Design of Multimodal Dialogue-based Systems

THESE N° 4081 (2008)

PRESENTEE LE 20 JUIN 2008

A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'INTELLIGENCE ARTIFICIELLE
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Miroslav MELICHAR

Master en informatique de I'Université de Brno, République tchéque
et de nationalité tcheque

acceptée sur proposition du jury:

Prof. A. Wegmann, président du jury
Dr M. Rajman, directeur de thése
Prof. P. Dillenbourg, rapporteur
Prof. S. Méller, rapporteur
Dr A. Popescu-Belis, rapporteur

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Suisse
2008

Contents

Abstract 1

1 Introduction 5

2 State of the art 9

2.1 Background 9

2.1.1 Dialogue is a complex protocol 9

2.1.2 Dialogue systemo 10

2.2 Dialogue system architectures oL 12

2.3 Computational models for dialogue management 15

2.3.1 Finitestatemodels o oo 16

2.3.2 Frame-based (slot-filling) systems 17

2.3.3 Plan-based systems o 19

2.4 Multimodality processingo oL 20

3 Multimodal interactive systems prototyping 23

3.1 Information seeking systems oL 24

3.2 Domainmodelo 25

3.3 Multimodal generic dialogue node (mGDN) 27

3.3.1 Design principles Lo 28

3.3.2 Examples of mGDNs with various interaction models 29

3.4 Operational model of an mGDN 38
3.4.1 Phase 1: Presenting a multimodal request to the user (multimodal

fission) 38

3.4.2 Phase 2: Gathering user’s response (multimodal fusion) 39

3.4.3 Phase 3: Treating the user’s response (local dialogue strategies) . . 40

3.5 Taskmodel 43

3.5.1 Astructureof mGDNs oo 43

3.5.2 Global dialogue strategies 44

3.5.3 Graphical user interface (GUI) decomposition 48

3.6 Software architectureo 50

3.6.1 A generic schema of a multimodal dialogue system 52

3.7 Application examples 53

3.7.1 Restlnfo 53

3.7.2 SmartHome 54

3.7.3 Archivus 54

3.7.4 Other applications 55

3.8 From vocal-only to screen-equipped multimodal dialogue systems 55

3.8.1 Towards user-driven dialogue strategies 5Y)

Contents

3.8.2 New role of system prompts
3.9 Summary ..o

Experimenting with Wizard of Oz simulations
4.1 Free and Constrained WOz simulations for voice-only systems
4.1.1 Development cycle o
4.2 User requirements elicitation in a multimodal environment
4.3 Constrained WOz simulations in a multimodal environment
4.3.1 Particularities of WOz simulations with vocal dialogue systems . . .
4.3.2 Extending the WOz methodology for multimodal systems
4.4 Physical settings and hardware configuration
4.4.1 Audio and video recording solution
4.5 The wizard’s control interfaces L.
4.5.1 Input wizard’s interface
4.5.2 Output wizard’s interface L.
4.6 Performance of the Wizards
4.6.1 Input wizard performance
4.6.2 Output wizard performance
4.7 A general design of the WOz study and the collected data
4.71 Collected data
4.7.2 Data exploitation toolso oo
4.8 SUmMmMAary

Case study: the Archivus system

5.1 System description
5.1.1 Input and output modalities
5.1.2 Accessed data
5.1.3 Functionalities of the system
5.1.4 The Archivus metaphor
5.1.5 Platform

5.2 Building the system using ISPMo
5.2.1 User requirements elicitation
5.2.2 Domain model Lo
5.2.3 Structure of mGDNs
5.2.4 Graphical layout of the application

5.3 Improvements and modifications during pilot studies
5.3.1 System outputs
5.3.2 Functionality and usability improvements
5.3.3 Bookview

5.4 Summary . o.o.o. ..o

Evaluation of dialogue strategies and the Archivus system

6.1 Experimental setupo

6.2 The gathered and analyzed data
6.2.1 The users — a demographic information
6.2.2 Global interaction measures

6.3 Evaluation of global dialogue strategies
6.3.1 Automated presentation of possible search results
6.3.2 Dead-end management L

i

59
60
60
61
62

63
64
67
68
69
71
72
72
74
76
7
78
79

81
81
82
82
82
83
84
84
84
85
87
90
90
91
92
92
93

Contents

6.3.3 Use of mixed initiative L. 102

6.4 Evaluation of local dialogue strategies 104
6.4.1 User requests forhelp. L. 104

6.4.2 User requests for the last prompt repetition 105

6.4.3 Problems with processing of user inputs 106

6.5 Evaluation of modality use 107
6.5.1 Simultaneous use of modalities 108

6.5.2 Proportions of overall modality use 109

6.5.3 Proportions of modality use per action 111

6.6 User performance in Archivus, 113
6.6.1 User accuracy (correctness of task answers) 114

6.6.2 User speed (tasks per minute), 115

6.6.3 Complexity of taskso 116

6.6.4 Sources of task failures oL 117

6.7 Subjective user opinion about interactions in Archivus 120
6.8 Summary 122

7 Conclusions 125
7.1 Multimodal dialogue-based system design 125
7.2 Rapid prototyping with WOz simulations 126
7.3 Archivus system 127

8 Future work 129
8.1 Multimodal dialogue system design 129
8.1.1 Facilitate the dissemination of the methodology 129

8.1.2 Improvements in the dialogue model 129

8.1.3 Techniques for automation of the targeted systems 131

8.1.4 Some additional more ambitious goals 131

8.2 Archivus system 131
Bibliography 133

Curriculum Vitae 145

il

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
2.3
5.4

6.1
6.2
6.3
6.4
6.5

Pipeline architecture of multimodal system
Architecture of GALAXY-IT

mGDN layout: selecting a search constraint (keyword) from a list
mGDN layout: selecting a cityonamap
mGDN layout: selecting a document (title, type) from a list
mGDN layout: selecting a meeting participant from a list
mGDN layout: selecting individual attribute values from columns
mGDN layout: a menu with three sub-menus.
mGDN layout: document browser
mGDN layout: visualization of current search constraints
mGDN layout: a search space overview — the library metaphor
Task model: decomposition of an application into a set of mGDNs
A general schema of graphical user interface
Application Editor — screenshoto
Software architecture — a generic schema

Influences of elements and scope of the WOz methodologies
View of the user’s work environment
View of the wizard’s environment
Wiring diagram of Wizard of Oz environment
An architecture of multimodal system with integrated wizard’s modules . .
Input Wizard’s Control Interface
Output Wizard’s Control Interface
Histogram of the Input Wizard’s response times
Histogram of the Output Wizard’s response times

The Archivus system graphical user interface
An initial electronic mockup of the Archivus interface
Archivus domain model: a relational database schema

Book browsing mGDNo

Proportions of modality use per individual user
Proportions of modality use per individual action in the system
Proportion of correctly, incorrectly and not answered tasks per user
Tasks solved by users
Results from the post-experiment questionnaire

v

List of Tables

3.1
3.2

4.1
4.2

0.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

The domain model of an application in form of virtual table 27
An overview of semantic pairs used by the system 42
Input wizard response times by various categories 74
Output wizard response times by various types of taken actions 75
Archivus: a summary of domain model attributes 88
Experimental setup 96
Global interaction measures 99

Acceptability of dialogue strategy for presentation of possible solutions . . 100
Comparison of user behavior in automatically and manually opened books 101

Use of mixed initiative 103
A list of mGDNs where mixed initiative was most frequently used 104
Overall proportions of modality use 109
User accuracyo 114
Speed of task solving oo 116

vi

Acknowledgements

Above of all, I would like to express special thanks to my supervisor Martin Rajman for
not only giving me the opportunity to pursue my thesis at EPFL and for his help and
support throughout the whole studies, but also for providing me with a lot of inspira-
tion, for making me working hard before deadlines and also for his understanding when
the deadlines turned out to be impossible to keep. Under Martin’s supervision, I have
learned a lot about research, about interpreting my findings and about reporting them in
a structured and convincing way. I also appreciate that Martin always found some time
in his incredibly busy schedule to discuss the thesis with me.

Next, I would like to thank the members of the jury, Sebastian Moller, Andrei
Popescu-Belis, and Pierre Dillenbourg. They have carefully analyzed my work, densely
annotated the manuscript and gave me invaluable advices and comments. All this made
my private defense an interesting, fruitful and inspiring discussion.

My work on the thesis was also strongly influenced by two colleagues: Agnes Lisowska and
Marita Ailomaa. Without them, the Archivus system would look completely differently
and I would never have been able to collect so much experimental data during Wizard of
Oz studies. Agnes and Marita, thank you for your great help!

Regardless how well you do, it is useless if the others can only hardly understand it. This
is even more important for an interdisciplinary work, as the one I did. In this perspective,
many thanks go to my girlfriend Markéta Vlckova for reading the first version of my
manuscript and for trying to improve its understandability even for those who are not
computer scientists.

For the financial support, I am grateful to the Interactive Multimodal Information Man-
agement project (IM2, funded by the Swiss National Science Foundation). This project
gave me an opportunity to work in a larger scientific team and to have a close collabo-
ration with many senior researchers. To name at least some of them: Susan Armstrong,
Mike Flynn, Alex Jaimes, Denis Lalanne, and Pierre Wellner (and all the others).

Last, but not least, I wish to thank number of colleagues from the EPFL-LIA lab and all
my friends in Lausanne and Basel for the very friendly atmosphere, great evenings, and
for everything they did to make my stay in Switzerland an enjoyable experience. Thank
you and take care!

vil

viii

Abstract

Multimodal dialogue systems integrate advanced (often spoken) language technologies
within human-computer interaction methods. Such complex systems cannot be designed
without extensive human expertise and systematic design guidelines taking into account
the limitations of the underlying technologies. Therefore, this thesis aims at reducing
the time and effort needed to build such systems by creating application-independent
techniques, tools and algorithms that automate the design process and make it accessible
for non-expert application developers.

The thesis proposes an interactive system prototyping methodology, which (together with
its software implementation) allows for rapid building of multimodal dialogue-based in-
formation seeking systems. When designed with our methodology, even partially imple-
mented system prototypes can immediately be tested with users through Wizard of Oz
simulations (which are integrated into the methodology) that reveal user behavior and
modality use models. Involving users in early development phases increases the chances
for the targeted system to be well accepted by end-users.

With respect to dialogue system design, we propose a two-layered dialogue model as a
variant of the standard frame-based approach. The two layers of the proposed dialogue
model correspond to local and global dialogue strategies. One of the important findings
of our research is that the two-layered dialogue model is easily extendable to multimodal
systems.

The methodology is illustrated in full detail through the design and implementation of the
Archivus system — a multimodal (mouse, pen, touchscreen, keyboard and voice) interface
that allows users to access and search a database of recorded and annotated meetings (the
Smart Meeting Room application).

The final part of the thesis is dedicated to an overall qualitative evaluation of the Archivus
system (user’s performance, satisfaction, analysis of encountered problems) and to a quan-
titative evaluation of all the implemented dialogue strategies.

Our methodology is intended (1) for designers of multimodal systems who want to quickly
develop a multimodal system in their application domain, (2) for researchers who want
to better understand human-machine multimodal interaction through experimenting with
working prototypes, (3) for researchers who want to test new modalities within the context
of a complete application, and (4) for researchers interested in new approaches to specific
issues related to multimodal systems (e.g. the multimodal fusion problem).

Keywords: multimodal systems, dialogue systems, dialogue management, rapid dialogue
prototyping, Wizard of Oz experiments, human computer interaction (HCI), graphical
user interface (GUI), system evaluation

Résumé

Les systemes multimodaux a base de dialogue integrent des techniques avancées de traite-
ment de la langue (ou de la parole) au sein de méthodes plus générales d’interaction
homme-machine. La conception de tels systemes, souvent tres complexes, peut difficile-
ment étre envisagée sans une large expertise humaine et une méthodologie de conception
qui prenne en compte les limitations intrinseques aux techniques d’interaction utilisées.
Dans cette perspective, 'objectif de cette these est de proposer une méthodologie, des
outils et des algorithmes permettant, d’'une facon aussi indépendante que possible des
applications visées, une automatisation accrue du processus de conception de systemes
multimodaux a base de dialogue, avec comme conséquence une réduction substantielle des
durées et des couts de développement, ainsi que du degré d’expertise spécifique requis de
la part des développeurs impliqués.

La these présente une méthodologie de prototypage de systemes interactifs qui, couplée a
des techniques d’implémentation spécifiques, permet le développement rapide de systemes
multimodaux de recherche d’information intégrant des techniques de dialogue. En parti-
culier, la méthodologie proposée permet la conception de prototypes partiels (i.e. des
prototypes dont certaines fonctionalités ne sont pas encore, ou pas completement,
implémentées) qui peuvent étre utilisés pour des simulations de type “Magicien d’Oz” per-
mettant d’éliciter des modeles de comportement et des modeles d’utilisation de modalités
caractéristiques des utilisateurs confrontés au prototype. Une telle prise en compte des
utilisateurs dans les toutes premieres phases de développement permet d’augmenter les
chances que le systeme finalement produit soit bien accepté par les utilisateurs cibles.

Pour ce qui est de la conception de systemes de dialogue, nous proposons une approche
a deux niveaux inspirée de ’approche standard a base de “frames”. Les deux niveaux
identifiés correspondent respectivement a des stratégies de gestion de dialogue locales et
des stratégies de gestion de dialogue globales et I'une des contributions importantes de
ce travail est de montrer qu’une telle approche peut étre étendue de fagon efficace a des
systemes multimodaux.

La méthodologie proposée est illustrée par la description détaillée du développement
d’un systeme multimodal spécifique, le systeme Archivus, dont I'objectif est de proposer
une interface multimodale (voix, clavier, souris, écran tactile) permettant la recherche
d’information au sein d’une base multimedia d’enregistrements annotés de réunions (ap-
plication “Smart meeting room”).

Une part importante du travail de recherche a également été consacrée a ’évaluation
qualitative du systeme Archivus et I’évaluation quantitative des diverses stratégies de
dialogue implémentées au sein de ce prototype.

Notre méthodologie concerne (1) les concepteurs de systémes intéressés par le
développement rapide de systemes multimodaux dans un domaine applicatif particulier,
(2) les chercheurs intéressés par une meilleure compréhension de l'interaction homme-
machine multimodale et qui ont besoin de prototypes exploitables pour des expériences,
(3) les chercheurs intéressés par l'intégration de nouvelles modalités au sein d’applications,
et (4) les chercheurs intéressés par le développement de nouvelles techniques spécifiques
a l'interaction multimodale (par exemple la fusion de modalités).

Mots-clés: systemes multimodaux, systemes de dialogue, gestion de dialogue, pro-
totypage rapide, expériences Magicien d’Oz, interaction homme-machine, interfaces
graphiques, évaluation.

Chapter 1

Introduction

Human-computer interfaces have come a long way from the early days of punched cards
and manual switches. At that time, people working with computers were skilled machine
operators (experts) rather than ordinary end-users. This has gradually changed with the
introduction of text-terminals controlled with keyboards, which were later transformed
into graphical terminals operated with pointing devices (mouse, pen). Such technological
advances enabled the design of new interaction techniques, such as the direct manipu-
lation of graphical objects and windows-like interaction metaphors. The proliferation of
personal computers further led to a small revolution in the technology society: the few
machine operators became countless computer users, communicating everyday with per-
sonal electronic devices in all possible situations. A new research field was born: the
human-computer interaction.

Nevertheless, the human-computer interaction techniques are still too constrained and
inflexible when compared to existing human-to-human communication mechanisms. Hu-
mans use speech, gestures, writing, drawing, facial expressions, gaze and other methods,
allowing them to easily and naturally express their communication needs. Clearly, humans
spontaneously use many interaction channels (hereafter called modalities), and many of
these modalities are better suited for communication than the modalities provided by
traditional computer interfaces. For instance, people can easily and naturally specify in-
formation needs using voice (e.g. “Find me all financial reports concerning the lab budget,
which I have received from John last year”), while performing the same task might be
quite complicated with mouse and keyword searches. In fact, simply finding and invoking
the necessary system functionalities is often obscure in many existing interfaces.

With the growing importance of computer systems, more and more people need computers
for everyday tasks of still increasing complexity. Such non-expert computer users need
the interface to be natural, easy to use, ergonomic and supportive. Unfortunately, the
traditional computer interaction paradigms cannot satisfy such user needs because of their
inherently limited and inflexible ways of understanding the human user. As a consequence,
an experience with such interfaces often becomes an important source of user frustration.

One of the promising research directions towards more natural interfaces are dialogue sys-
tems, which allow users to perform various tasks through (often spoken) natural language.
Nowadays, hundreds of such applications are running all over the world, typically accessi-
ble as phone vocal services. Such dialogue systems combine various advanced technologies
(automatic speech recognition, speech synthesis, natural language processing and dialogue

Chapter 1. Introduction

management) to better communicate with users. However, the required technologies are
not yet robust enough for understanding the user requests in a fully satisfactory way and
therefore are still often not well accepted by users.

