers next to
the arcs represent the multiplicity of these arcs.

X; Y;
&ki =
=00
A TS
g%

Figure 6.3: Construction by Algorithm 18. Part (a): Step!8
(type C). Part (b): steps!10 through!20 (types A
and B).

117



Chapter 6

Algorithm (18 builds the vertices k; such that there is a path from every
vertex 2" € X; such that Y; D Y] to k; and there is a path from k; to every
vertex ' € Y; (including the subsets of Y;).

At Step (14, all arcs exiting k; have been built, and at least |X;| must
enter k;. If | X;| > d*(k;), it means that

| Usyicy; Xkl > 1Y)

Since the vertices in Uk|v,cy; Xk do not have any other successor but the
vertices in Y}, this means that there is no possible Hamiltonian circuit in

G. O
Claim shows that Algorithm [18 exits before reaching Step 25 only if

it could be shown before that there is no Hamiltonian circuit in G. We now
have to show that Step 25/ finds a Eulerian circuit in H if and only if there is
a Hamiltonian circuit in G. In order to do so, we start with proving claims

6.18 and 6.19.

Claim 6.18. For any two vertices " and y' of the same cluster, there is a
path from x” to y' in H if and only if there is an arc (z,y) in G.

Proof.

= Suppose that there is an arc (x,y) in G. Let X; be the set containing
x”. Then, by construction, Y; 3 v/.

If X; is of type C, then Algorithm [18 builds a path < z” k;,y" > at
Step

Consider now the case where X; is of type A or B. If there exists no
j such that ¥’ € Y; and Y; C Y}, then, at the time when Y; is chosen
at Step 9, no Y; containing ¢’ has been chosen before and thus no
arc entering 3 has been added to U yet; thus N~ (y') = 0); so the
algorithm builds a path < ", k;,y' > at Step [12.

Finally, if 35 : ¢/ € Y; AY; C Y;, then there are the arcs (2", k;) and
(kj,y') in UM, Note that, at Step 18, the algorithm puts an arc (ki, k)
in U if there is an arc (V,,Y,,) in T. Thus, since Y; C Y}, there is a
path from Y; to Y; in T" and also a path from k; to k; in H. Thus, there
is a path from z” to ¢ in H.

< Suppose that there is a path from z” to 3’ in H. By construction, z” has
only one successor, that we denote k; and y’ has only one predecessor,
that we denote k;. This means that ” € X; and y' € Y;. If i = j, then
Y; =Y, = NT(X;). Thus, there is an arc (z,y) in G. Else, it means
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that there is a path from k; to k;. Thus, there is a path from Y; to Y
in 7" and thus, Y; C Y; and y € Y;, which implies that (z,y) is in G.

0

Claim 6.19. At the end of Algorithm [18, every verter v € VI that was
part of some cluster at the end of Step |2, as well as every vertex that was
introduced by the algorithm (the k; vertices), satisfies d*(v) = d~(v).

Proof. There are three types of such vertices: the vertices 2’ and z”, and the
vertices k;, for every 1.

For every vertex x’, there is only one incoming arc, added at Step |8 or
at Step [12. There is also only one outgoing arc, which is (z/, ") (Step 24).
Thus, dt(z') = d~ (o).

Similarly, for every vertex x”, there is only one incoming arc, which is
(', x") (Step[24). There is also only one outgoing arc, added at Step [§ or at
Step (11l Thus, d*(z”) = d~(z").

Consider now a vertex k;. We want to prove that d~(k;) = d*(k;) Vi. For
every i,

d* (k) = |Yi] - > Y51+ > 0; (6.1)

JY;EN+(Y:) In T JIY;EN+(Y:) In T
A - ~ - A - ~~

by Step 8 or Step by Step 8 or Step 18

-

For every ¢ # 1,

—~ ~~
by Step 11/ by Step[18
And for ¢ =1,
d~ (k1) = [ Xa| (6.3)
Besides that, by Step[14:
0; = d" (ki) —|Xi| = |Yi| - > Y;]+ > 0;—|Xi| (6.4)
jlY;eN+H(Y;) In T jlY;eN+(Y;) in T