Another promising research direction towards natural and easy-to-use interfaces are mul-
timodal systems, offering to the users various interaction channels in addition to the
traditional keyboard and mouse. Examples of such additional modalities are: handwrit-
ing, speech, typed natural language, haptics, pen-based input, or inputs from webcameras
enabling for instance detection of user presence in front of the computer, recognition of
facial expressions, of gestures, etc. The main advantage of the availability of multiple
modalities is increased system usability: the weakness of one modality (e.g. non-robust
speech recognition) might be compensated by the strength of another. In addition, multi-
modal interfaces also improve system accessibility: they can be easily used by physically
impaired people, who can control the system through the modalities that they can rely
on. Similarly, people with no impairment can sometimes be considered as “situationally
impaired”, for instance in hands- or eyes-busy environments (driving, cooking).

In general, the fact that multimodal human-computer interaction results in greater flex-
wbility and naturalness of expression in contrast to unimodal input methods has been
reported by many researchers (e.g. [37, 12, 78, 40, 97, 115]). However, designing a multi-
modal interactive system that smoothly blends coherent natural language communication
together with direct object manipulation (graphical user interface) is recognized as a very
complex task in practice. Indeed, multimodal interfaces require the integration of a num-
ber of non-traditional technologies (speech recognition, speech understanding, and other
modality sensors) into one single system. Often, these technologies are interfering with
each other. For instance a graphical user interface influences the natural language used by
users, the precision of pointing on a tactile screen can impose the necessary minimum size
of objects manipulated by users, etc. In other words, many technical and design-related
problems have to be solved in order to create a usable multimodal interface. As a con-
sequence, the design becomes a time consuming process where a lot of effort has to be
invested in implementing and fine-tuning of numerous system features, many of which
might in addition turn out to be unused by the end-users. Therefore, efficient develop-
ment guidelines and tools are of great help.

Within this perspective, we propose a methodology for prototyping interactive systems,
which (together with its software implementation) allows for rapid building of multimodal
dialogue-based information seeking systems. When designed with our methodology, even
partially implemented system prototypes can immediately be tested with users through
Wizard of Oz simulations (which are integrated into the methodology) and can thereby
reveal behavior and modality use models specific for the targeted end-users. An important
consequence of the early user involvement in the development phases is the increase of
chances that the designed system is well accepted by end-users.

The thesis is organized as follows: Chapter 2 provides an overview of the state of the art
in dialogue systems and multimodal systems. In Chapter 3, we introduce our methodol-
ogy for prototyping multimodal systems, explain how concrete systems can be designed
with it, and what issues system designers need to take into account in order to make the
targeted multimodal systems operational. Since the systems are designed iteratively using
Wizard of Oz simulations, Chapter 4 provides a description of our simulation environ-
ment. In Chapter 5, we present the Archivus system — an illustrative example of a system

designed by our methodology, together with the individual design steps and the necessary
modifications and improvements that were required after its pilot evaluation by 40 users.
Chapter 6 presents the overall qualitative evaluation of the final version of Archivus as
resulting from experiments involving 90 users, as well as the quantitative evaluation of the
dialogue strategies used in Archivus. Finally, Chapters 7 and 8 respectively present the
main conclusions of our research and perspectives for future work. In order to facilitate
the reading, most of the chapters starts with an introduction and are concluded with a
summary that respectively synthesize the main issues considered and the main results
obtained.

Chapter 1. Introduction

Chapter 2

State of the art

2.1 Background

The term dialogue system refers to a computer program that communicates with a human
user in a more or less natural manner. The interaction protocol used for the communi-
cation between the program and the human is called the dialogue. Dialogue is also used
by pairs (or groups) of humans for the communication among them. Dialogue can be
seen as a sequence of information exchange that stays coherent over the time. Humans
usually participate in dialogue because they want to achieve a certain goal. We say that
the interaction is goal driven. Examples of goals are: finding the most suitable restaurant
in a foreign city, booking the cheapest flight to a given city, controlling the state of the
devices in a home, but the goal might also be the interaction itself (chatting).

A cooperative dialogue system is designed in a way that it helps the user to achieve a goal
using dialogue. Such a dialogue system must therefore have an extensive knowledge about
the domain of communication and have some basic communication skills. However, the
communication skills and intelligence of the current computer-based programs are still
far from a state that would make it possible to say that the behavior of the computer
program is comparable with the one of humans.

2.1.1 Dialogue is a complex protocol

Even if dialogue is the most natural means for human-to-human communication, it is
necessary to realize that dialogue is a very complex protocol. There are several reasons
for it [81]: the dialogue utterances are often imperfect — ungrammatical or elliptical.
Humans usually use their extensive knowledge and reasoning capabilities to understand
the conversational partner. Dialogues also follow certain conventions or protocols that are
adopted by participants. Despite those problems, from the human perspective, natural
dialogue is perceived as a very expressive, efficient and robust manner of communicating.

Many researchers were investigating human-to-human dialogue as such, in order to better
understand different aspects of the communication. An example of their achievement is
the speech act theory, early proposed by Austin [7] and further developed by Searle [103].
The term dialogue act (i.e. “speech act used in the dialogue and updating the dialogue
context”) has been first used by Bunt [14]. Dialogue acts are classified by their semantic

9

Chapter 2. State of the art

content (task-oriented acts) and communicative function (dialogue-control acts). Details
about the dialogue act functions can be found in [15].

Even if theories of dialogue exist, robust computational mechanisms for dialogue process-
ing are still missing. This is largely due to the following features of natural dialogue:

e Fllipsis and fragments: people often utter partial phrases to avoid repetition. The
problems arise when analyzing such segments. Since the missing information is
usually important, it must be reconstructed from the context of the dialogue [2].

e References: another complication for proper analysis of the utterances is that the
meaning of some words (e.g. this/that, me/you/he/it) can only be interpreted as a
function of the context.

e [ndirect meaning (also called conversational implicature): the meaning of the dis-
course might be far from literal meaning. Humans usually use this feature for effect
and efficiency, e.g. “Here is a phone call from your boss” — “I am not here” — “Okay”.

o Turn taking: people seem to know well when they can take their turn in the dialogue,
the overlap is very small (5%), the gaps are very limited (less than 1/10%s of a
second), and a natural dialogue seems to be fluid. It is not obvious how humans
decide when to talk [81].

e Conversational fillers: phrases like “a-ha”, “yes”, “hmm” or “eh” are often
prompted in order to fill the pauses of the conversation, to indicate the attention or
reflection. The challenge here is to recognize when they should be understood as a
request for turn taking and when they should be ignored.

e Adjacency pairs: they are intuitive structures of the form question-answer, greeting-
greeting, offer-acceptance. They are often embedded in each other, but they may
also overlap and interfere.

2.1.2 Dialogue system

A computer based dialogue system can be defined as an artificial participant in the dia-
logue [81]. It contains algorithms and procedures that support a computer’s participation
in a cooperative dialogue. It needs to have an extensive knowledge about the domain. It
may have a model of the other participants and it may have to cope with unexpected or
unusual input.

As mentioned earlier, human dialogue is a really complex protocol; therefore the artificial
dialogue systems are still far from being close to real humans. The situation is further
complicated by the fact that users do not interact with a machine exactly in the same
way they would interact with a real human. As pointed out in [21], human-to-human di-
alogues exhibit much more varied behaviors, including clarifications, confirmations, other
communicative actions, etc. Some researchers have argued that because humans interact
differently with computers than they do with people [26, 32], the goal of developing a
system that emulates a real human dialogue behavior is neither appropriate, nor attain-
able [26, 108]. On the contrary, others have argued that the usability of current natural
language systems, especially voice-interactive systems in a telecommunications setting,
could greatly benefit from techniques that allow the humans to engage in situations sim-
ilar to ones found in their typical spoken conversations [43]. The whole situation is quite

10

2.1. Background

different in multimodal systems equipped e.g. with a screen. The communication model
is then not comparable to a human-to-human interaction. Therefore, multimodal systems
are typically designed in a way that explains to a user, in terms and with concepts they
are already familiar with, how to interact with an unfamiliar application and what its
functionalities might be. The set of known terms and concepts (typically taken from
natural human life) forms the communication metaphor of the application [30].

According to [1], a task-oriented dialogue system that naturally interacts with humans
must deal with at least the following tasks:

e Disambiguation of user inputs: since the natural language expressions are often
ambiguous, the system has to implement mechanisms to disambiguate user’s input.
Disambiguation can be implicit (deduction of the meaning from the context of the
dialogue) or explicit (asking the user).

e Relazation: the system should be able to drop some of the user’s constraints in the
case when they do not generate any solution (i.e. user request is over-constrained).
Intelligent systems should drop the constraints that are not of primary importance
for the user.

e Confirmation: the system should ask the user to confirm an information that has
been obtained with a low confidence score or is likely to be wrong within the given
context of the dialogue.

o Completion of missing required information: the system must take the initiative to
elicit the information that is needed to successfully complete the task.

e Description of otherwise invisible semantic actions: in the case when the system
has dropped some of the user constraints or when it supposes something implicitly
(and it is not clear that user would agree), the system should notify the user about
it.

e Detection of user confusion/error recovery: since dialogue systems are still imper-
fect, it is very important to implement several strategies that solve the problems
occurring in the communication. If the user does not know how to answer the ques-
tion, the system must be able to give him/her a help or ask another question in
the hope of executing the user’s request. The detection of user confusion can be
indicated by an “I do not know” answer or detectable from auditory or audiovi-
sual cues [48, 38]. Another not so obvious indication is the lack of progress in the
dialogue.

e Topic switching: the system should be able to recognize when the user request is
out of the current system context. When possible, the system should then switch
to the new context (topic) of the conversation.

A user model in a dialogue system is a knowledge source that contains explicit assump-
tions on all user related aspects that may be relevant for the dialogue behavior of the
system [118]. Knowing the model of the user can smooth the dialogue flow and increase
the satisfaction of the user when interacting with the system.

Current commercially available dialogue systems typically have a small vocabulary (often
around 100 words), are applied in closed domains, and are characterized by strong sys-
tem initiative. On the other hand, current research systems use larger (but still small)

11

Chapter 2. State of the art

vocabulary (around 1000 words), they have closed domain and we can observe (limited)
mixed initiative between the computer and the human.

Some of the most innovative applied research projects are represented by:

e SUNDIAL [EU, 88-93]: flight/train timetables
MAIS/RAILTEL [EU, 94-95]: train timetable

VerbMobil [DE, 93-00]: assisted translation, meeting scheduling
TRINDI [UK, SE, 98-00]: instructional dialogue, SmartHome

Clarissa [NASA, 02-05]: a procedure navigator for astronauts at the ISS

VoiceXML [W3C, 99-07]: W3C’s standard XML format for specifying interactive
voice dialogues

Most common application domains include: flight and train timetable information and
reservation, switchboard services, automated directory enquiries, weather information,
yellow pages enquiries, appointment scheduling, multilingual spoken dialogue real-time
translation systems (e.g. VerbMobil).

2.2 Dialogue system architectures

This section presents the key components of multimodal dialogue systems and shows how
these components are integrated together in various software architectures. Having a
flexible software architecture for component integration has been identified as a key to
successful dialogue systems, i.e. systems that are more advanced than the sum of their
sub-components [64].

A spoken dialogue system involves the integration of a number of components that typi-
cally provide the following functionalities:

e Speech recognition: transforms speech input into a list of transcriptions, possibly
with confidence scores.

e Language understanding: extracts the meaning of the textual utterances. The mean-
ing is expressed in a formal representation understandable by the dialogue man-
ager. Depending on used techniques, this process may involve several sub-processes,
e.g. syntactic analysis, semantic analysis, or discourse analysis.

e Dialogue manager: central component that controls the interaction flow with the
user, based on a certain dialogue model. The input to this process is a formal repre-
sentation of the user utterance and the output is a formal message to be generated
as response. The dialogue manager also communicates with the application task
manager.

e Application task manager (or domain knowledge manager, since it works with the
domain task model) encapsulates and handles the application specific operations,
e.g. communicates with the application database. In the ideal case, the dialogue
manager operates on a general, task independent level, while the application task
manager handles application and domain specific knowledge. The denomination

12

2.2. Dialogue system architectures

term used for this component is not very standardized, and is usually derived from
the function this component plays in a particular system. Depending on the focus
of the system, the provided functionality can be data-access, reasoning, planning or
problem solving management.

e Response generation: produces a (textual) natural language message to be commu-
nicated to the user on the basis of the formal message generated by the dialogue
manager.

e Speech synthesis: transforms a textual message to the corresponding speech signal
by text-to-speech synthesis or concatenation of pre-recorded speech.

A multimodal dialogue system is a system that supports several channels of communica-
tion with the user (clicking, gestures, visual output, etc). Multimodal dialogue systems
comprise the additional components for processing the information from other modalities
than speech (i.e. components like face detection, emotion recognition, gaze and gesture
recognition) and the output of such a system is usually richer as the screen is used to
present multimedia in a synchronized manner. The multimodal input is combined in
the fusion component and the multimodal output is controlled by the fission component.
In the multimodal dialogue systems, the dialogue manager is often referred to as the
interaction manager.

The classification above is the most traditional classification, but it cannot be considered
as the ultimate one. Due to practical reasons, dialogue systems very often combine two
or more functionalities within one module (e.g. the response generation module is part
of the dialogue manager). On the other hand, dialogue systems often incorporate other
additional modules (e.g. the modules for maintaining the user model and dialogue history,
or modules for operating the telephony interface).

As far as the organization of the dialogue system components is concerned, the pipeline
architecture is the simplest one. Modules are simply connected linearly into a sequence
in the order they process the input, as shown in Figure 2.1. The main advantage of the
pipeline architecture is its relative implementation simplicity. A commonly mentioned
disadvantage is its inflexibility: modules can interact only with the modules they are
connected with and there is no shared memory that can be used as a blackboard.

Speech Speech
Speech Recognition Synthesis Speec
. Language Text
Typing | Understanding Generation Texi '
\ A
— Vi i i ‘

Handwrltmg\‘ i i Sound signals
Pointing—] Multimodal | Interaction | Multimodal [Images—»
Emotions— > Fusion | Manager | Fission T——Vide

— T : | .
Modules specific to multimodal systems (in comparison to vocal dialogue systems)

Figure 2.1: Pipeline architecture of multimodal system

A dialogue system is usually a complex system that needs to integrate a large number
of modules. It is therefore convenient if these modules are specified as reusable modules
that can be designed by different people and shared among different dialogue system

13

Chapter 2. State of the art

applications. The integration and building of the dialogue system can indeed be simplified,
if the modules are designed to be compatible with some common software framework
(or platform). Such a framework should provide rules for the module design and the
necessary infrastructure for communication between modules. In the ideal case, it should
represent the whole development environment that supports development and debugging
of the complete system. It should come with pre-defined components for immediate use
(e.g. modules for speech recognition, speech synthesis, dialogue management, etc). This
would allow researchers to deploy the functionality of the module they are interested in,
without the need of solving the problem of module communication and data exchange.

Frameworks that can be considered as satisfying the above criterions are Galazy-II [104]
and Open Agent Architecture [63]. Because the Galaxy-II is specifically targeted to the
speech application domain and because both architectures share similar principles, we
will now focus on Galaxy-II only.

GENESIS
Language
DECTALK Generation
& ENVOICE D-Server
Text-to-Speech Dialogue
Conversion Management
2’ @ Audio Application
Server HUB Back-ends
Phone I-Server
Speech Context
Recognition Tracking
SUMMIT Discourse
Frame
Construction

TINA

Figure 2.2: Architecture of GALAXY-II [104]

Galaxy-II is a distributed, message-based, hub-and-spoke infrastructure that was espe-
cially optimized for spoken dialog systems. The central component is the hub, which is
used to coordinate the communication with the other components that are implemented as
servers. Servers are organized within a star topology (central is the hub). The Figure 2.2
shows a skeleton of a Galaxy-II based spoken dialog system. Components send messages
(frames) to the hub and the hub forwards them to the appropriate component. The hub
logs all the routed messages. The configuration of the hub is done by a script that defines
the routing of the messages. Such architecture allows any desired communication between
components. The implementation of the Galaxy-II is released as open source software and
is maintained by MITRE Corp. The distribution contains the system infrastructure (hub
and libraries for construction of components). Some implemented modules are available
as Open Source Toolkit'. The implementation of all necessary modules is called CMU
Communicator? and has been released by Carnegie Mellon University.

"http://communicator.sourceforge.net/
’http://www.speech.cs.cmu.edu/Communicator/

14

2.3. Computational models for dialogue management

The Galaxy-II is a very general architecture that does not impose any predefined com-
munication paradigm on the dialogue system. On the other hand, the distributed nature
of the framework can make it more difficult to debug and test the system, as well as to
start to use the system at the beginning. Since each module must be implemented as a
server, problems with module synchronization might become difficult to track.

2.3 Computational models for dialogue management

A dialogue manager controls the overall interaction between a system and a user. The
essential role of the dialogue manager in the framework of human-computer interaction
can be reduced to two basic actions [54]:

e Interpret observations (usually user inputs) in context and update the internal rep-
resentation of the dialogue state.

e Determine the next action of the dialogue system, depending on some dialogue
management policy (with the effect of affecting the mental state of the user).

Although these two functionalities coexist in all dialogue managers, each of them is non-
trivial, leading to a proliferation of different computational approaches.

The dialogue manager may draw on a number of knowledge sources, which are some-
times referred to collectively as the dialogue model. A dialogue model might include the
following types of knowledge relevant to the dialogue management [64]:

o A dialogue history: A trace of the dialogue realized so far, in terms of the propo-
sitions that have been discussed and the entities that have been mentioned. This
representation provides a basis for conceptual coherence and for the resolution of
anaphora and ellipsis.

o A task record: A representation of the information to be gathered in the dialogue.
This record, often referred to as a form, a template, or a status graph, is used to
determine what information has not yet been acquired. This record can also be
used as a task memory [4] for cases where a user wishes to change the values of
some parameters, such as an earlier departure time, but does not need to repeat the
whole dialogue to provide the other values that remain unchanged.

o A world knowledge model: This model contains general background information
that supports any commonsense reasoning required by the system, for example,
that Christmas day is December 25.

e A domain model: A model with specific information about the applicative domain
in consideration, for example, flight information.

e A generic model of conversational competence: This includes knowledge about the
principles of conversational turn-taking and discourse obligations, e.g. that an appro-
priate response to a request for information is to supply the information or provide
a reason for not supplying it.

e A user model: This model may contain relatively stable information about the user
that may be relevant to the dialogue (such as the user’s age, gender, and preferences),

15

Chapter 2. State of the art

as well as information that changes over the course of the dialogue, such as the user’s
goals, beliefs, and intentions.

2.3.1 Finite state models

Some of the first dialogue managers used the concept of finite state automaton to model
their behavior. The state of the dialogue manager is determined by the current state of
the finite state automaton, which specifies the dialogue action (prompt) and the grammar
that is used to interpret the input of the user. The semantics of the user utterance (or
the utterance itself) determines the transition to another node, resulting in changing the
state of the dialogue manager. Even though this is an extremely simple approach, it can
already describe an infinite number of dialogues. Finite state systems are well suited to
applications in which the interaction is well-defined and can be structured as a sequential
form-filling task or a tree, preferably with yes/no or short answer questions.

The advantage of finite state models is that they are formally well-understood [46] and
computationally attractive [52]. The design of such systems is relatively straightforward
and intuitive and their behavior is predictable. The ease of development is further im-
proved by existing visualization toolkits [23]. One of the most popular is the Rapid
Application Developer of CSLU Toolkit [111], which allows the designer to specify the
dialogue as a finite state model using a drag-and-drop interface. In addition, probabilis-
tic finite-state models can be used for automatic machine learning of optimal dialogue
strategies [53, 87, 33| using reinforcement learning or Q-learning.

The main disadvantage is that the finite state approach typically leads to an unnatural
dialogue, where the information is elicited from the user in the form of a sequence of
questions. The dialogue strategy is very inflexible: the user must follow the structure of
the dialogue and answer the system questions. Any additionally provided information is
ignored by the system. Attempting to extend the system to enable repair mechanisms
(reaction to misunderstanding, clarification, etc) leads to combinatorial explosion of states
and transitions [66], thus making the system very hard to manage. Another limitation of
the finite state methodology is its complete domain and application dependency: porting
a finite state dialogue model to a new domain or application typically results in the
development of a completely new finite state model. The reason is that the finite state
system lacks of a systematic distinction between the task (what the dialogue manager
wants to achieve) and the dialogue strategy (how the dialogue manager should proceed
towards its goal).

These limitations are well-known and alternative approaches have been investigated. One
of them is to associate each state with executable code that updates some shared variable.
The state of the automaton is then determined by both the state and the value of the
variable [66, 65]. Another approach is to embed another finite-state network into one
state, making the whole finite state network easier to understand and manage. Some
other systems (e.g. EasyFlight [123]) use the finite state approach in combination with
plan based control [124].

16

2.3. Computational models for dialogue management

2.3.2 Frame-based (slot-filling) systems

Another computational approach to dialogue flow control is based on the frame struc-
ture [70] (other authors use the term form or template). The frame consists of slots. Each
slot is related to a specific category of information “understood” by the system. The
frame cumulates the information provided by the user during the dialogue and is used to
determine the next dialogue action.

The dialogue system has questions associated with slots. The user is asked questions that
enable the system to fill-in slots in order to perform a task. The task might be finding the
restaurant conforming the user’s request (BeRP [42], InfoVox?[114]), finding some train
timetable information or changing the state of a domestic devices (Inspire*[71, 49, 10]).
A frame-based system typically implements some mixed initiative: the user takes the
dialogue initiative predominantly at the beginning of the dialogue where he/she freely
specifies his/her requirements. The system analyzes the user’s response and fills-in the
appropriate slots. The missing information (unfilled slots) is then elicited by the system.

The term dialogue strategy in frame-based systems refers to a decision-making mechanism
that is used to determine the next information to be obtained from the user and describe
how to solve potential problems during the dialogue.

i. Variations of the standard frame-based approach

Many successful systems were implemented based on the slot-filling paradigm (see e.g. [36,
16, 75, 82, 28, 50, 106, 125, 6, 44, 110, 105, 69], with variations on the structure of the
frame and on the way of describing the dialogue strategies.

One of the frame variations is the E-form [35]: slots are augmented with priorities and
marked as mandatory or optional. E-forms have been used in the WHEELS dialogue
system [69] to capture different user preferences about car parameters (e.g. parameters
like price or color do not usually have the same importance).

Another modification of the frame structure are hierarchical frames (also referred to as
frame type hierarchy), in which one slot might be represented by a sub-frame. Such a
representation better reflects the hierarchical structure of real-world objects. For exam-
ple, the slot person might be decomposed into the slots first name, family name and
address, and the slot address might be in turn decomposed into slots city, institute
and office number. The chronological ordering of the subtasks in the dialogue is still
available (e.g. left-to-right depth-first traversal) and the dialogue strategies can exploit
the information about the object under discussion. Examples of systems using such a
representation are [3, 39, 83, 90, 116].

An even more generic approach is to describe various relations between slots by a task
structure graph [122]. Such a description can be exploited both by the dialogue man-
agement strategies and the natural language understanding algorithms. In [3], a frame
description method using the Web Ontology Language (OWL) is proposed with the ex-
pectation of increasing portability of the dialogue manager and with the assumption that
the OWL annotated pages can be used as a knowledge base for the dialogue manager.

3http://liawww.epfl.ch/Research/infovox.html
4http ://wwu.ist-world.org/ProjectDetails.aspx?ProjectId=0c83b96d2f764e3fae85a9b5e8566949

17

Chapter 2. State of the art

The frame (or its modification) describes the structure of the information required by
the user and the dialogue strategy is used to select the reaction of the system to the
last user request. Some systems use action lists with associated preconditions (event
driven approach) to describe the behavior of the dialogue. Only actions with fulfilled
pre-conditions might be selected by the system. In the case that several actions can be
selected, other factors (such as priorities) are used. An example of such a system is the
Philips SpeechMania [6] or the Communicator system [120].

Another possible approach is to directly encode the logic (dialogue manager decisions)
as a script in the dialogue manager. In this case (hard-wiring of the logic in the code
of the dialogue manager), designers usually try to formulate the logic in the form of a
general slot-filling dialogue model that can be reused when the system is ported to another
domain (i.e. the frame description has changed). Such algorithms have been described by
several researchers, e.g. [109, 51, 86, 5].

The combination of the above mentioned techniques is used in [13], where a general
slot-filling dialogue model selects the main category of the next system prompt and the
conditional approach is used to select among several compatible prompts (this is typically
used to alternate the formulation of the prompt or/and to make it more contextualized).

ii. Advantages

The frame-based approach is appropriate for well-defined tasks, where the dialogue man-
ager can respond to the user’s initial query with a sequence of clarifications in order to
obtain enough information to complete a specific action. The slot-filling approach is the
most frequently used dialogue management technique in practical systems [47]. This is
partly due to the large number of available toolkits: languages like VoiceXML® or Philips’
HDDL [85] are based on frames and environments for their interpretation exist (e.g. IBM
WebSphere Voice Server®, OptimTalk’, Philips SpeechMania [6]). Techniques for rapid
dialogue prototyping have also been proposed, e.g. the rapid dialogue prototyping frame-
work developed at LTIA-EPFL [94, 95, 93, 13, 91]. This latter work is further extended in
this thesis, making it applicable to design of multimodal systems.

A frame-based system fulfils a number of dialogue design requirements, as identified by
the dialogue team at Philips [6], including the following;:

e there should not be a rigid question-answer scheme to obtain the required values;
e there should not be more questions asked than necessary;
e there should not be more required confirmation than necessary;

e information given by the caller, prior to the system asking for it, should be used.

Since the development of a dialogue system requires considerable efforts, an important
aspect of dialogue system development is portability (i.e. the ability to easily customize
the dialogue system for a new language or domain). In frame-based systems, the task
and the dialogue strategy can be clearly separated. The task is defined by a (domain

Shttp://www.w3.org/TR/voicexml21/
Shttp://www.ibm.com/software/pervasive/voice_server/
"http://www.optimtalk.cz/

18

2.3. Computational models for dialogue management

specific) frame, while the strategy for filling-in the frame is rather domain independent
(the strategy might be designed to be independent of the contents of the slots).

iii. Disadvantages

Even though task and dialogue strategies are separated (which is beneficial for porta-
bility), it is an open issue to measure how scalable the approach is [47]. Extending the
existing systems with another useful dialogue strategy usually requires a considerable
amount of hand-coding (e.g. EPFL dialogue prototyping methodology [13]) or is almost
impossible (e.g. the Form Interpretation Algorithm in VoiceXML 2.0). Developers need
to handle large sets of rules or types of system reactions to particular situations. It is
difficult to predict which rule fires under specific circumstances or all the consequences
of a dialogue strategy modification. A considerable amount of experimentation may be
required to ensure that the system does not produce an inappropriate question under
some circumstances that had not been foreseen at design time [64].

Another problematic issue in frame-based systems is that they model the dialogue as
elicitation of several parameters in order to perform a predefined task. However, a dialogue
is a more complex process, typically with several possible topics for the conversation; both
the system and user might ask questions or change the topic; and the system should be
able to detect the user’s dialogue goal (which is usually expressed implicitly in the user
queries), as well as be capable of simple reasoning (e.g. “When do you want to watch the
movie?” — “After the Simpsons finishes”). Generally, frame-based systems do not support
mechanisms for topic detection, nor for explicit representation of user goals, as the goals
are implicitly encoded in the structure of the frame. Because of practical reasons, the
frame-based systems usually relay on quite simple (but relatively robust) natural language
understanding techniques (such as concept spotting). In order to model more complex
dialogues, advanced natural language capabilities are needed. The result of complex
utterance analysis is then more complex than a simple attribute-value list (typically it
might be a logical form [96]), but the flat frame structure is unable to store such complex
results and therefore the available dialogue strategies cannot exploit it.

2.3.3 Plan-based systems

Plan-based systems view the communication as a planning process motivated by the
achievement of certain goals. Achieving the goals is decomposed into a sequence of ac-
tions and sub-goals to be achieved (and sub-goals are again decomposed in the same
manner) [61]. The actions are represented by dialogue acts [14], and are performed both
by the user and the system. Knowing the goal, the system can optimize the plan of how to
achieve it, taking into account the history of the dialogue (i.e. all dialogue acts executed
so far by both participants). The next system action (system dialogue act) is simply de-
termined by the next action in the optimized plan. However, the planning problem is not
trivial, since the system executes just half of the actions; the second (possibly different)
plan is executed by the user (and is unknown to the system). The system must therefore
infer the plan of the user, based on already observed actions (i.e. user dialogue acts) and
assuming cooperativeness of the user. Further complication can arise from the fact that
there can be several possible goals and the system must infer the one desired by the user.

19

Chapter 2. State of the art

The plan-based approach is quite sophisticated and has the potential for handling complex
dialogues. However, it suffers from today’s technological limitation and the overall perfor-
mance of integrated systems still remains quite low. The current technology is not able to
reliably recognize the speech acts corresponding to the user’s utterances. In addition, in
more complex cases, the planning problem can become computationally intractable [64].
The theoretical limitation of plan-based systems is that they assume cooperative users
and do not provide explanation of dialogue activity in the case of participants that do not
share mutual goals.

2.4 Multimodality processing

Interaction modalities are all the communication channels between the user and the ma-
chine. For a quite long time, speech has been the favored modality for input and output
in telephone-based dialogue systems. In the past two decades, however, so called multi-
modal dialogue systems start to emerge. In multimodal dialogue systems, the machine
is sensitive to several input modalities and produces output in several output modalities.
For example, besides the speech, the dialogue system can be sensitive to keyboard input,
mouse clicks, facial expressions, gestures, gaze, etc. The system output can be performed
by speech and visual information. In case that the system is represented by an animated
virtual character (e.g. Baldi® in CSLU Toolkit), the outputs can also be augmented by
virtual character facial expressions and emotions.

Several modalities are particularly useful in situations when one modality is not appli-
cable (e.g. eyes or hands are busy, silent environment, etc) or difficult to use (e.g. small
devices with limited keyboard and small screen). Having a richer set of communication
modalities is also believed to make the dialogue more efficient, namely because of two
reasons: (1) Some modalities are more efficient or effective than others for certain types
of content, tasks, users or contexts (e.g. mouse clicks can compensate speech technology
limitations) and (2) dialogue strategies can be adopted to use the most convenient way of
presenting the system output (e.g. long vocal confirmation might be favorably replaced by
short visual indications). Altogether, multimodality aims at improving speed, accuracy,
and naturalness of the human computer interaction.

In a multimodal environment, the computer needs to understand inputs coming from
different modalities (happening sequentially or in parallel) and it needs to be able to
integrate these inputs in order to get a full understanding of the current situation. In
addition, users frequently do not provide complete utterances when interacting with a
computer. Often the utterances need to be disambiguated by looking at the context
of occurrence or by looking at information coming from other modalities. Research in
multimodal interaction is concerned with the interpretation of isolated, sequential and
parallel interaction utterances with the computer. In particular, it is useful to develop
models in which the knowledge obtained from different input modalities can be integrated.
This also involves knowledge representation and reasoning formalisms. From a human-
computer interaction perspective, it is interesting to look at the various multimodal ways
people interact with the environment and with each other, and to design systems that are

8http://cslu.cse.ogi.edu/FAQ/

20

2.4. Multimodality processing

sensitive to what the user wants without providing any explicit command or information
about it.

Notice that there exist several different ways of understanding the term multimodal [99].
Among the most often mentioned ones are the following:

e Different communication interfaces that allow the users to use the means of the
communication they prefer, e.g. speech, mouse, or keyboard. The main characteris-
tic of this approach to multimodality is that the user voluntarily selects one of the
communication channels (or their combination).

e The term multimodal also refers to multiple coordinated streams generated by the
user, not necessarily by conscious choice. An example can be speech and lip move-
ments. Both of them can be used together to improve the accuracy of speech
recognition, but they represent one information source (seen from the perspective
of the dialogue manager).

e We can also think of wirtual streams of information that are delivered from the
same physical signal but processed differently. For example, the voice can include
linguistic, prosodic or emotional information and each of them can be used by the
application as a different information source.

e Yet another approach is to think about multimodality as a set of independent streams
of information that are only loosely related to the ongoing communication act, but
provide a useful context for interpretation of the user’s message. An example is the
user’s location in the room (in front of a lamp) when saying “switch it on”.

In the rest of the document, we will mostly refer to the first definition and therefore
consider the term multimodality as a different means of communication.

In multimodal systems, the term multimodal fusion is used to describe the process of
combining input coming from different channels into one abstract message that is then
processed by the dialogue manager. The process of fusion may happen at several levels.
Nigay and Coutaz have identified three such levels: lexical fusion, syntactic fusion and
semantic fusion [76]. Their PAC-Amodeus model uses melting pots as a metaphor for
hierarchical fusion of modalities, taking into account the temporal occurrence and the
semantic meaning of the modality to the dialogue (see [76] for more details). The impor-
tance of interpretation of every input event within the context of its local dialogue turn
is emphasized by Pfleger [84] in the COMIC system.