Let (Y; ~» Yj) represent a path from Y; to Y}, possibly a path of length 0
if 2 = 7. We show that, for all i,

o=il- Y X (6.5)

iBYi~Y;) in T
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is obvious if Y; is a leaf of T. By induction, suppose that it holds
for every Y; such that Y; € N*(Y;) in T Then, (6.4) can be rewritten:

o = [Yi - > Y51+ > vil— > Xl -1

JlV;EN+(Y;) In T JlV;ENt(Y;) In T k[3(Yj~Ye) In T

o, = |Yi|— Z Z | Xk| | — [XGl

JIYGEN+(Y;) In T \k3(Y;~Yy) In T

o = IYil- > IX

jB(Y~Y;) In T

Thus, for every 1,

dt (k) =1Yil= ) Vil > vil= > X

JlV;eN+(Y;) In T jlY;eNt(Y;) In T k[3(Yj~Y) In T

df (k) =Y — Y X+ X (6.6)

iBYi~Yy) in T
and, for every i # 1, by replacing o; by its value in (6.2):

A (k) =X+ Vil = > 1] (6.7)

iB(Yi~Y;) in T

which, with (6.6)), leads to the conclusion that, for i # 1, d*(k;) = d~(k;).
For i =1, d (ky) = | X1|. Besides that, Step[4] ensures that

vil= > Xy (6.8)

jI3(Yi~Y;) in T

Thus, becomes dt(ky) = |X;i| and, by (6.3), d*(k;) = d(ky). This
ends the proof of Claim [6.19. O

Remark 6.20. The vertices x' (respectively x” ) which were not part of any
cluster at the end of Step |2 have d~(2') = 0 and d*(2') = 1 (respectively
d=(z") =1 and d* (") = 0). Of course, if any such vertex exists, G does
not contain a Hamiltonian circuit.

Claim 6.21. Algorithm[18 has a complezity of O(n? + m?).
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Proof. Step [1 has complexity 1. Step 2 has complexity n 4+ m. Step [24] has
complexity n. Step (25 can be done in O(n?) [Law76).

For steps [3/to 23] since they are executed on disjoint parts of the graph,
we will caculate their execution time over all passes through this loop instead
of for each pass through this loop seperately.

Step4/has complexity 2n. Steps/5land[6 can be done in m? for the creation
of sets X; and m? again for the comparison of sets Y; and the construction
of T' (both can be done at the same time); thus the complexity of these two
steps is O(m?). The complexity of Step [7/is m. The complexity of Step 8 is
at most 3n.

The loop at Step 9/ will be executed at most n times. The complexity
of Step[10 is 1. The complexity of steps 11/ and [12 is at most n each. The
loop at Step [13]is executed at most n times. The steps within this loop have
complexity of O(1) except Step which may add at most n arcs over all
passes since ). (d*(k;)) = [{y : 3j such that y € Y;}| < n. Therefore, the
complexity of the loop at Step 9 is O(n?).

This gives us an overall complexity of O(n? 4+ m?). O

Remark 6.22. In the special case where G is a 1-graph, we have that m < n?,

thus the complexity of Algorithm 18 is O(n?).

Claims 6.19/ and 6.18 prove that there is a Eulerian circuit in H if and
only if there is a Hamiltonian circuit in G. By Claim [6.21, Algorithm 18 is
polynomial. Thus, Theorem [6.14 holds. O

6.3 Generalizations of Quasi-Adjoint Graphs

Quasi-adjoint graphs are interesting because of the polynomiality of finding
a Hamiltonian circuit. This section discusses two related problems.
Algorithm 19, if used before Algorithm [18, enlarges the class of graphs
for which the Hamiltonian Circuit Problem is polynomially solvable, since it
can transform some graphs into quasi-adjoint graphs.
Theorem 6.25 gives an interpretation of Algorithm 18 in terms of forbid-
den transitions and shows a limitation to the generalization of this idea.

6.3.1 Removal of Arcs

When searching for a Hamiltonian circuit in a graph, some arcs can safely
be removed. We devise here the algorithm doing this and show that it does
not affect the hamiltonicity of a graph.
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Algorithm 19
Input: A graph G = (V,U).
Output: G with some arcs removed without changing its hamiltonicity.
1: Remove all loops (arcs of type (z,z)).
2: Split G into clusters. Denote the new graph G’ = (V' U’).
3: for each cluster C' of G’ do
4:  Solve the problem of perfect matching in C.

5. if a perfect matching is found then

6: label all arcs composing the solution as N (Necessary).

7: for every not-labeled arc (x,y) of C do

8: Consider the subgraph of C' induced by the removal of x and y.

9: Solve the problem of perfect matching in it.

10: if there is no solution to this problem then

11: Remove the arc (z,y) from U" /*Thus, also from C.*/ and the
corresponding arc from U.

12: else

13: label all the arcs of this solution and the arc (z,y) as N.

14: end if

15: end for

16:  end if

17: end for

Claim 6.23. Algorithm[19 removes an arc (x,y) from a graph G only if this
arc cannot be part of any Hamiltonian circuit in G.

Proof. For each cluster C' of G’ and 2" € L(C) and ¢y € R(C), R(C) includes
Nt (2") and L(C) includes N~(y’). Consider now that (z”,y’) does not
belong to any perfect matching in C'. Then, if (x,y) is in some Hamiltonian
circuit H in G, there exists a vertex v € G with v” € L(C) which does
not have a successor in H. This is a contradiction with the definition of a
Hamiltonian circuit. Thus, (z,y) may not be part of any Hamiltonian circuit

in G. O

6.3.2 About Forbidden Transitions

Definition 6.24. Searching for a path with forbidden transitions is searching
for a path which does not contain a forbidden transition as a subpath.

The method of Blazewicz and Kasprzak [BK06] searches for a Eulerian
path in polynomial time in graphs where some transitions are forbidden.
Unfortunately, Theorem [6.25 states that this cannot be generalized.
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Theorem 6.25. Given any Eulerian graph H with a collection F of forbid-
den transitions, it is NP-complete to find a Eulerian path (or circuit) which
does not contain any transition from F.

Proof. Consider the Hamiltonian Path (Circuit) Problem in a directed graph
G = (V,U). It is always possible to introduce arcs into G so that it becomes
the adjoint of some Eulerian graph H. This can be done in polynomial time
by comparing the successors of every pair of vertices x and y and adding
missing arcs to have N*(x) " N*(y) # 0 = NT(z) = N (y). The number
of arcs introduced is smaller than n?. When transforming G into its original
graph H, each arc that was added to G results in a transition (a path of three
vertices, see Definition[6.3) in H. These transitions are labeled as forbidden.
Then, there exists a Eulerian path (circuit) in H that does not contain any
forbidden transitions if and only if G has a Hamiltonian path (circuit). O

Remark 6.26. Fvery cluster of graph G constructed at the beginning of
Algorithm!|18 can be seen as a complete bipartite graph with some missing arcs
(see Figurel6.1). In order to find a Hamiltonian circuit in G, one could add
all those arcs to G. G would then be an adjoint, which could be transformed
into its original graph in order to find a Fulerian circuit in it. However,
there would be some forbidden transitions, corresponding to the newly added
arcs. As stated in Theorem|6.25, this is in general difficult. The construction
of Algorithm 18, though only applicable to quasi-adjoint graphs, avoids this
problem.

6.4 Conclusion

In this chapter, we have defined the polynomial-time recognizable class of
quasi-adjoint graphs, which extends the set of known graph classes for which
the Hamiltonian Circuit Problem is polynomially solvable. We have provided
a polynomial-time algorithm of complexity O(n? + m?) solving the problem
in these graphs, as well as another algorithm which provides some extension
of this class with respect to the polynomial solvability of the Hamiltonian
Circuit Problem. The class of quasi-adjoint graphs is a generalization of two
known classes: the adjoints [Ber76] and the graphs modeling the problem of
isothermic DNA sequencing by hybridization [BK06].
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Conclusion

Although graph theory is a well known and extensively studied field of re-
search, many questions remain open. In this thesis, we have solved some of
these. Our investigation on online coloring has turned out to be very fruit-
ful. We could strengthen several results for this problem in special classes
of graphs, most of which with practical applications. The Hamiltonian cir-
cuit problem is another domain of graph theory with many open questions,
and we could enlarge the set of cases in which this problem is polynomially
solvable. In both domains, this thesis has explored some paths and there are
many research avenues still to be explored.

In Chapter 2, we have started with some general remarks which constitute
a preliminary to the rest of the thesis: we have given a method to transform
an online algorithm for covering graphs with given sets into an online algo-
rithm for covering graphs with the same given sets, but with the additional
constraint that the sets have a maximum cardinality b.

Then, we have studied online coloring of co-interval graphs and used the
above quoted method for the bounded case. For the case where the colors
are of bounded size and the intervals are presented in arbitrary order, we
have shown that the performance ratio of the problem is somewhere between
2 and 3. Its exact value is unknown yet.