Similarly, the term multimodal fission refers to the process of concretely realizing an ab-
stract message (produced by dialogue manager) through some combination of the available
output channels. For example, in multimodal system the output can be realized by us-
ing synthesized speech, text, graphic, or their combinations. The techniques for fission
are usually considered as practical issues. Nevertheless, some user preferences have been
identified and practical guidelines have been proposed [9], for instance that speech and
graphic output need to be coordinated and unnecessary redundancy between the two
channels should be avoided (the speech should convey just the short version of the main
message and the details can be displayed on the screen).

Some general-purpose languages for multimodal content abstraction exist, for example
the two languages developed by the World Wide Web Consortium (W3C): Extensible
MultiModal Annotation language and Synchronised Multimedia Integration Language.

21

Chapter 2. State of the art

FExtensible MultiModal Annotation language (EMMA): this is a markup language for de-
scribing the interpretation of user input. Examples of user input interpretation are (1) the
transcriptions into word sequences of various raw signals, for instance speech, pen or
keystroke input, (2) a set of attribute/value pairs describing their meaning, or a set of at-
tribute/value pairs describing a gesture. The interpretation of the user’s input is expected
to be generated by the signal interpretation processes, such as speech and writing recog-
nition, semantic interpreters, and other types of processors used by components (such as
interaction managers) that act on the user’s inputs.

Synchronised Multimedia Integration Language (SMIL): is a meta-language for multimodal
presentations. The goal of SMIL is to be an integration format for presentable single
modality formats; that is, to allow the authors to specify what should be presented when.
SMIL allows the integration of images, audio and video clips, animations, and formatted
text. Several SMIL 2.0 compliant commercial players are available, for example, the
GRINS player, Internet Explorer 6.0, and RealOne all understand SMIL 2.0 markup. For
the complete survey of multimodal fission activities and available languages, see [31].

22

Chapter 3

Multimodal interactive systems
prototyping

This chapter presents the methodology we have developed for rapid prototyping of mul-
timodal interactive systems, hereafter referred to as the interactive systems prototyping
methodology — ISPM.

Designing a multimodal interactive system that smoothly combines coherent natural lan-
guage communication together with direct object manipulation (typically realized by a
pointing device and screen display) is generally recognized as a very complex task. Com-
pared to the design of traditional GUI-based systems, the designer must not only foresee
optimal system’s functionalities and graphical layouts, but also consider how users might
use the novel modalities to interact with the system. Because such systems are still not
wide-spread, one cannot rely on some generally accepted models for multimodal interfaces.
The challenge is therefore to create an interface that makes the multimodal interaction
natural and smooth, while remaining manageable from the perspective of the system.

In particular, we believe that the following factors make the traditional development cycle
(i.e. design, prototyping and evaluation) of multimodal systems more complex compared
to traditional GUI-based interactive systems:

e The natural language technologies, such as speech recognition, natural language
understanding and dialogue management, have to be efficiently integrated.

e The presence of non-traditional modalities (tactile screen, spoken language) influ-
ences the graphical design and system functionalities.

e The user language inputs are influenced by the linguistic features (e.g. prompts,
labels, etc.) of the system prototype that the user is faced with.

e Due to strong interdependencies between modalities and their combined impact on
user behavior [92], the modalities and the interaction techniques have to be evaluated
within a context of a fully integrated system prototype.

Consequently, the system design becomes a time consuming process, where a lot of effort
is invested in implementing and fine-tuning system features, which might in addition turn
out to be unused (or to be used only very infrequently) by end-users.

23

Chapter 3. Multimodal interactive systems prototyping

However, the complexity of the system development cycle might be significantly reduced,
if (1) it is possible to build the first system prototype on top of already available compo-
nents, (2) if exploitable design guidelines are available, and (3) if it is possible to observe
user-system interactions even before the whole system is completely implemented. The
interactive systems prototyping methodology (ISPM) presented in this chapter, together
with its Java implementation (hereafter called the prototyping platform) proposes conve-
nient solutions for all the above mentioned issues.

Our methodology is intended (1) for designers of multimodal systems who want to quickly
develop a multimodal system in their application domain, (2) for researchers who want
to better understand human-machine multimodal interaction through experimenting with
working prototypes, (3) for researchers who want to test new modalities within the context
of a complete application, and (4) for researchers interested in new approaches to specific
issues related to multimodal systems (e.g. the multimodal fusion problem).

In the ISPM, the design of a first system prototype starts with the definition of the
required application knowledge (i.e. the domain model, section 3.2). The application is
then decomposed into elementary building blocks (sections 3.3 and 3.4), which are used to
define the task model of the application, i.e. to describe what is possible, when it is possible
and how the overall screen layout is organized (section 3.5). The software architecture of
the prototype must be easily modifiable in order to add or remove modules (section 3.6).
Some of the modules can even be replaced by a hidden human operator during Wizard
of Oz simulations (Chapter 4), allowing to speed up the development process. Finally, at
the end of this chapter, we provide an overview of applications created using the ISPM
(section 3.7) and compare vocal-only and screen-equipped dialogue systems (section 3.8).

3.1 Information seeking systems

Our methodology is intended for prototyping of information seeking systems. In such
systems, the user is looking for information within a potentially huge search space by
specifying various search constrains of the sought information. Such searches are often
iterative — the user refines or modifies his/her request based on current state of the search
space.

An example of an information seeking system is a public transport information service [25].
Such system can provide several semantically different types of information, for example
“trip information” (what bus lines one has to use to travel from one place to another at
a particular time of the day) or a complete timetable for a given bus line and station. In
order to find such information, the user has to specify the departure and arrival locations,
the time of departure or arrival, and perhaps additional constraints (maximum number of
transfers, restriction to specific types of transport types, etc). Of course, not all of these
constraints have to always be specified, and often the need for specifying them depends
on the type of sought information and/or previously provided constraints.

A natural language dialogue is suitable for such systems, because it allows users to formu-
late their information needs in a naturally intuitive manner and can optimally advance
the information search. Typically, the user freely specifies his/her initial information need
at the beginning of the dialogue. Depending on the current search space and the prede-
fined system initiative, the system can then ask for additional information or the user can

24

3.2. Domain model

provide additional information in a more structured way after he/she has examined the
current search space.

However, verbal communication alone is not necessarily always the optimal mode of inter-
action. As for the output modality, the screen can quickly provide much more information
than a spoken prompt. For example, the screen can at one time display the search con-
straints provided so far, an overview of the current search space or the signalization of
conflicting search constraints. The user can voluntarily focus his/her attention on the
information that is of his/her interest. The verbal prompts are more intrusive and they
can therefore better focus user attention on a specific situation, with a risk that the user
might be annoyed by that information in case if he/she was already aware of it or if the
verbal prompt is too long. We believe that equipping the system with both the screen
and verbal output allows for optimal system output.

Concerning the input modalities, natural speech allows the user to directly and quickly
express several constraints in one dialogue turn, as opposed to pointing inputs that might
be considered as too restrictive with low expressive power. However, the user’s final choice
of input modality is often influenced also by other factors, like the performance of natural
language technologies, the willingness of the user to speak/type or the user’s background
knowledge. An example of background knowledge influencing the choice of modality is
obvious in case of providing the departure bus stop information [25]: if the user does not
know the name of the actual bus stop and only knows that it is in a certain area, asking
the user to provide a name of bus stop is not of much help. In these cases pointing on a
map is much more useful. On the other hand, the map interaction requires that the user
knows the geographic location of the bus stop. This is not always the case, especially if
the user is not familiar with the town. In such cases, it might be better to enter the name
using speech or typed text input.

All above mentioned reasons lead us to believe that dialogue systems extended with
multimodal inputs and outputs are well suited for information seeking tasks.

3.2 Domain model

The domain model represents a specific knowledge about the applicative domain under
consideration. The implementation of such knowledge can vary depending on the complex-
ity and size of the domain. It can take a form of a simple relational table (e.g. commands
for controlling smart home devices) or a large relational database schema (e.g. flight in-
formation). The domain model can also include a complex problem solver (e.g. public
transport routing information). In order to encompass all such varying representations,
the ISPM needs to take a unified view on the domain model.

In ISPM, the domain model is seen as a set of information targets sought by the user.
Each target is individually described by a set of attributes in form of name: value pair. The
domain model is implemented as an object with the following methods (functionalities):

e getAttributes indicates the names of all attributes that are used to describe the
targets. Such attributes are presented to the user as possible search constraint
categories.

25

Chapter 3. Multimodal interactive systems prototyping

e setConstraints selects targets compatible with given search constraints expressed
by the user. The search constraints are in the form of a set of name:value pairs. The
targets constrained by the search constraints are called the current search space.

e getCurrentSearchSpaceSize indicates the overall number of targets compatible with
current search constraints. The information is used by the dialogue manager to
decide if the search targets are few enough to be directly presented to the user,
or if the dialogue should advance with the search criteria elicitation or if the over-
constrained situation (i.e. when no targets are compatible) should be solved.

e getCompatibleValuesForAttribute For a given name of an attribute, the domain
model has to return all values of that attribute name, such that those values are
used to describe the targets in the current search space. In other words, the domain
model indicates a set of values (of given name) compatible with the current search
space.

The results of this function are (1) presented to the user in order to enable a direct
selection of a value which reduces the current search space without generating an
over-constrained situation, (2) shown to the user in order to indicate the character-
istics of the current search space (e.g. after selecting a departing airport, the system
shows only destinations directly reachable from that airport), and (3) used by the
dialogue manger to optimize the constraint elicitation phase of the dialogue, as the
dialogue manager does not elicit from the user preferences for attributes that have
less than 2 possible values.

e getCompatibleObjects In certain cases, some individual attributes form a logical ob-
ject. Hereafter, we call such a set of attributes the composite object. An example of a
composite object is Person that is decomposed into individual attributes FirstName
and FamilyName. From a user’s perspective, it is natural to view and select such
objects directly as tuples consisting of individual attributes, while the possibility
of selecting only individual attributes should still be preserved (for instance, a user
may know and select only a first name of a person). The domain model supports
that option by implementing this method, which returns tuples of values describing
the current search space based on the given set of individual attribute names.

In other words, this method is similar to the getCompatibleValuesForAttribute
method, but it operates on a set of attribute names and returns tuples of values.
The set of attribute names is not formed by random attribute name combinations,
but only by the attribute combinations that form logical objects (such as person,
date, address, etc) which are expected to be presented as tuples of values to the
user during the interaction.

e getExtralnfo The domain model might be required to provide additional specific
information about attribute values or targets, for example bus stop coordinates or
to indicate the number of targets associated with each available constraint value.
Such information is not crucial for a multimodal dialogue system, but can improve
graphical output of the system and thus facilitate the information search process
for the user.

The domain model can actually be seen as a virtual table shown in Table 3.1, where the
domain model functions are selections or projections on columns. The presented virtual
table is the domain model of an application for providing information about restaurants.

26

3.3. Multimodal generic dialogue node (mGDN)

Each restaurant is described by its location, type of food and opening hours (the opening
hours attribute is decomposed into day and time of day). Those attributes can be used
by the user (and the system) to search for a relevant restaurant. The unique identifier of
the restaurant (information target) and the detailed restaurant information (which are to
be provided to user) are on the right side of the table.

Opening hours Restaurant
Location | Foodtype Day‘ Time]D‘ Name ‘ Site

church | chinese | Sat | 10-22 || 6 Wok | http:// ...
station null Sun | 15-20 Le Café | http:// ...
station null Mon | 8- 18 7 | Le Café | http:// ...

\]

Table 3.1: The domain model of an application in form of virtual table.

As it can be seen in the virtual table, the restaurant “Le Café” is described by several
values of Opening hours attribute. This fact has to be represented using several rows in
the table, although the single target (restaurant “Le Café”) is still uniquely identified by
a single unique ID. Unfortunately, this approach leads to a combinatory explosion of the
number of rows in cases when an information target is described by several multi-value
attributes.

Another aspect is that the information targets do not need to be identified by all at-
tributes. For example, the “Le Café” does not provide any food and therefore the Foodtype
attribute has null value. This example also illustrates a possibility of modeling several
semantic types of information targets — restaurants and bars (with no food). If this fea-
ture is important for the application or user, the target description can be extended by
another attribute TypeOfService, which takes the type of information target into account.

In summary, the concept of virtual table makes it easier to understand the domain model
and the rest of the ISPM. Nevertheless, implementing the domain model directly in form
of a table has several drawbacks and we recommend it only for simple and rather small
domains. In such situations, the ISPM facilitates the implementation of the domain model
by providing a Java object that only needs to be initialized with data in file with a simple
textual tabular format. The advantage is a quick design of small domains, and no need
to implement anything in Java.

In case of more complex domains, it is more reasonable that the system designer imple-
ments the domain model functions using any convenient domain knowledge representation
(SQL, problem solver, composition of webservices, etc). The only requirement imposed
by our framework is that the domain model is finally wrapped as a Java object that
implements all necessary domain model functions (mentioned above) through a specific
interface within our Java implementation of the ISPM.

3.3 Multimodal generic dialogue node (mGDN)

In our approach, an elementary building block of a multimodal dialogue application is
called multimodal generic dialogue node (mGDN). The mGDN serves as a context-specific

27

Chapter 3. Multimodal interactive systems prototyping

communication mediator between the core of dialogue management and the user. The
mGDN represents the current focus of the dialogue (the question under discussion) and
controls all multimodal inputs and outputs within its scope. In particular, the mGDN
communicates with the user using natural language and provides interactive graphical
component.

The concept of the mGDN comes from its predecessor GDN, the generic dialogue node
used to define the communication context (i.e. the question under discussion) in vocal
dialogue systems. The term GDN was first used by Bilange [8], and adapted by Raj-
man et al. [94, 95] and Melichar [66].

The system designer has to decompose the foreseen application into a set of communi-
cation contexts and associate each context with one mGDN. Because this can be done
properly only when knowing the expressive power of mGDN;, this section first introduces
the mGDN design principles and then provides examples of already implemented reusable
mGDNs. The generic, internal operational model of an mGDN is presented in the fol-

lowing section 3.4. Section 3.5 is dedicated to building an application from individual
mGDNss.

Typically, an mGDN is associated with an attribute of a domain model and its role is
to perform a simple multimodal interaction with the user in order to obtain a value
representing the user’s preference for the associated attribute (a search constraint). An
mGDN can also be associated with multiple attributes — this is required in cases when
the user should be able to make a selection of compound attribute values (person or
address). Besides mGDNs associated with some attribute in the task model, the system
also contains additional mGDNs used either to present search results (target) to the user,
or mGDNs invoked by the dialogue manager in specific situations, such as at the beginning
of the dialogue or when the user over-specifies his/her request.

3.3.1 Design principles

Depending on their role in the system, various mGDNs can have different graphical layouts
and take different models of interaction with the user. However, in order to ensure that
the complete system composed from individual mGDNs is coherent as a whole, every
mGDN has to respect the following design principles:

e The mGDN is an elementary building block of the multimodal interface. There are
several types of mGDNs, each encapsulating a particular kind of interaction and
providing various graphical layouts (an overview is in section 3.3.2). This allows
rapid building of multimodal dialogue systems by exploiting existing building blocks.

e The mGDNs represent the only interaction channel of the user with the system. In
other words, all inputs/outputs going to/coming from the system must be managed
by some mGDN. The underlying design implication is that every active piece of the
graphical user interface must be related to some mGDN.

e Every mGDN is fully multimodal, enabling the user to interact with the mGDN
using any combination of the modalities available in the application. This ensures
that the user can interact with the system in the most convenient and comfortable
way, and allows the user to switch modalities if a particular modality does not have

28

3.3. Multimodal generic dialogue node (mGDN)

the desired effect on the system. Thus, the use of fully multimodal mGDNs improves
the robustness of the system itself.

e Only one single mGDN 1is in focus at any given time. This principle ensures the
overall feasibility of the system by constraining, in a logical fashion, the possible
interactions with the system and the interpretation contexts for multimodal fusion
at any given point in time. The mGDN in focus should be clearly marked.

Even though only one mGDN is in focus, several other mGDNs can be active,
i.e. ready to process the input provided to the mGDN in focus. This functionality
is needed to support the mixed initiative dialogues.

e The mGDNs must be independent entities clearly separated from the rest of the
system so that everybody can design their own mGDNs and plug them into the sys-
tem. This is important since building practical multimodal systems for a particular
domain might reveal the need for mGDNs supporting a special kind of interac-
tion or a special treatment of modalities. At the same time, it is useful to design
mGDNs generic enough so they can be reused in situations with similar interac-
tion needs. Then, the application can be created from a small number of reasonably
generic, customizable mGDNs. A convenient solution for mGDN design (used in the
ISPM implementation) is their customization with a simple declarative configura-
tion file, leading to fast design of systems through reusability of already implemented
mGDNs.