In Chapter (3] we have extensively studied online coloring of permutation
and comparability graphs. In the second part of this chapter, we have studied
online cocoloring of permutation graphs. Many models can be imagined
that may result in different performance ratios. In particular, it would be
interesting to find the exact performance ratio if the permutation graph is
presented on a discrete latticial plan.

In Chapter [4, we have applied the results of Chapter 3| to a practical
problem. We have continued the study of online coloring of permutation
graphs and online coloring of overlap graphs. The performance ratio of the
small train station problem and the big train station problem remain open
in the bounded case.

In Chapter |5, we have studied online coloring of trees, forests and split
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graphs. Many other classes of graphs, such as threshold graphs, claw-free
graphs or cacti, have not been studied yet. See [BLS99] or [Gol04] for a long
list of graphs with interesting applications. Furthermore, for each class of
graphs, many models can be imagined: the vertices can be presented in a
given order, they can be presented in blocks or one by one. And in each case,
of course, the coloring can be bounded or unbounded.

In Chapter|6, we have introduced the quasi-adjoint graphs. We have given
a polynomial recognition algorithm and a polynomial algorithm for solving
the Hamiltonian circuit problem in these graphs. This chapter leads to many
interesting questions such as finding easy to recognize super-classes of quasi-
adjoint graphs such that the Hamiltonian circuit problem is still solvable in
polynomial time, or finding a Eulerian circuit or path that avoids some given
forbidden transitions.

Truly, graph theory is a very wide domain and many questions remain
open.

126



Bibliography

[AFO7]

[A1b03]

[ANSS0]

[BBET03]

[BBH"99]

[BCPO6]

[Ber61]

[Ber76]

Nicola Apollonio and Paolo G. Franciosa. A characteriza-
tion of partial directed line graphs. Discrete Mathematics,
307:2598-2614, 2007.

Susanne Albers. Online algorithms: A survey. Mathematical
Programmang, 97:3-26, 2003. Invited paper at ISMP 2003.

Takanori Akiyama, Takao Nishizeki, and Nobuji Saito. NP-
completeness of the Hamiltonian cycle problem for bipartite
graphs. J. Inform. Process., 3(2):73-76, 1980.

Eric Bach, Joan Boyar, Leah Epstein, Lene M. Favrholdt, Tao
Jiang, Kim S. Larsen, Guo-Hui Lin, and Rob van Stee. Tight
bounds on the competitive ratio on accommodating sequences
for the seat reservation problem. J. Scheduling, 6(2):131-147,
2003.

Ulrich Blasum, Michael R. Bussieck, Winfried Hochstattler,
Christoph Moll, Hans-Helmut Scheel, and Thomas Winter.
Scheduling trams in the morning. Mathematical Methods of
Operations Research, 49(1):137-148, 1999.

Hajo Broersma, Agostino Capponi, and Daniel Paulusma. On-
line coloring of h-free bipartite graphs. Lecture Notes in Com-
puter Science, 3998:284-295, 2006.

Claude Berge. Farbung von Graphen, deren samtliche bzw.
deren ungerade Kreise starr sind. Technical Report Wiss.
Zeitung 114, Martin Luther University, Halle-Wittenberg,
1961.

Claude Berge. Graphs and Hypergraphs. North Holland, Am-
sterdam, 1976.

127



[Ber81]

[Ber83]

[BEY05]

[BHKdW99)]

[BKO3]

[BKO06]

[BKLBAWO0S]

[BLS99]

[BPOG]

[BROT]

[CDS07]

[Chv84]

128

Alan A. Bertossi. The edge Hamiltonian path problem is NP-
complete. Inform. Process. Lett., 13(4-5):157-159, 1981.

Alan A. Bertossi. Finding Hamiltonian circuits in proper in-
terval graphs. Inform. Process. Lett., 17(2):97-101, 1983.

Allan Borodin and Ran El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press, 2nd edi-
tion, 2005.

Jacek Blazewicz, Alain Hertz, Daniel Kobler, and Dominique
de Werra. On some properties of DNA graphs. Discrete Ap-
plied Mathematics, 98(1-2):1-19, 1999.

Jacek Blazewicz and Marta Kasprzak. Complexity of DNA se-
quencing by hybridization. Theor. Comput. Sci., 290(3):1459—
1473, 2003.

Jacek Blazewicz and Marta Kasprzak. Computational com-
plexity of isothermic DNA sequencing by hybridization. Dis-
crete Applied Mathematics, 154(5):718-729, 2006.