3.3.2 Examples of mGDNs with various interaction models

Any methodology for prototyping of software systems needs to find its balance between
flexibility and speed of design.

Designing a system using predefined elementary blocks is fast, although the available
blocks might not be completely appropriate for the targeted system. Having a huge
library of miscellaneous building blocks is not an optimal solution either, as the cost
of building such a library would be too high and it is still not guaranteed that all the
necessary blocks are available in the library. A better approach is to allow each building
block to be customized with some parameters. The cost of initial implementation of such
a block is slightly higher than in case of a non-customizable block, but the reusability of
building blocks is substantially enhanced.

This solution was adopted for the design of mGDNs. An mGDN is implemented in form
of a Java class with a well-specified interface and an associated graphical component. The
mGDN implementation can be customized with declarative parameters, mainly concerning
linguistic information (prompts, grammar), tailoring it to its specific applicative use.

In our experience, an application is composed of a larger number of mGDNs, most of
them having the same internal functionality and mechanisms for interaction with users.
It is therefore straightforward to use one (or a low number of) mGDN implementation
and customize it with context-specific parameters. The parameters usually represent the
data that the mGDN manipulates with (prompts, grammar, and items to be presented
to the user) and can therefore influence the interaction behavior of the mGDN only to a
certain extent.

29

Chapter 3. Multimodal interactive systems prototyping

If the internal and external functioning of an mGDN (i.e. the interaction model) needs to
be substantially altered, it is better to use another mGDN implementation with its own
set of customization parameters. We have therefore implemented several mGDNs; which
do differ in the way of interaction with the user or in their main purpose. We give an
overview of the customizable mGDNs in the following subsections together with examples
of situations where they should be used.

If no suitable mGDN is available for a given application, we give the system designer a
possibility to implement (in Java) a specific mGDN, which can fully satisfy the application
needs. In order to preserve the coherence and scalability of the overall solution, we
strongly advice to keep the design principles formulated in section 3.3.1 during the design
and implementation of new mGDNs.

We believe that giving the designer a possibility of building an application from a few
existing types of main blocks (mGDNs) that can be easily customized to a specific context
of use, as well as a possibility of implementing own specific building blocks, brings the
right balance between speed and flexibility of the system design. The very first prototype
can be quickly build only from predefined blocks, and later it can be iteratively improved
by replacing the generic building blocks (mGDNs) by newly implemented blocks (which
is, of course, a more time-consuming process).

In the rest of this section, we provide an overview of existing examples of mGDNs with
various interaction models and layouts.

i. Simple value selection

This mGDN is intended for situations when the user is supposed to select a value for an
attribute from a predefined list of values. The values usually represent different search
criteria of the same category that are to be specified by the user.

An associated textual and vocal prompt first asks the user about his/her preference for a
value of the given attribute and displays a list of possible values. The user may directly
provide the value, browse the list for available options, ask for clarification or repetition

of the prompt. The user may also decide not to select any value by simply closing the
mGDN (see Figure 3.1).

The user may provide the value in several ways:

e The user can directly say or type the value. This option is available even when the
value is not visible on screen.

e The user can select a value by indicating the associated numerical identifier dis-
played next to the desired value. This option is convenient in cases when the per-
formance of a speech recognition module is low or when the value is linguistically
too complex or too long to be effortlessly pronounced.

e The user can use the pointing device (mouse, pen, touchscreen) to click on the
desired value. In those cases, scrolling the list in order to display the desired value
is essential.

The values displayed in the list can be from a predictable set of values (e.g. days of weeks,
months of year) or from unpredictable set of values (e.g. movie titles, search keywords).

30

3.3. Multimodal generic dialogue node (mGDN)

[+][e]{c][o][e][¢]ls][n][][][s][Jm][n][o][e]{a] [~][s Jlx][u][v]w][x][¥]]

| Keyword V9

foot

[

guess

w

heawy

=

ikea

i

laugh

=)

little

Tl

g |main

9 |martin

10{nine

11 |outside

12|people

13| popular

14|proposal A 4

Figure 3.1: mGDN layout: selecting a search constraint (keyword) from a list

The possibility of browsing through the list is especially useful when values are from an
unpredictable set. The user has an option of scrolling the list up and down or jumping
directly to values starting with a specific letter — all such actions may be performed using
any modality combination. The “letter indicators” disappear from the top of the screen
when all values fit in one screen and hence no scrolling is needed.

This mGDN is intended for situations when values are from both a predictable and an
unpredictable set of values. The number of values in the list can be small or large.
However, when the graphical component is displaying a large number of unpredictable
values, the performance is not optimal as the user has to scroll over many pages. In those
situations, another mGDN offering, for instance, an approximate search within values
would be recommended [80].

ii. Geographical data selection

This mGDN is suitable for situations when the user should indicate a geographical loca-
tion. The geographical locations are displayed on a map, see Figure 3.2.

Displaying geographical locations on a map is particularly useful when the user is looking
for locations in a specific area or near some place, or when the user is only partially
familiar with the local geographical situation — the user may roughly know the map of
the area, but does not remember the local names.

The geographical locations are displayed on the map in two colors: in red are the locations
compatible with the current search constraints and in black with grey names are all other
locations. This is convenient for the user because of (at least) two reasons:

e When values compatible with the current search constraints are indicated, the user
can avoid selecting a search constraint that causes the search to be over-constrained,

31

Chapter 3. Multimodal interactive systems prototyping

" Close

Figure 3.2: mGDN layout: selecting a city on a map

i.e. that no solution satisfy all the search criteria. This feature may therefore accel-
erate the search process when multiple values are candidates for search constraints.

e The mGDN gives an overview about the current search space. For instance, a restau-
rant information system can indicate that the user-selected Chinese restaurants with
low prices are available only in certain cities.

The mGDN gets the information about values compatible with the current search con-
straints by calling the functions of the domain model (see section 3.2).

In this particular mGDN implementation, we have not implemented zooming and scrolling
features of the map, because the static map of Switzerland fully satisfied our needs.
Adding those features should be relatively straightforward, analogical to scrolling features
of the mGDN for simple value selection.

iii. Composite value selection

Often, users have to indicate a composite object, i.e. an object consisting of several ele-
mentary attributes. Examples of such objects are: person (first name, family name, ad-
dress), address (street, city, state), document (name, type, publisher), date (day, month,
year), etc.

Although it is possible to decompose such objects into elementary attributes and ask the
user to specify individual values for those attributes, it is much more convenient for the
user to select directly the whole object, especially in cases when the number of these
objects is reasonable low. In such a situation, the mGDN for composite value selection
can be used. The layout of that mGDN is shown in Figure 3.3. Every line represents
an individual object and the columns indicate the individual attributes. The option of

32

3.3. Multimodal generic dialogue node (mGDN)

1 [Agnes' furniture choices ppt
2 |Agnes' presentation npt
3 [Andrei's furniture choices npt
4 |Andrei's presentation npt
A |Components design npt
B [Denis'furniture choices npt
T |Denis' presentation npt
8 |Final furniture selection ppt
9 |Interface concept ppt
10{Introduction ta the task ppt
11 [Meeting agenda ppt
12|Mirek's presentation ppt
13|Proposed furniture selection ppt
14|Trend watching ppt

" Close

Figure 3.3: mGDN layout: selecting a document (title, type) from a list

selecting only the individual attributes is still available and the individual attributes can
be accessed by selecting their name in a column header.

First name Family name Speaker's address Speaker's role

i
|

Agnes Lisowska ISSCOTIMIETI... FhD student
.l Andrei Fopescu-Belis ISSCOTIMIETI... Fost-doc Researcher
. Christine urnknaown unknown... Industrial Designer
- Denis Lalanne DA Post-doc Researcher
l Ed Lnknown unknown... Marketing Expert

|

. Martin Rajman EPFL... Frofessaor

u Mirek Melichar EFFL... FhD student
u Sridhar Dasari unknown... Froject WManager
. Suszan Armstrang ISSCOTIMIETI... Frofessor

" Close

Figure 3.4: mGDN layout: selecting a meeting participant (first and family name, address,
role) from a list

Since composite objects often represent physical objects in the real world, an image of
such an object may help the user to select the sought object (for instance, a person’s face).
We have therefore also implemented a possibility of displaying object icons together with
the objects, as shown in Figure 3.4.

33

Chapter 3. Multimodal interactive systems prototyping

Although the mGDN gives the user an impression of selecting whole objects, the objects
are internally represented as a set of individual attributes related to underlying mGDNss.
As a consequence, by selecting a value in a composite mGDN the user actually selects a
set of individual values associated with the object.

Agenda aicle
Agnes' furniture choices doc
Agnes' notes notes
Agnes' presentation posters
Andrei's furniture chaices ppt

Andrei's notes

Andrei's presentation
Components design
DIGSE article

Denis' furniture choices
Cenis' notes

Denis' presentation
Final furniture selection

Interface concept

-More...

,
Close

Figure 3.5: mGDN layout: selecting individual attribute values of a document (title, type)
from columns, because the number of documents is too high to fit in one screen

In cases when the number of complex values is too high and cannot fit in one screen, the
mGDN automatically changes its layout to a column layout (see Figure 3.5). This layout
displays values of individual attributes, rather than whole composite objects. In many
cases, the number of values for individual attributes is low enough to comfortably fit in
one screen, in contrary to the number of objects composed from those attributes. The
user may directly select individual attributes (e.g. types of sought documents or persons
with a given function). As soon as the number of composite objects becomes reasonably
low, the mGDN changes its layout to display again the whole objects.

iv. Switch

Often, the attributes in the system are only loosely coupled. They do not form composite
objects, but they still have some common properties. It is a good practice to group
such attributes into one visual space, helping the user to access individual or composite
attributes deeper in the hierarchy.

A switch mGDN is perfectly suited for this type of hierarchical grouping (see Figure 3.6).
Concerning the internal functionality, it behaves similarly as the composite value selection
mGDN with column layout. However, from the user perspective, it is more like a menu
with sub-menu items. In order to better indicate the meaning of each sub-menu item,
examples of values available in the sub-menu items are displayed on the screen.

34

3.3. Multimodal generic dialogue node (mGDN)

ExAMPLES: battery, cluttered,
virginia, moral, scatter,
impression, fifth, material,
tube, squeeze, support, paris,
dark, telewision, won, etc.

Topic

EXAMPLES: Plugs and internet
cannection paints, The type of
chairs to get, How to place the
furniture in the room, who has
seen the movie, Meed to talkto
others, description of the
design, WWhere to put the
armchairs, There's a free room
at 1S5C0, MNeed to add a third
lamp, Size of the furniture and
space needed for it, Location of
the doar, Problem of people
heing isolated, “WWhere to put the
tahle, Colours to use in the
roam, elimination of choices, eto.

ExAMPLES! Introduction to the
task, Martin's notes, Andrei's
presentation, Denis' furniture
choices, Susan's notes, Agnes'
presentation, Interface concept,
Wirek's presentation, Denis'
presentation, Agnes' notes,
Trend watching, Andrei's
furniture choices, DIGS article,
Denis' notes, Agenda, etc.

" Close

Figure 3.6: mGDN layout: a menu with three sub-menus, examples of values in sub-menus are

shown

v. Document browser

Not every mGDN gathers the search constraints or preferences of a user (i.e. is not neces-
sarily associated with a constraint attribute of the domain model). A document browser
mGDN is intended for presenting a document (or any other page-based graphics) to the
user and is typically associated with an attribute of the domain model that describes

a~

1 81 |Famgo(1996) 65297 (43| 78 |Muters Crosmng (1990) 15138
[19 51 | The Sidh Senge (1999) wma 78 ;mum; 745
20 81 | Fores Gurg (1994) mmu e ?W[TMI 54,822
o At m ook * . -ﬂ:“ﬂ : mmlu | .7-‘ [m_m oy shenty {‘_;ua.'l 6418
2| 81 |Temiamor2 Jugs oy | 77011 (@] 78 |tumche (1994 2137
23 80 | Ucforghen (1992) 31141 |48 78 | IheSulebows (1998) 49,596
20 80 |Datorggeabragmogme (97) | 424549 78 |Beautvacdite Beast(199Y) 24919
[25 80 |Loarenn(199e) 33035 (50 78 | Eawolu Ghrisimas (1998) =0

My Proposal: The Big Lebowski (1998)

* Directed by: Joel Coen

» Written by: Ethan Coen & Joel Coen

= Cast: Jeff Bridges, John Goodman, Julianne Moore, Steve
Buscemi, Philip Seymour Hoffman, John Turturro, etc.

* Plot summary: Jeffrey “The Dude”™ Lebowski is the ultimate LA |

slacker, until one day his house is broken into and his rug is peed
on by two angry gangsters who have mistaken him for Jeffrey
Lebowski, the LA millionaire, whose wife owes some bad
people some big money. The Dude becomes entangled in the plot
when he goes to visit the real Lebowski in order to get some
retnibution for his soiled rug, and is recruited to be the liason
between Lebowski and the captors of his now "kidnapped” wife.

Page 1b of 2

P S

Figure 3.7: mGDN layout: document browser

35

Chapter 3. Multimodal interactive systems prototyping

search targets. The user can scroll the document up and down and even partial views on
document pages are possible, see Figure 3.7.

The document selection (specification) is not a part of this mGDN. The document is
selected as a result of interaction with another mGDN(s). The document pages are
obtained in form of links to document pages (graphical images) from the domain model.

vi.

Current search criteria

This mGDN allows to manage a set of current search constraints, previously specified by

user.

vii.

Following functionality is available in the mGDN:

The mGDN provides an overview of all constraints understood by the system, and
thus the structure of the current query (see Figure 3.8(a)). It is especially impor-
tant if natural language recognition is involved — the mGDN provides feedback and
confirmation about what the system has understood. It is also useful when the
interaction is longer and the user is unsure what are all the constraints currently
used by the system.

The mGDN ndicates situations when conflicting search constraints were specified
and no solution is therefore available (see Figure 3.8(b)). The conflicting search
constraints are in red color, flashing and marked with exclamation mark in order to
attract user’s attention to the problem.

The user can erase some of the search constraints, either as a reaction to over-
constrained situation or voluntarily when he/she wants to modify the query. Search
constraints can be erased either one-by-one using the erase command or all together
using the clear command.

|Attribute |Va|ue # |A1'tribute |\-fa|ue
1 b Topic Fulp Fiction 1 g Keyword award ()
2|7 -"' Smaller secti.. Question 2 .'RTDF]iC Pulp Fiction 1)

%)

gl Firstname Mirek

L

_"' Srnaller secti... Question (I

=

gl Familyname Melichar

oy

gl Firstname Mirek (D

i

i Institute EPFL w

h

gl Familyname Melichar () -

Pagetor2 Deleie Page1of2 Delete

(a) Search constraints previously (b) Indication of over-constrained
provided by user situation

Figure 3.8: mGDN layout: visualization of current search constraints

Search space overview

During the information search dialogue, the user is progressively expressing search con-
straints in order to find the sought information. An overview of the search space helps the
user to better imagine the nature of the current search space and therefore more efficiently
steer the constraint specification process.

36

3.3. Multimodal generic dialogue node (mGDN)

S

[|
=
-
=
=
(0]

@
=

e S

Furniture 2 '

TR
Furniture

Bookcase 1 of 2
1 Change label

1 change label

4+ Change lahel

(a) Targets satisfying the search (b) Books can be organized in two
query are displayed as light-green dimensions, using shelf and leg la-
books bels

=+ Change label

Figure 3.9: mGDN layout: a search space overview — the library metaphor

In our implementation, we present the search space using the library metaphor (see Fig-
ure 3.9). The main units of sought information are displayed as books in a bookcase. The
books containing information relevant to the current query are displayed as light-green
books and the others are displayed in dark-green. The user can open the book in order
to find details of the given book (the book is displayed in context of another mGDN).

Sometimes, the information sought by the user is actually spread over the whole search
space. For instance, imagine a database of meetings and a user wanting to find out
where most of the meetings took place. In such case, specifying individually each possible
location of meetings and counting how many meetings happened there becomes a tedious
process.

However, our search space overview mGDN allows arranging the books by miscellaneous
criteria in two dimensions: labels can be associated with the legs and the shelves of
bookcase, see Figure 3.9(b). The labels can be selected using corresponding buttons
at the bottom of the bookcase — the association is done in context of another mGDN,
typically a simple value selection mGDN. When the bookcase becomes too small to display
all books, blue scroll arrows appear on left and/or right of the bookcase and the user can
move to other bookcases as he/she would do in a normal library.

The question of “where most of the meetings took place?” can be now easily solved
by assigning the place of meetings to the legs of bookcase and the most occupied shelf
indicates the place where most of the meetings took place.