Jacek Blazewicz, Marta Kasprzak, Benjamin Leroy-Beaulieu,
and Dominique de Werra. Finding hamiltonian circuits in
quasi-adjoint graphs. Discrete Applied Mathematics, 2008. To
be published.

Andreas Brandstadt, Van Bang Le, and Jeremy P. Spinrad.
Graph classes: a survey. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1999.

Danaé Bouille and Matthieu Plumettaz. Coloration online
bornée dans les graphes de permutations. Technical report,
Ecole Polytechnique Fédérale de Lausanne, 2006.

Vincent Bouchitté and Jean-Xavier Rampon. Online algo-
rithms for orders. Theor. Comput. Sci., 175(2):225-238, 1997.

Sabine Cornelsen and Gabriele Di Stefano. Track assignment.

J. of Discrete Algorithms, 5(2):250-261, 2007.

Vasek Chvatal. Perfectly ordered graphs. In Topics on perfect
graphs, volume 88 of North-Holland Math. Stud., pages 63—65.
North-Holland, Amsterdam, 1984.



[Chv8&5]

[CLBS1]

[CRSTO6]

[CZZ07]

[DDSLBO7]

[DEAW07]

[DHMROO]

[DLBO7]

[DPvHKZ96]

[DS94]

V. Chvatal. Hamiltonian cycles. In The traveling salesman
problem, Wiley-Intersci. Ser. Discrete Math., pages 403-429.
Wiley, Chichester, 1985.

D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Comple-
ment reducible graphs. Discrete Applied Mathematics, 3:163—
174, 1981.

Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin
Thomas. The strong perfect graph theorem. Annals of Math-
ematics, 164(1):51-229, 2006.

Timothy Chan and Hamid Zarrabi-Zadeh. A randomized al-
gorithm for online unit clustering. Lecture Notes in Computer
Science, 4368:121-131, 2007.

Marc Demange, Gabriele Di Stefano, and Benjamin Leroy-
Beaulieu. Online Bounded Coloring of Permutations and
Overlap Graphs. In Proceedings of 4th Latin-American Al-
gorithms, Graphs and Optimization Symposium (LAGOS),
pages 213-218, 2007. ENDM 30.

Marc Demange, Tinaz Ekim, and Dominique de Werra. A
tutorial on the use of graph coloring for some problems in
robotics. European Journal of Operational Research, 2007. To
appear.

Elias Dahlhaus, Peter Horak, Mirka Miller, and Joseph F.
Ryan. The train marshalling problem. Discrete Appl. Math.,
103(1-3):41-54, 2000.

Marc Demange and Benjamin Leroy-Beaulieu. Online Color-
ing of Comparability Graphs: Some Results. Technical report,
Ecole Polytechnique Fédérale de Lausanne, 2007.

Stéphane Dauzere-Péres, Stan van Hoesel, Leo G. Kroon, and
Peter J. Zwaneveld. Routing trains through railway stations:

model formulation and algorithms. Transportation Science,
30:181-194, 1996.

Jitender S. Deogun and George Steiner. Polynomial al-
gorithms for Hamiltonian cycle in cocomparability graphs.
SIAM J. Comput., 23(3):520-552, 1994.

129



[DSKO04]

[DSKLZ06]

[Eul36]

[Fel97]

[FHT77al

[FH77b]

[FIQS04]

[FLKHO5]

[GavT3]

[GJT9]

[GIMPS8O0]

130

Gabriele Di Stefano and Magnus Love Koci. A graph theoret-
ical approach to the shunting problem. FElectr. Notes Theor.
Comput. Sci., 92:16-33, 2004.

Gabriele Di Stefano, Stefan Krause, Marco E. Liibbecke, and
Uwe T. Zimmermann. On minimum -modal partitions of per-
mutations. In LATIN, pages 374-385, 2006.

Leonhard Euler. Solutio problematis ad geometriam situs per-
tinentis. Opera Omnia, 7:128-140, 1736.

Stefan Felsner. Online chain partitions of orders. Theor. Com-
put. Sci., 175(2):283-292, 1997.

Stéphane Foldes and Peter L. Hammer. Split graphs. Proc.
8th southeast. Conf. on Combinatorics, graph theory, and
computing; Baton Rouge 1977, 311-315 (1977)., 1977.

Stéphane Foldes and Peter L. Hammer. Split graphs having
dilworth number two. Can. J. Math., 29:666-672, 1977.

Gerd Finke, Vincent Jost, Maurice Queyranne, and Andras
Sebo. Batch processing with interval graph compatibilities
between tasks. Discrete Applied Mathematics, 2004. To ap-
pear. Preliminary version in Cahiers Leibniz.

Richard Freling, Ramon M. Lentink, Leo G. Kroon, and Den-
nis Huisman. Shunting of passenger train units in a railway
station. Transportation Science, 39:261-272, 2005.

Fanica Gavril. Algorithms for a maximum clique and a maxi-
mum independent set of a circle graph. Networks, 3:261-273,
1973.

Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman, 1979.

Michael R. Garey, David S. Johnson, Gary L. Miller, and
Christos H. Papadimitriou. The complexity of coloring circu-
lar arcs and chords. SIAM Journal on Algebraic and Discrete
Methods, 1(2):216-227, 1980.



[GIQOT]

[GJST6]

[GKL99]

(GLSS]

[GLS84]

[GMO1]

[Gol04]

[GSHS9]

[HDM*06]

[HDS07]

[HS94]

Dion Gijswijt, Vincent Jost, and Maurice Queyranne. Clique
partitioning of interval graphs with submodular costs on the
cliques. RAIRO Oper. Res., 41:275-287, 2007.

Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer.
Some simplified NP-complete graph problems. Theoretical
Computer Science, 1:237-267, 1976.

Andrés Gyarfas, Zoltan Kirdly, and Jeno Lehel. Online 3-
chromatic graphs I. triangle-free graphs. SIAM J. Discrete
Math., 12(3):385-411, 1999.

Andras Gyarfas and Jeno Lehel. Online and first-fit colorings
of graphs. Journal of Graph Theory, 12(2):217-227, 1988.

Martin Grotschel, Laszl6 Lovasz, and Alexander Schrijver.
Polynomial algorithms for perfect graphs. Annals of Discrete
Mathematics, 21:325-356, 1984.

Giorgio Gallo and Federico Di Miele. Dispatching buses in
parking depots. Transportation Science, 35(3):322-330, 2001.

Martin Charles Golumbic. Algorithmic Graph Theory and
Perfect Graphs. Annals of discrete mathematics. Elsevier, 2nd
edition, 2004.

Csaba P. Gabor, Kenneth J. Supowit, and Wen-Lian Hsu.
Recognizing circle graphs in polynomial time. Journal of the
Association for Computing Machinery, 36(3):435-473, 1989.

Mohamed Hamdouni, Guy Desaulniers, Odile Marcotte,
Francois Soumis, and Marianne van Putten. Dispatching
buses in a depot using block patterns. Transportation Sci-
ence, 40(3):364-377, 2006.

Mohamed Hamdouni, Guy Desaulniers, and Frangois Soumis.
Parking buses in a depot using block patterns: A benders de-
composition approach for minimizing type mismatches. Com-
put. Oper. Res., 34(11):3362-3379, 2007.

Magnus M. Halld6rsson and Mario Szegedy. Lower bounds for

online graph coloring. Theor. Comput. Sci., 130(1):163-174,
1994.

131



[HSCO00]

[IPS82)

[Jos06]

[JPS03]

[Kar72]

[Kei85]

[Kie81]

[Kik75]

[Kou07]

[KPT4]

[KPT95]

132

Shiwei He, Rui Song, and Sohail S. Chaudhry. Fuzzy dispatch-
ing model and genetic algorithms for railyards operations. Eu-
ropean Journal of Operations Research, 124(2):307-331, 2000.

Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwar-
cfiter. Hamilton paths in grid graphs. SIAM J. Comput.,
11(4):676-686, 1982.

Vincent Jost. Ordonnancement chromatique: polyédres, com-
plexité et classification. PhD thesis, Université Joseph Fourier,
Grenoble, France, October 2006.

Jerzy W. Jaromczyk, Andrzej Pezarski, and Maciej Slusarek.
An optimal competitive algorithm for the minimal clique cov-
ering in circular arc graphs. In Proc. 19th European Workshop
on Computational Geometry, pages 48-51, Bonn, Germany,
2003.

Richard M. Karp. Reducibility among combinatorial prob-
lems. In Complexity of computer computations (Proc. Sym-
pos., IBM Thomas J. Watson Res. Center, Yorktown Heights,
N.Y., 1972), pages 85-103. Plenum, New York, 1972.

J. Mark Keil. Finding Hamiltonian circuits in interval graphs.

Inform. Process. Lett., 20(4):201-206, 1985.