37

Chapter 3. Multimodal interactive systems prototyping

3.4 Operational model of an mGDN

A role of an mGDN is to intermediate communication between the user and the core
of dialogue management in a specific context. A context is typically a system request
to select a value for an attribute from a predefined list of possible options, presenting
search results to the user or resolving some dialogue problem. After the core of the
dialogue management selects the context (an mGDN), the control is passed to the selected
mGDN, which becomes responsible for the communication with user. The mGDN returns
the control back to the dialogue management core after a satisfactory response has been
obtained from the user. All local interaction (such as scrolling the list of values, providing
the help, etc) is resolved at the mGDN level.

The mGDN is initialized with information about the state of the global dialogue manager,
has permission to read information contained in the domain model, is associated with a
corresponding graphical component and communicates with input and output managers.
The input and output managers are system modules responsible for gathering the multi-
modal response from the user, for issuing system prompts in natural language and for all
necessary synchronization (timings) of the multimodal interaction. The input and output
managers are in practice connected to a chain of other modules that actually gathers and
processes the user’s response and realizes the system output.

Once set under focus, an mGDN operates in a loop decomposed in three phases as de-
scribed in the following sections.

3.4.1 Phase 1: Presenting a multimodal request to the user
(multimodal fission)

Based on the system state (number of values to be presented, previous response of the
user, etc), the system request is prepared in the form of a textual and vocal natural lan-
guage prompt. The mGDN also updates the layout of the associated graphical component
and the displayed values.

Depending on the system state, the mGDN may decide to present the request as an open-
ended question (“What is your preferred X?”) or as a command (“Select your preference
for X). The system may give help to the user (“Possible values for X are: ...”) and
decide to present a short or long (or more or less polite) version of the textual/vocal
prompt. In cases when the system asks the user to select an item among several options,
the vocal prompt can either enumerate all these options or the options can be displayed
only on the graphical component and the prompt can only refer to displayed options
(“Select one of X displayed on the screen”). The choice of graphical presentation is
influenced by a combination of factors like the size of the screen, precision of the input
device (mouse, pen, touchscreen), the size of information to be displayed (number of
options the user is asked to select from) and the nature of the displayed information (map,
list of persons). We showed some examples of developed mGDNs and their information
presentation strategies in section 3.3.2.

In our Java implementation of the prototyping methodology, mGDNs modify the state
of the associated graphical component directly by invoking component-specific methods.
The vocal and textual versions of the natural language output are prepared and sent to the

38

3.4. Operational model of an mGDN

input-output manager (IOmanager). The system contains one single IOmanager shared
by all mGDNs. Having only a single [Omanager contributes to a coherent presentation of
natural language requests to the user: the textual version of the prompt is always displayed
in the same area and the vocal version of the prompt keeps the same audio properties
as it is always synthesized by the same text-to-speech synthesizer. The IOmanager also
consistently manages all synchronizations related to barge-in and input-output timings.
This approach also makes it straightforward to add new output modalities: the new
output modalities will be centrally realized by the IOmanager and the mGDN’s definition
of multimodal output messages will be extended. However, if the new output modality
is highly context-sensitive, the control and realization of the multimodal output can be
partially performed by the mGDN itself (similarly to how it is done with the control of
graphical components).

Although we use our own format for describing the multimodal output messages, it is
realistic to assume that mGDNs can prepare the whole multimodal presentation in one
of the standardized languages, such as SMIL (Synchronized Multimedia Integration Lan-
guage, see section 2.4 on page 22). Then, the IOmanager would simply be replaced by a
SMIL-compatible player.

3.4.2 Phase 2: Gathering user’s response (multimodal fusion)

When a multimodal output starts to be presented to the user, the system must be ready
to receive the user’s response. The user can respond using any interaction channel or
their combination.

In our approach, we foresee a specialized recognizer for each interaction channel. The rec-
ognizers can be configured dynamically based on the current interaction context (mGDN)
and are required to produce a set of semantic pairs (set of name:value pairs) describing
the user’s input in a given modality. Each semantic pair is augmented by a timestamp to
facilitate the fusion of results of different recognizers. For instance, a speech recognizer
coupled with natural language understanding modules is considered as one recognizer,
with the possibility of adjusting the language model and interpretation process depend-
ing on the current mGDN. The output of such a recognizer is a set of semantic pairs
expressing the semantics of the user’s last utterance within the context of the current
mGDN. Another example of a recognizer is a graphical component that produces seman-
tic pairs as a response to a user pointing on it.

The ‘semantic pairs set’ formalism is sufficient for most of user inputs provided within
a restricted interaction context in a specific domain. For instance, the user utterance “I
would like a big pizza with ham and cheese and two beers” can be expressed as the follow-
ing set of semantic pairs: {pizza,size:large, pizza_topping:ham, pizza_topping:cheese,
drink quantity:2, drink type:beer} (assuming the semantic pair names and values were
predefined in the domain). However, this formalism is unable to efficiently express rela-
tions between provided attributes — it cannot correctly describe user inputs like “I want
one small pizza with pepperoni and one big pizza with mushrooms”. Since such a limitation
is inherent to all typical frame-based dialogue models (see section 2.3.2), we consider the
set of semantic pairs formalism to be sufficient for our (essentially frame-based) approach
to dialogue modelling.

39

Chapter 3. Multimodal interactive systems prototyping

Sets of semantic pairs produced by individual recognizers are fused in the modality fu-
sion module. The fusion is usually done by simply merging sets of semantic pairs with
the possibility of resolving any cross-modality ambiguities using semantic pair timestamps
(notice however that real semantic ambiguities or contradictions in the user’s input are not
resolved by the fusion module, but can be resolved later by the dialogue management).
For instance, the classical example “Put that there” [11] can be resolved in the fusion
module by the temporal alignment of the semantic pairs coming from the speech recog-
nizer {action:move, object:?, location:?} and semantic pairs from the pointing modality
{pointingTo:objectX, pointingTo:placeY}, resulting in a final set of semantic pairs com-
pletely describing the user’s multimodal behavior in the last dialogue turn {action:move,
object:objectX, location:placeY}. Yet another responsibility of the fusion module is the
time synchronization of recognizers employed in the system and handling their timeout
related operations.

The resulting set of semantic pairs describing the user’s last multimodal input is then
received by the mGDN under focus.

The advantage of this approach is that mGDNs can be created to a certain extent in-
dependently of modalities used in the system, thus making experimenting with different
modalities simple (no need to change existing mGDNs when adding or removing modali-
ties). Having the user’s whole multimodal input expressed in the simple form of semantic
pairs enables replacing real recognizers by a human expert during Wizard of Oz simu-
lations (as discussed in Chapter 4). Furthermore, the whole framework for multimodal
fusion outlined above can be replaced by another scheme (the research on possible frame-
works for multimodal fusion is still ongoing, see [76, 117, 113, 55, 84]), as long as the result
is expressed in a form of semantic pairs. All the external components for multimodality
processing are actually independent of mGDNs, but these components have information
about the currently focused and active mGDNs. Based on this information, the exter-
nal recognition components can adapt their behavior — the currently focused and active
mGDNs naturally define the context for interpretation of user’s input.

Similarly to the multimodal output of the system, the formalism for expressing user’s
multimodal input is a subject of W3C standardization activities. The standardized lan-
guage is called EMMA (Extensible MultiModal Annotation markup language), and it is
realistic to assume that EMMA can replace our formalism of semantic pairs. Although
EMMA was still a working draft at the time of writing this thesis, it seems that EMMA is
an extended version of the “set of semantic pairs” formalism and for that reason, it should
be easy to use any EMMA-compatible multimodal fusion framework in our system.

3.4.3 Phase 3: Treating the user’s response (local dialogue
strategies)

After the user’s multimodal response has been expressed in form of semantic pairs, the
system has to decide on the next step in the dialogue. The decision making mechanism of
the dialogue manager is referred to as dialogue strategy. In our approach, the dialogue-
management handles dialogue strategies at two levels: local and global.

Local dialogue flow management strategies handle situations that are fully in the scope of
a given mGDN. The goal of these strategies is to guide the user towards providing some

40

3.4. Operational model of an mGDN

information related to the mGDN’s role in the system. Each mGDN implements itself
the local strategies and when the local strategies take place, the control remains at the
mGDN level.

A typical responsibility of local dialogue strategies implemented within every mGDN is
(1) to provide a help to the user, (2) to resolve situation when recognition of users input
fails (namely speech recognition), (3) to react when user is not providing any input, and
(4) to handle a user’s request for last system prompt repetition or reformulation. In these
situations, the mGDN has to classify the situation and to select a relevant system prompt.
The processing then continues by Phase 1 (see above in section 3.4.1).

Additional local dialogue strategies depend on the particular type of interactions imple-
mented by a given mGDN. The mGDN that allows selecting a value for an associated
attribute from a list (see Figure 3.1) has additionally to strategies (1-4) also to implement
reactions to (5) scrolling of the list up and down, (6) selecting a value based on its asso-
ciated numeral index and (7) direct scrolling to values starting with a specific letter. The
mGDN that presents geographical information (see Figure 3.2) has to implement reactions
to (8) a user request to zoom in/out and (9) scrolling the map left /right /up/down. The
mGDN that presents multimedia recordings (video) has to have (10) reactions to requests
of stopping/starting/rewinding the multimedia.

All the above mentioned reactions (local dialogue strategies) are determined by the mGDN
by a run-time analysis of semantic pairs produced by individual modality recognizers in
Phase 2 of the mGDN operational loop. The information about which modality has
produced a particular semantic pair is typically irrelevant. The user can, for instance,
require the list to be scrolled down by clicking on a scroll arrow, giving a vocal command,
typing a command, or the request for scrolling may be detected from eye gaze of the user.
The mGDN reaction is always the same, regardless the modality that the user used to
perform the action.

As soon as no local strategy can be applied or the user has provided information required
by an mGDN, the mGDN loop terminates and the control is given back to the global
dialogue manager.

Global dialogue strategies control the dialogue flow at the level above mGDNs. This
includes determining and controlling which mGDNs need to be treated to accomplish the
goals, activating those mGDNs, processing newly acquired search constraints from the
user and selecting the next most relevant mGDN. Additionally, the global management
strategies treat issues such as resolving incoherencies in input, restarting the dialogue
on user request, handling dead-ends in the dialogue, or ending the dialogue altogether.
The decision about which global strategy should be applied is based on an analysis of
the existing set of constraints provided so far by the user during the dialogue, on the
user’s explicit preference about the next mGDN under focus, and on the model of the
application task. These strategies are implemented in the global dialogue manager and
will be described in section 3.5.2.

From the perspective of an mGDN;, it is important to recognize semantic pairs related to
global dialogue strategies and forward them together with power of control to the global
dialogue manager. The Table 3.2 provides an overview of all semantic pairs defined in the
system.

41

Chapter 3. Multimodal interactive systems prototyping

’ type \ description \ naming convention
a value provided by user as a result | <mGDNname>:<value>
global of mGDN interaction
user’s request for new focus (new | global.newfocus:<mGDNname>
mGDN to be selected)
user’s decision of terminating the in- | global.close:<mGDNname>
teraction with a given mGDN
user’s request for system restart global.control:restart
request for help local:help
request for prompt repetition local:repeat
shared : — . —
recognizer failing to understand user | specific state of a recognition
input (no match) component, not sem. pair
user does not provide any input (no
local input)
scrolling up/down local.scroll:<up|down>
list scrolling to items starting with se- | local.jumpto:<A..Z>
lected letter
selecting a value from list based on | local.list:<1..X>
its associated numeral index
map zooming map local.map.zoom:<in|out>
scrolling map local.map.scroll:<up|down
|left|right>
playback | control of media playback local.playback:<start|stop
|pause | forward|rewind>
local semantic pairs can be added
with new mGDNs

Table 3.2: An overview of semantic pairs used by the system.

However, the mGDNs need to resolve situations where multiple local strategies could
apply. For instance, the user may ask to scroll the list down, ask for help and provide a
new value, all that at the same time. Although such a situation seem to be unrealistic,
the system must be able to handle it as this may happen not only in cases when a user is
testing “what the system can do”, but also as a consequence of imperfect recognition of
the user’s last input. This is usually solved by a careful analysis of priorities of different
strategies and their mutual exclusivity.

Yet an additional mechanism is needed for situations where the user provides an input
concerning local strategies but for another mGDN. In this case, the current mGDN can
recognize the semantic pairs for another mGDN (they are augmented by information
about which mGDN they apply to) and treats them as they were semantic pairs for
global strategies, i.e. forwards them, together with the control of the system to the global
dialogue manger. It is then the responsibility of the global dialogue manager to offer such
semantic pairs for further treatment to the concerned mGDNs.

42

3.5. Task model

3.5 Task model

A task in a dialogue system is an activity that should be performed in order to reach the
goal of the communication. A task model indicates the logical user activities supported
by an application [73, 74]. In an information seeking system, the user performs two main
logical activities: provides search constraints to the system and browses the search results.
Ideally, the system should support alternation of those two activities, allowing the user
to be more efficient during both phases of the dialogue.

In the previous sections, we have defined the domain model that describes the domain
knowledge of an application. We have also defined an mGDN that serves as an elemen-
tary communication unit and as a building block of an application. Based on those two
constructs, we can define the application task model.

The application task model consists of three main parts: (1) the application-dependent
declarative specification of all mGDNs in the system and relations between them, (2) the
layout of the graphical user interface and (3) the application-independent global dialogue
flow management strategies. While the mGDN structure and the layout of the graphical
user interface must be defined by the designer of a particular application, the dialogue
strategies have been implemented as a part of the dialogue platform and they are generally
not supposed to be modified by application designers.

3.5.1 A structure of mGDNs

The system designer has to associate one mGDN with every attribute of the domain
model, thus allowing the user to specify any search criteria through an interaction with
the associated mGDN.

Constraints providing Results browsing
dialogue phase History dialogue phase
current searchy
criteria] |
Relevant Restauran
| restaurants details
Location |
[map]
Price level
[iist]
Domain

Domain
constraint constraint
attribute

attribute

'search space,
overview]

[document
browser]

Horizontal
arrangement

Jlist]

Vertical
arrangement

[list]

Foodtype
Jlist]

Domain
constraint
attribute

i
Dor‘na\n

result
attribute

Domain result
arrangement
attribute

Domain
result
attribute

Domain result
arrangement
attribute

Domain
constraint
attribute

Domain
constraint
attribute

Domain
constraint
attribute

Figure 3.10: Task model: decomposition of an application into a set of mGDNs. The example
shows the structure of restaurant information application. The structure supports the two phases
of the dialogue communication. The name and type of every mGDN is indicated.

In case of a too large number or variety of such mGDNs in the system, the mGDNs
can be organized in a hierarchical structure as shown in Figure 3.10. The mGDNs for
composite value selection or with a switch layout are used as inner nodes of the hierarchical
structure. The leave nodes of the structure (typically a simple value selection mGDNs) are
accessed through inner nodes, making a sort of a hierarchical menu. Because the graphical

43

Chapter 3. Multimodal interactive systems prototyping

interface of the application (section 3.5.3) and the interaction flow reflects the hierarchical
structure, grouping attributes with similar meaning increases the understandability of the
interface and can resolve problems with limited space on the screen. The mGDN hierarchy
also defines a natural distance between different concepts in the system and thus can be
exploited during disambiguation of natural language input.

In addition to mGDNs associated with the constraint attributes of the domain model, the
system also contains specific-purpose mGDNs, such as the Start mGDN in the root of the
mGDN hierarchy. The Start mGDN is used at the very beginning of the dialogue and its
purpose is to welcome the user, ask a general open-ended question (e.g. “Which restaurant
are you interested in?”) and provide more detailed information about the system upon
user request. Another specific mGDN used during the constraint specification phase
of the dialogue is an mGDN for visualization and manipulation with the current set of
constraints. This mGDN can be accessed by the user at any time, or the system decides to
access it in case when conflicting constraints were provided, as defined by global dialogue
strategies (section 3.5.2).

Yet another set of mGDNs has to be defined for the result-browsing phase of the dialogue.
The relations between mGDNs are in this case more sequential, rather then hierarchical
— once user provided a value for one mGDN, the system has to transit to the following
mGDN. For instance, after the user has selected a restaurant from a list, the system
should display the details of that restaurant. The transitions between mGDNs in the
browsing phase are rather static, in contrast to the constraint specification phase of the
dialogue, where the transitions between mGDNs are dynamic, based on already provided
search constraints and on the shape of the current search space.

The purpose of explicit indication of relations between mGDNSs is to enable the dialogue
strategies to properly behave in following situations:

e Select a next mGDN to be set in focus (i.e. the next dialogue context) after a value
for the current mGDN has been provided.

e Select a next mGDN to be set in focus after the mGDN under focus was closed by
the user.

e Define a set of mGDNs where the system can transit to from a given mGDN on
explicit user request.

e Define which mGDNs can be directly accessed from a given mGDN, i.e. which tran-
sition buttons the given mGDN has to display on the user screen.

e Define which mGDNs are displayed simultaneously together on user screen (this is
in part defined by an application graphical layout, see section 3.5.3).

e Define which other mGDNSs can process the current natural language input (i.e. de-
gree of mized initiative).

3.5.2 Global dialogue strategies
The global dialogue strategies are the dialogue management decision mechanisms about

the next step in the dialogue operating above the mGDNs (as opposed to the local dia-
logue strategies that operate within each mGDN;, see section 3.4.3). The global dialogue

44

3.5. Task model

strategies were designed as application independent, however operating on per-application
defined structure of mGDNs. As such, the strategies are not supposed to be modified
by an application designer and we describe them in the following sections in order to
fully explain the model of the dialogue system behavior. When the default strategies do
not satisfy the needs of the application, they can also be modified. However, such step
requires programming in Java and our experience shows that it is often difficult to foresee
all possible dialogue situations and therefore to correctly predefine system behavior.

Because the model of the user behavior substantially depends on the presence or absence
of the screen output, we have two different sets of global dialogue strategies for system
behavior: one set for truly multimodal case when screen output is available and another set
for vocal-only settings. We present here both sets of strategies. A detailed comparison of
user behavior and corresponding dialogue strategies is given in section 3.8. A quantitative
evaluation of the strategies is provided later in sections 6.3 and 6.4.

i. Dialogue strategies for multimodal systems equipped with screen output

Branching logic Branching logic is the elementary strategy for selecting a next mGDN
after a value for present mGDN has been acquired, after the user closed the mGDN under
focus or after the user explicitly changes the focus to another mGDN.

The branching logic is statically defined for mGDNs participating in the result browsing
phase of the dialogue and follows the relations between mGDNs described by the task
model. For mGDNs related to the constraint providing phase of the dialogue, the tran-
sitions between mGDNs follow the hierarchical structure. However, in order to speed-up
the interaction, the strategy defines that the ‘return link’ does not necessarily go back
to the direct parent of the current mGDN, but rather to the first (grand) parent mGDN
that can offer more than one value (or complex value) compatible with the current search
space (compatible values are provided by the domain model, see section 3.2). The return
links are defined as a transition after a value for mGDN under focus was provided (and
it is not a multi-value mGDN) or when the user decided to close it. The return link is
also used in situations when user provided a value for another mGDN, but the current
mGDN then has at most one possible value compatible with the current search space.

Concerning the transitions requested by the user (using explicit request for focus change),
they are normally not denied, unless another strategy applies.

Presenting possible solutions (search results) The system automatically selects
the mGDN for browsing results, as soon as the number of solutions compatible with the
current search constraints is sufficiently low to be efficiently displayed. This action is
executed immediately after the last needed search constraint has been provided by the
user or the user closed a constraint mGDN. The action is not taken when the user makes
an explicit focus change request.

The implementation of the condition “number of solutions is sufficiently low” depends on
the way the solution targets are displayed (and is not necessarily related to the actual
number of solutions). For instance, when the solution targets are paragraphs in a docu-
ment collection, then the system can automatically display the document as soon as all

45

Chapter 3. Multimodal interactive systems prototyping

compatible solutions (even a higher number of them) are only within one document. The
document should then highlight all paragraphs compatible with the user’s request.

Dialogue dead-end management The dead-end management deals with situations
when a user request is over-constrained, i.e. when no solution targets are compatible with
the current search constraints. In such cases, the dialogue management changes focus to
the mGDN designed for manipulation with the current search criteria and asks the user
to erase some search constraints. No transition to mGDNs for adding search constraints
is allowed at this point and any such request results in changing the dialogue focus on the
mGDN for manipulating with current search criteria.

Nevertheless, the user is still allowed to enter to the result-browsing phase of the dialogue
on his/her explicit request and browse the search space. No results are then highlighted
(like when no constraints are specified) and a vocal prompt announces the over-constrained
situation. We allow the search space browsing in dead-end situations, as we assume the
user might be frustrated in case of restricted system interaction.

Dialogue restart The dialogue restart in a system equipped with an interactive screen
is never automated, but is always available on user request. A button with this choice
is a part of common controls still visible on the screen. The restart of the system clears
all the search constraints of current query and also resets any user-defined views on the
search space into an initiatory state.

Indications of important interaction states This dialogue strategy is not intended
for changes of focus, but rather for an indication or confirmation of miscellaneous inter-
action states.

e A set of new search constraints acquired by the system in the last dialogue turn is
indicated visually by blinking of the constraints in the mGDN for search constraint
manipulation (this mGDN is visible on the screen all the time). Visual indication
is preferred over vocal indication as it is perceived less intrusive by users. The
confirmation of newly added search constraints is particularly useful when the user
provided them vocally and may have doubts about what the system understood.

e Normally, the system allows only one value per one search constraint type (e.g. John
as Name). When the user later during the interaction specifies another value, the
system automatically replaces the old value by the new one. This is indicated
by a vocal prompt (“Search constraint John was replaced by Jim”) issued by the
global dialogue manager. The vocal prompt indication was chosen because value
replacement is difficult to indicate visually.

e When the search constraints become incompatible, the dead-end strategy is applied
and the system changes the focus to the mGDN for manipulation with current search
constraints. In addition to it, the mGDN indicates this situation by red flashing of
the constraints and by a vocal prompt indicating this situation. The search space
browsing mGDN also uses a warning prompt when user starts to browse the search
space that contains no valid solutions.

46

3.5. Task model

ii. Dialogue strategies for systems with vocal-only output

The dialogue strategies in systems with voice-only output have to be more proactive, as
the user cannot discover all the possibilities of the vocal interface as easily as in systems
with an interactive screen. Additionally, the hierarchical structure of mGDNs cannot be
presented as such to the user and therefore we suggest to use only a flat sequence of
mGDNs for vocal-only systems.

The hierarchical nature of some attributes (e.g. a person being decomposed into first
name, family name and age) can be transformed into a sequence (person, first name,
family name, age). The branching dialogue strategy assures optimal progression in the
dialogue, without asking the user for a value of attributes that are already uniquely
determined by the current shape of the search space.

Branching logic The branching logic defines a next mGDN to be activated in cases
when no other strategy applies. It selects the first constraint mGDN (in the order defined
by task model) for which the user has not stated any preference yet and whose associated
attribute in the domain model has more than one value compatible with the current
solution set.

This approach ensures that the user is asked for stating preferences for each attribute
in the sequence defined by the task model, but the dialogue is optimized by skipping
attributes that do not offer multiple values compatible with the shape of the current
solution set.

Dialogue dead-end management This strategy deals with cases where the goal of
the dialogue cannot be reached (zero solutions). To cope with dead-end situations, we
the following relaxation strategy:

1. Determine how many solutions are compatible with all the search constraints but
one. If the obtained number of solutions is smaller or equal to a predefined threshold
(called the dead-end management threshold), then provide all the relaxed solutions
to user and ask him/her to select the desired one. Otherwise, determine a set
of all “relaxation attributes”, individually corresponding to a non-zero number of
solutions when relaxed.

2. For each “relaxation attribute”, ask user whether he/she is wiling to reconsider a
value he/she previously provided. When he/she agrees, remove this value from set
of constraints and continue the dialogue according to the standard activation rules
(branching strategy).

3. If user rejects all relaxation possibilities, reset the dialogue.

Confirmation The confirmation strategy is a procedure used during the dialogue to
obtain the user confirmation of the values that have been acquired by the system. There
are two possible approaches:

e Explicit confirmation: the confirmation is simply obtained by explicitly asking the
user.

47

Chapter 3. Multimodal interactive systems prototyping

e Implicit confirmation: the confirmation is induced from the reaction of the user to
some confirmation information automatically associated with the next question.

Implicit confirmation usually leads to shorter dialogues and is often considered as more
natural by the users. Explicit confirmation is useful in special cases, such as the invocation
of irreversible actions or when the recognition confidence of the last user’s utterance is
low.

Dialogue termination The idea behind the dialogue termination strategy is that it
might be more efficient, once a limited number of solutions has been reached during a
dialogue, to simply display/utter the solution list and let the user choose the correct one,
instead of trying to continue the dialogue to refine user’s request in order to reduce the
solution set to a unique one.

Incoherencies This strategy is necessary to deal with the situations where a user pro-
vides two different values for one search constraint type (attribute). In such case, the
system has to ask the user for the preferred value once again.

If several simultaneous incoherencies occur, only one is processed and all other new values
that lead to incoherencies are automatically removed (not considered by the system). The
rule for choosing the particular incoherence pair to be processed is following:

1. If the current mGDN is a source of the incoherence, then this incoherence should
be processed.

2. Otherwise, the incoherence corresponding to the attribute associated with the
mGDN coming first in the order defined in the domain model should be processed.

3.5.3 Graphical user interface (GUI) decomposition

The information seeking dialogue consists of two phases: (1) eliciting from the user the
constraints that are needed to identify a small set of possible solutions and (2) giving
the user the possibility to browse the current solution set in order to select the relevant
solution. With respect to this dialogue structure, we propose the general GUI structure
that is depicted in Figure 3.11.

The graphical interface of information seeking system, regardless the application domain,
should include seven basic elements:

1. An area that visualizes the solution space and highlights the solutions that meet
the current constraints defined by the user. The user should have the possibility to
switch between various visualization modes, rearrange the solution space or browse
the solution space. The search space overview mGDN controls the interaction within
this area.

2. An area visualizing the set of current search constrains. Ideally, this area should
be interactive, allowing users to easily browse and delete previously entered values
of the current query. The area is controlled by the associated mGDN for current
search constraints visualization and manipulation.

48

3.5. Task model

1
2

4

Figure 3.11: A general schema of graphical user interface for information seeking systems.

3. The central zone is an area used by all mGDNs, except the two described just above.
However, in accordance with the mGDNs design principles (section 3.3.1), only the
mGDN in focus is visualized here at one time. The functionality provided by this
area is determined by the specific mGDN in focus.

4. A selector for explicitly switching between various constraint selection mGDNs. The
content of the selector needs to be defined on a per-application basis and contains the
uppermost mGDNs from the mGDN hierarchy (just below the root). The graphical
component of the selected mGDN then appears in the central zone (3).

5. System control options, e.g. access to help, submission of a new query, or exiting
the system altogether.

6. A display area for system prompts. Since the prompts are presented also in audio
modality, the user can mute the system using the loudspeaker icon.

7. An area for natural language input. The text editing component visualizes what
the user has typed and the microphone icon is used to control the speech input
processing (i.e. muting the microphone).

While the graphical elements 1-3 are controlled directly by the associated mGDN, the
elements 4-7 are shared by all mGDNs (actually, controlled via the IOmanager).

49

Chapter 3. Multimodal interactive systems prototyping

3.6 Software architecture

The previous sections were focused on the design of algorithms responsible for the inter-
action with the user. Only little has been said about how such algorithms are integrated
within a software framework. This section describes the software architecture that we
have designed in order to integrate all functionalities required by a multimodal dialogue
system.

Multimodal dialogue systems are in general complex pieces of software composed of a large
number of modules. Often, modules are created by various authors and were originally
targeted for different kinds of applications. Each module requires different data sources
for initialization, as well as information from different sources to produce its outputs.
Moreover, the number and types of modules in multimodal dialogue systems are not fixed
and there is no consensus on what exactly is the responsibility of every single module.

These factors show the need for a flexible architecture that allows for simple modification
or addition of new modules. Ideally, the architecture is packaged with modules ready for
immediate use (such as modules for speech recognition and synthesis or dialogue man-
agement) and with an environment supporting all phases of the development cycle. This
speeds up the development process and allows researchers to focus on the functionalities
of the system rather than the implementational details of the various components. Ex-
isting frameworks that might satisfy these criteria, such as Galaxy-1I [104] and the Open
Agent Architecture [63] are, in our view, too general and do not impose a predefined
communication paradigm on the dialogue system. Moreover, the distributed nature of
these systems makes debugging difficult.

For all these reasons, we have chosen another approach to module composition. Each
module is implemented as a Java class and the communication with other modules is
performed through calling their methods in well-defined interfaces. The interconnection
of the system modules is defined in the application configuration file. When the system
is launched, a special module called the application loader creates instances of all the
modules, interconnects them as specified in the configuration file and initializes them.
Since the initialization of each module can be unique (as far as the resources and start-up
parameters are concerned), there is an independent configuration file associated with each
module which is used only by that module for its own initialization.

The system contains two types of modules: graphical and functional-only. Graphical
modules are extended version of functional-only modules and theirs graphical component
is laid-down during the initialization process by the application loader according to the
application layout configuration file. The application layout file defines all graphical win-
dows of the application and each graphical module is located at one window at a specified
position and with a specified size.

In order to facilitate creating new systems, we have implemented a tool (see Figure 3.12,
[100]) that provides a GUI for the visual composition of modules. The tool allows for
a functional composition of modules and stores it to (or loads it from) the application
configuration file. We plan to extend the tool by implementing the option of visual
definition of layout of graphical components.

Our approach provides a highly flexible and easy-to-configure system, allowing for simple
module development and debugging. At the same time, the possibility of some distributed

50

3.6. Software architecture

£ _application Editor version 1.0 - 1o x|
File Edit View Help
slels|[a]2]el [c]a] wx|a]s]
Add new module:
dmanager.DMConti —
ActionPerformerAsynchro B
ActionPerformer Component
& ActionPerformerSimulator
: P
DialogStateGetter | # BusySignaler
i # CentralPane
emvironment.shared.NoneditableC / DialogStateGet| | CommanGDNControiPane
BMinput i # ConceptLevelinput{Trung)
Dialngstategéfttel # ConceptLevelinput{inot multimodal)
| 2.graphical. OnOft | / & CustomAction
7 & DMCantroller
rd ¥ DialogManager (Archiwus) =
GdnGraphicalComp
7 a
DMinput o Camn Class name:
Minput / T . ¢ - | ‘
Py
7 Settings file: | \
dmanager 2.graphical.BusySignaler
Module information:
CentralPane -
A # CommonGDNControlPane
2.graphical.C DNContralPane # ConceptLevellnput !
/ # DialogManager
Dialogh:
/’ P A N aman | * DirectTTSOutput
/ manager2.graphical. DocBrowserPane + DMCantroller
- # DocBrowserPane
environment.simple.InputNLU * Fusi B
InmisﬂE Name:
Settings file:
emvironment.simple.Userinput Tr:
InpuiSRE
| dmanager 2.graphical.User Textinput2 ‘ Program main method:
] I D Module: |DMCumruIIer = ‘
Method name: |startépplication
Messages: | il ‘
[any problems found | Apply changes

Figure 3.12: Application Editor: enables to build a new application from existing modules
and define module interconnections

processing is still fully open. On the local system, any functional module can be replaced
by a proxy that forwards the method calls to another computer (where the real operation
take place) and then receives results. From the point of view of the rest of the system,
this process remains fully transparent.

The most complex situation is when a graphical module has to be displayed on a remote
machine(s). Our solution to this problem relies on the standard VNC protocol’. We
have implemented a VNC virtual window container for graphical modules. The virtual
window does not appear on the local machine, but runs a VNC server and the content of
the window can be displayed using a VNC client on any remote machine. This solution
makes the distribution of an application extremely simple — an application is developed
and tested locally, and the local windows are replaced by VNC windows only in the final
phase of the development. This approach also allows having multiple VNC virtual window
containers — each of them just has to run one VNC server with a unique port number.
The disadvantage could be higher network bandwidth consumption compared to the truly
distributed case.

Since the Wizard of Oz simulations are an important part of our methodology (Chapter 4),
we have to be able to supervise the functionalities of certain modules or even substitute
them by a Wizard (human operator) using a special Wizard’s control GUIs during the
dialogue. This can be easily achieved by inserting a graphical WOz module as a proxy
of the module that we want to supervise. The WOz module can be located on a VNC
virtual window, making it possible to supervise the system from a remote machine. An

L'VNC systems use the RFB protocol, http://en.wikipedia.org/wiki/RFB_protocol

51

Chapter 3. Multimodal interactive systems prototyping

example: if the goal is to supervise the quality of the speech recognition, the graphical
module is plugged in between the SRE and the NLU. Then, the recognized utterance is
displayed to the Wizard who is able to modify it, if necessary. Similarly, the Wizard can
check the semantic pairs resulting from the NLU module.