Henry A. Kierstead. An effective version of dilworth’s theo-
rem. Trans. Amer. Math. Soc., 268(1):63-77, 1981.

P. B. Kikust. The existence of a Hamiltonian cycle in a regular
graph of degree 5. In Latvian mathematical yearbook, 16 (in
Russian), pages 33-38, 271. Izdat. “Zinatne”, Riga, 1975.

Bernard Kouakou. Algorithmique Online et Applications. PhD
thesis, Université Paris I - Panthéon sorbonne, 2007.

Henry A. Kierstead, Stephen G. Penrice, and William T. Trot-
ter. Online coloring and recursive graph theory. SIAM J.
Discret. Math., 7(1):72-89, 1994.

Henry A. Kierstead, Stephen G. Penrice, and William T. Trot-
ter. Online and first-fit coloring of graphs that do not induce
ps. SIAM J. Discret. Math., 8(4):485-498, 1995.



[Law76]

[Lov72]

[LS77]

[LSTR9)

[Mi104]

[Miil96]

INPOO]

[PS82]

[Ros03]

[Sch03]

[SM04]

[SM07]

Eugene L. Lawler. Combinatorial optimization: networks and
matroids. Holt, Rinehart and Winston, New York, 1976.

Laszl6 Lovész. Normal hypergraphs and the perfect graph
conjecture. Discrete Mathematics, 2(3):253-267, 1972.

Linda Lesniak and H. Joseph Straight. The cochromatic num-
ber of a graph. Ars Combinatoria, 3:39-46, 1977.

Laszlé Lovasz, Michael E. Saks, and William T. Trotter. An
online graph coloring algorithm with sublinear performance
ratio. Discrete Math, 75:319-325, 1989.

Avery Miller. Online graph colouring. Canadian Undergrad-
uate Mathematics Conference, 2004.

Haiko Miiller.  Hamiltonian circuits in chordal bipartite
graphs. Discrete Math., 156(1-3):291-298, 1996.

Stavros D. Nikolopoulos and Charis Papadopoulos. On the
performance of the first-fit coloring algorithm on permutation
graphs. Inf. Process. Lett., 75(6):265-273, 2000.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinato-
rial Optimization: Algorithms and Complexity. Prentice-Hall,
1982.

Andrea Rossi. Il problema dell’ordinamento dei treni in un de-
posito: modellazione e soluzione algoritmica. Master’s thesis,
Universita dell’Aquila, 2003.

Alexander Schrijver. Combinatorial Optimization: Polyhedra
and Efficiency. Springer-Verlag, 2003.

Frits Spieksma and Linda Moonen. Partitioning a permuta-
tion graph: Algorithms and an application. In Operations
Research 2004, International Conference, Tilburg University
(The Netherlands), pages 150-150, September 2004.

Frits Spieksma and Linda Moonen. Partitioning a weighted

partial order. Journal of Combinatorial Optimization, 2007.
Accepted.

133



[TC79]

[Tro95]

[Ung92]

[Wag84|

[WZ00]

(2207

134

Regina I. Tyshkevich and Arkady A. Chernyak. Canonical
decomposition of a graph defined by the degrees of its vertices.
Isv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, 5:14-26, 1979.

William T. Trotter. Partially ordered sets. In Handbook of
combinatorics, Vol. 1, pages 433-480. Elsevier, Amsterdam,
1995.

Walter Unger. The complexity of colouring circle graphs (ex-
tended abstract). In STACS, pages 389-400, 1992.

Klaus Wagner. Monotonic coverings of finite sets. FElektro-
nische Informationsverarbeitung und Kybernetik, 20(12):633—
639, 1984.

Thomas Winter and Uwe T. Zimmermann. Real-time dispatch
of trams in storage yards. Ann. Oper. Res., 96:287-315, 2000.
Mathematics of industrial systems, IV (Valparaiso, 1996).

Hamid Zarrabi-Zadeh. Online coloring co-interval graphs. In
Proceedings of the 12th International CSI Computer Confer-
ence (CSICC 2007), pages 1328-1332, Tehran, Iran, February
2007.



Curriculum Vitae

Name Benjamin Leroy-Beaulieu

Nationalities French and swiss

Date of birth February 22, 1979

Marital Status Single

Address Ch. de Rionza 19

CH - 1020 Renens

Education

2004-2008 PhD student of Prof. Dominique de Werra in Operations re-
search at EPFL, Switzerland

1997-2002 Masters degree in computer science at EPFL, Switzerland

1999-2000 Exchange student at the University of Waterloo, Ontario,
Canada

1994-1997 Lycée de Gaulle-Adenauer, Bonn (Germany). Baccalauréat

magna cum laude of type S (scientific)

Professional Experience

2004-2008

2002-2004
2001-2002

2000

1998

Teaching assistant in the ROSE research group at EPFL: Dis-
crete Mathematics, Operations Research, Graphs and Networks,
Optimization

Software engineer at ELCA Informatik AG, Zurich

Diploma work as a software engineer and mathematician at
Genedata AG, Basel. Production of a tool for automaticaly
drawing biochemical pathways on a 2D plane

3 months internship as a software engineer at Serial SA, Ar-
champs, France

1 month internship as a software engineer at Sony Europe,
Cologne, Germany



Languages

French
English
German

Ttalian

Native language
Fluently spoken and written
Fluently spoken; average writing skills

Basic notions

Conferences and Talks

Aug. 2007 Sixth International Symposium on Graphs and Optimization,
Cademario ‘Online Coloring of Co-interval Graphs’

May 2007 Invited talk at Universita dell’Aquila, 1’ Aquila ‘The Track As-
signment Problem’

Mar. 2007 Invited talk at ESSEC, Paris ‘The Track Assignment Problem’

Mar. 2007 3e Cycle Romand de Recherche Oprationnelle, Zinal ‘The Track
Assignment Problem’

Jan. 2007 Invited talk at FPFL, Lausanne ‘Finding Hamiltonian Circuits
in Quasi-Adjoint Graphs’

Dec. 2006 Symposium on Algorithms with Performance Guarantee, Paris,
‘Online Coloring of Overlap Graphs’

Aug. 2006 Fifth International Symposium on Graphs and Optimization,
Leukerbad, ‘Online Coloring of Comparability Graphs’

Aug. 2006 Invited talk at International Symposium on Mathematical Pro-
graming, Rio de Janeiro, ‘Online Coloring of Comparability
Graphs: Some Results’

Mar. 2006 3e Cycle Romand de Recherche Oprationnelle, Zinal ‘Online Col-
oring of Permutation Graphs’

Jan. 2006 International Workshop on Combinatorial Optimization, Aus-
sois, ‘Online Coloring of Permutation Graphs’

Miscellaneous

2008 Co-organizer of the Operations Research Symposium in the hon-
our of Thomas Liebling and Dominique de Werra, Lausanne

Since 2004 Member of Ecologie libérale, a political movement for the promo-
tion of sustainable development with an economical approach.

Since 2008 Member of the executive committee of Ecologie libérale



	Title
	Remerciements
	Résumé
	Abstract
	Table of Contents
	Introduction
	Basic Definitions
	Graph Theory
	Online Coloring

	General Remarks and Co-interval Graphs
	Introduction
	About Graph Covering with   Sets of Bounded Size
	A Simple Transformation
	On the Bounded First-Fit Algorithm

	The Biology Research Center Problem
	Chemical Compounds Refrigeration
	Analysis of First-Fit
	A Lower Bound For All Algorithms

	Conclusion

	Comparability and Permutation Graphs
	Definitions and Notations
	Coloring
	Preliminaries
	Competitive Analysis of First-Fit
	A Better Performance Ratio
	Bounded Coloring

	Cocoloring
	A Dramatic Bound
	Split Permutation Graphs in a Discrete Latticial Model
	Delayed Cocoloring

	Conclusion

	The Track Assignment Problem
	Introduction
	Permutation Graphs
	The Train Depot with the Midnight Condition
	The Small Train Station
	The Big Train Station

	Overlap Graphs
	Unbounded Coloring of Overlap Graphs
	Overlap Graphs With Intervals of Bounded Size

	Conclusion

	Trees, Forests and Split Graphs
	Trees and Forests
	Online Coloring of Trees
	Online Bounded Coloring of Trees

	Split Graphs
	Online Coloring of Split Graphs
	Online Bounded Coloring of Split Graphs

	Conclusion

	Finding Hamiltonian Circuits in Quasi-Adjoint Graphs
	Definitions and Characterization
	The Hamiltonian Circuit Problem in Quasi-Adjoint Graphs
	Generalizations of Quasi-Adjoint Graphs
	Removal of Arcs
	About Forbidden Transitions

	Conclusion

	Conclusion
	Bibliography
	Curriculum Vitae