In the IM2 project (that our work was part of), yet another software framework for module
composition was developed. The framework is called JFerret? and is based on plugins
that can be dynamically added to or removed from an application. The main difference
compared to our framework is that JFerret uses message broadcasting to communicate
between modules (in contrast to direct method invocation used in our systems). Such an
approach is useful in cases when many modules produce or consume only few types of
messages. This is however not our case — a multimodal dialogue system has usually a one-
to-one connection between modules and the communication is performed only between
those modules. This implies that each connection of two modules in JFerret would have to
use a unique communication channel, making the system configuration more cumbersome
than in our approach.

The next section describes a generic schema of multimodal dialogue systems. Mostly, it
can be used directly without any modifications, for instance when the aim is to quickly
study user behavior with the new type of system. Nevertheless, our flexible software ar-
chitecture enables the option of replacing some of the modules with newly created ones,
for instance when the impact of performance of different speech recognizers on the user
communication model is studied within the context of a whole application. Alternatively,
some parts of the whole framework can be replaced. For instance all modules for multi-
modal fusion or fission can be replaced by more efficient and powerful schemes.

3.6.1 A generic schema of a multimodal dialogue system

Although our software architecture provides means for flexible interconnection of modules,
we have observed that the main schema of multimodal dialogue system architecture tends
to have the same skeleton. The schema that we propose is depicted in Figure 3.13.

The Dialogue manager controls two groups of modules — the input and output modules.
The role of the Fusion manager is to combine the semantic pairs from the different input
sources (our existing fusion algorithm is described in section 3.4.2). The Text input field
module (area 7 in Figure 3.11) allows the user to type-in some text, that is consequently
translated by the Natural language understanding (NLU) into semantic pairs. Similarly,
the text produced by the Automated speech recognition (ASR) is translated by the NLU
into semantic pairs. Note that the ASR might be disabled using the Mute microphone
GUI module and the ASR result might be corrected by Wizard’s Recognition supervision
module. The user GUI is decomposed into mGDN graphical component(s) (areas 1, 2 and 3
in Figure 3.11) and into other static control elements (help and repeat buttons, buttons
for selecting a new mGDN in focus, indication of the system being busy by processing of
the users input, i.e. areas 4 and 5 in Figure 3.11). Pointing on the graphical components
results produces semantic pairs, which are in turn sent to the Fusion manager.

All the semantic pairs resulting from the fusion process are supervised by the Wizard in
the Semantic pairs supervision module and then are sent to the Dialogue manager.

http:/ /www.idiap.ch/mmm /tools/jferret /jferret_home

52

3.7. Application examples

Dialogue
state info

mGDN selection
supervision

Dialogue state new mGDN
Semantic pairs . Dialogue manager L Mok System output
Sem. pair (contains mGDNs) Multimodal output—- visualization
Sem. pairs Multimodal output
| \
‘ graphical *
) Input component Output Fission
Fusion manager control manager
Sem. pairs Spoken prompt Visualized prompt
Sem. pairs Sem. pairs
Sem. pairs ~mGDN(s)
graphical component(s) Mute speakers S\);isstﬁ;TiZP;ﬁg;P"
Natural Natural
language language
understanding understanding Pro*mpt

Col

mmon controls:

Utter‘ance new focus, help/repeat Te);t mhsgi}?h
buttons, busy signaler, ... Y
Recognition R — E—
Text L
Utterance
Non-graphical User desktop
M Automatic modules < modules > WQzmodtles
Text input field _Mute Utterance— speech
Scblche recognition
9 The meaning of the symbols

L

Figure 3.13: Proposed module composition for the multimodal dialogue system and the main
data flows. Every module has also an access to information about a state of dialogue manager,
but this is not indicated in the figure due to readability reasons.

The Dialogue manager processes the semantic pairs and selects the next mGDN under
focus (the decision can be modified by the Wizard in the mGDN selection supervision).
The dialogue state information is then updated, the mGDN updates the state of its
graphical component and the multimodal output is issued. The output is sent by the
Fission manager to the System prompt visualization module (area 6 in Figure 3.11) that
displays the prompt on the screen and sends it to the Text to speech synthesis module
which gives a vocal feedback to the user.

Each of the modules in the system can be sensitive to the global state of the dialogue
(e.g. the mGDN in focus, the list of active mGDNs) and can adapt its behavior accordingly
(e.g. using an appropriate mGDN-specific grammar for speech recognition). The infor-
mation about the dialogue state can be obtained by accessing the information published
by the dialogue manager.

3.7 Application examples

3.7.1 RestInfo

A system for providing information about restaurants in the city of Martigny, Switzerland.
The user can search for restaurant using any of the following search criteria: location,

33

Chapter 3. Multimodal interactive systems prototyping

type of food, price level and opening hours. A large part this dialogue model was designed
during the InfoVox3 [114, 94, 95] project.

3.7.2 SmartHome

The SmartHome system is an interactive dialogue system for wireless command and con-
trol of home appliances. The system enables the user to control the following activities:
to turn lamps on or off and dimming them, putting the blinds up or down, turning the
fan on and off, manipulating messages on the answering machine, switching on and off the
TV and selecting different channels, consulting an electronic programming guide (EPG)
as presented on the television screen and recording a movie, or setting a reminder for the
start of a movie.

Obviously, the SmartHome is not directly an information seeking system, but rather a
command performing system. Therefore, we had to express the commands in the system as
information targets described by elementary attributes of the commands (device, location,
action, day, time, movie title). The goal of the dialogue communication is actually to
identify the target (command), which is functionally equivalent to searching for it. Only
a partial modification of dialogue manager was required — as soon as the information
target (i.e. a system command) was identified, it was sent to the smart home environment
for execution rather than being presented to the user.

The system exists in German and English language versions. The German version was
intensively tested by test subjects in a real home environment, in a smart home lab of
Philips campus in Eindhoven, Netherlands. The work was carried out in the framework
of the Inspire? project [71, 49, 10].

3.7.3 Archivus

The Archivus system, described in detail in Chapter 5, is a multimodal interface (mouse,
pen, touchscreen, keyboard and voice) that allows users to access a multimedia database
of recorded and annotated multimodal meetings. Specifically, the database contains the
original video and audio from the meetings (recorded in special meeting SmartRooms),
electronic copies of all documents used or referred to in the meetings as well as handwritten
notes made by participants during the meeting, and a text transcript of the meeting itself.
In order to facilitate retrieval of information, selected annotations have also been made on
the data, specifying elements such as dialogue acts, argumentative structure and references
to documents, as well as the date and location of the meetings and information about the
meeting participants [56, 60]. The Archivus system and the ISPM were developed within
the framework of IM2 project®.

3InfoVox: Interactive Voice Servers for Advanced Computer Telephony Applications, funded by Swiss
Commission for Technology and Innovation, CTI grant 4247.1.

4Inspire: INfotainment management with SPeech Interaction via REmote microphones and telephone
interfaces, European grant IST-2001-32746.

5IM2: Interactive Multimodal Information Management, http://www.im2.ch, funded by the Swiss
National Science Foundation.

o4

3.8. From vocal-only to screen-equipped multimodal dialogue systems

3.7.4 Other applications

Using our methodology, several other applications have been implemented. For example,
an electronic catalog of cars allows searching a database of second-hand cars for sale.
Another application allows searching for apartments available for rent. We have also
studied a possibility of designing a system for searching books in a library and a flight
reservation system.

3.8 From vocal-only to screen-equipped multimodal
dialogue systems

Thinking of a multimodal dialogue as an extended voice-only dialogue is a simplified view.
Since we have an experience with both vocal [66, 13, 10] and screen-equipped multimodal
dialogue systems [18, 68|, we decided to highlight the observed differences in user behavior
when interacting with such systems [67]. The differences in user behavior are the main
motivations for using two different sets of global dialogue strategies in the ISPM (see
section 3.5.2).

3.8.1 Towards user-driven dialogue strategies

In systems that only permit vocal input, the user typically expresses some initial wishes
at the very beginning of the interaction and the system then progressively asks for missing
information, guiding the user towards the goal of the interaction (i.e. to find objects in
the database satisfying the user’s needs). It is important to guide the users in vocal-only
systems, as they may not know what piece of information they need to supply to the
system in order to limit reasonably the number of objects satisfying their needs. Each
time the user provides some new information, the vocal dialogue manager analyses the
current solution set and selects the next most appropriate piece of information the user
should be asked for. This is done by changing the focus of the interaction to the GDN
associated with a slot that is associated with this piece of information.

However, in multimodal systems equipped with a screen, users have visual feedback on
the current context of the interaction, for example, they can quickly see what type of
information the system requires, and they may have an instant global view of the current
solution space as well as of the constraints that have been provided to the system so far.
In such situations, users better understand the current context of the interaction and it
is therefore reasonable to assume that they will prefer to participate more actively in the
interaction.

The system GUI gives the user a natural possibility to explicitly change the focus (i.e. to
select the next mGDN) by clicking, and therefore the multimodal dialogue manager must
be able to handle this change. This is an extension to the original vocal dialogue manage-
ment strategies (see page 47), where such a feature seems to be very unnatural as it would
correspond to user utterances like “Now I want to specify the speakers of the meeting that
I am looking for” or “Ask me for the names of speakers in the meeting”. The explicit
focus change feature is not needed in vocal dialogue systems with mixed initiative since

35

Chapter 3. Multimodal interactive systems prototyping

speech can express directly value(s) different from those expected in the current dialogue
step. For example, if the system is asking “What was the location of the meeting?”, the
user may vocally answer “It was in Lausanne and John was speaking”, while this is not
possible (without explicit focus change) by mouse pointing when only a list of locations
is displayed on the screen.

Our other finding is that the dialogue strategies for screen-based multimodal systems need
to be less active. Specifically, in case of the Archivus system (see Chapter 5), the initial
vocal strategy for selecting the next GDN in focus (strategy called branching logic) was
negatively perceived by users. This might have two possible reasons: (1) the graphical
interface allows users to clearly see the hierarchical structure of the task, and the user
is confused when the system automatically selects an mGDN in another part of this
hierarchy (the behavior of the system does not seem to be consistent and stable), and
(2) the task that is solved using the Archivus system is more complex (larger number of
slots) than tasks that can be solved by voice only systems. This makes the automated
selection of the next mGDN (based on the current solution set) partly inappropriate from
user’s perspective, as the system may ask for information that the user does not know or
has no preferences for.

Therefore, we decided to make the branching dialogue management strategy more passive:
after a value for the current mGDN is acquired (or the user indicates that he/she does not
want to provide a value by selecting Close), the focus is automatically changed, but only to
the closest ancestor of the current mGDN in the mGDN hierarchy such that the ancestor
covers at least one slot whose value needs to be provided by the user. The hierarchical
structure of the task is actually presented to the user as a sort of hierarchical menu. From
the perspective of the user, our updated dialogue strategy therefore corresponds to going
back to one of the upper menu items in the menu hierarchy.

Another observed difference between voice-only and screen equipped systems concerns
solving of over-constrained situations (the dead-end strategy). Since the systems equipped
with screen allow the user to directly see and modify the conflicting constraints, the user
does not need any additional mechanism to resolve dead-end situations. This is in contrast
to vocal-only systems, where a relatively complex procedure is needed to inform the user
about the existing problem and propose constraints that can lead to problem resolution.

3.8.2 New role of system prompts

When extending the unimodal vocal-only dialogue prototyping methodology to the mul-
timodal systems, the design of system prompts has to be addressed differently. In a voice-
only system, prompts are the only means of conveying information to the user. However,
in the case of a screen-equipped multimodal system, users are no longer interacting with
solely one mGDN in focus. Instead, they can see several other active mGDNs displayed
on the screen at the same time and each of these mGDNs can contribute with some useful
information. In addition to the GUI for entering a value for the slot associated with the
mGDN in focus, the user can also easily see the information in other mGDNs; for instance
the already submitted search constraints, solutions satisfying these constraints, and the
signalization of an over-constrained situation. This gives the user a better idea of the
current context of the conversation compared to voice-only systems.

56

3.9. Summary

Since the original role of the prompts, i.e. request for user’s input, is often taken over by
the graphical representation, the vocal prompts can be either omitted entirely in some
situations or used to provide the user with context-dependent suggestions and advice.
For those reasons, we make the distinction between “information requesting” prompts
and “advising” prompts. For the system developer, it is not easy to identify the context-
dependent advising prompts and integrate them into the multimodal dialogue model,
compared to the requesting prompts in unimodal models. Typically, an advising prompt
should be used if the user ignores some important signal given by the graphical interface.
For example, in Archivus, meetings relevant to the user’s current request are displayed as
light green books in the bookshelf, while the irrelevant books are dark green. When the
user tries to open a dark green book, an advising prompt should be played informing the
user that this meeting does not contain any relevant information.

An advising prompt can be also useful in situations when the default prompt chosen by
the system is redundant. For example, if the user has interacted with the system for
a while, he/she does not need to hear the information provided by the default prompt
again. Instead, an advising prompt can point out an interesting aspect of the system,
teaching the user to use the system more effectively. If there is no suitable advising
prompt available, the vocal part of the prompt can be entirely omitted.

Since advising prompts should be played only when certain circumstances occur, they
are ideally implemented with conditional prompts (i.e. prompts associated with a logical
expression and used by system only when the associated expression is evaluated as true in
the context of current interaction). In order to discover the necessary advising prompts
relevant for a given multimodal dialogue system, a system evaluation using Wizard of Oz
studies is crucial (see Chapter 4).

3.9 Summary

Building an initial system prototype is an important part of any software development
process. The complexity of this task is increased when novel types of interactions between
the user and the system are foreseen, such as dialogue interactions using multiple input
and output modalities.

In our work, we propose a methodology that allows for the design and implementation of
multimodal dialogue systems for the information seeking domain. The main characteris-
tics of this methodology are the following:

e the methodology is generic, i.e. it is applicable to a wide range of information seeking
systems.

e the methodology allows for the rapid implementation of an initial prototype by
providing guidelines for the design process and ready-to-use software components.
In addition, the methodology does not require the whole system to be fully imple-
mented, as it provides integrated support for Wizard of Oz simulations (see Chap-
ter 4) helping the designer to avoid the time consuming implementation of system
features and functions, which may finally turn out to be unused by the end-users.

e the developed prototype is fully multimodal and dialogue driven. This is guaranteed
by allowing the designer to compose the targeted interface from predefined building

o7

Chapter 3. Multimodal interactive systems prototyping

blocks (mGDNs) that individually provide appropriate graphical outputs together
with consistent access to all chosen modalities. Modality fusion is performed in
a specific module external to the mGDNs, but taking into account the mGDN in
focus.

A system prototype designed with our methodology can be immediately tested with users
and thus reveal end-user behavior and modality use models. As argued in [93, 119, 22],
involving users in an early development phase increases the chances that the final system
is well accepted by them.

As far as dialogue design is concerned, we propose a two-layered dialogue model that
corresponds to an extension of the standard frame-based approach. In our approach, the
first dialogue layer (modeled with generic dialogue nodes — GDNs) defines the interaction
within specific dialogue contexts and based on local dialogue strategies associated with the
individual slots of a global dialogue frame. The second layer controls the overall dialogue
progress and relies on global dialogue strategies that provide a higher-level planning of
the dialogue. Omne of the important findings of our research is that such a two-layered
dialogue model is easily extendable to multimodal systems.

Concerning the dialogue system software architecture, we propose a variant of a plugin
approach. The resulting plugin system is, in general, intended to run as a single process
on one machine, thus making debugging and development simple. However, if needed,
the system’s graphical interfaces can be easily distributed over several machines using the
VNC protocol and a standard VNC client.

o8

Chapter 4

Experimenting with Wizard of Oz
simulations

Wizard of Oz (WOz) simulation is a technique commonly used to design and evaluate di-
alogue systems. The main principle of WOz experiments is the simulation of the targeted
system (or some of its parts) by a hidden human operator called a wizard. The purpose
is to observe users interacting with the system before the system is actually fully imple-
mented. Since, from the user perspective, the system seems to be fully operational (the
users are not aware of wizard’s interventions), WOz simulations allow to gather realistic
interaction data and to take advantage of it at any stage of the system design.

In particular, the availability of user interaction data allows for more precise identification
of user’s needs and actions (hereafter called the user model) while performing specific
tasks. The obtained user model then serves for the optimal implementation of the various
system functions that are necessary to satisfy users’ needs and to respond to users’ actions.
The targeted system functions can be categorized into two main groups: domain related
functions (i.e. functions related to the content of the domain database and to the domain
attributes used to search for information) and dialogue related functions (i.e. related to
the various dialogue situations that need to be resolved — clarification, reformulation, etc).

Wizard of Oz simulations are traditionally used for the design of natural language sys-
tems [29, 27, 34, 20, 62] and are generally considered as a suitable approach for the
identification of sound design solutions [102], as they allow to get valuable information
about how users naturally describe their needs and how they proceed in the dialogue.

We have extended the standard WOz approach for the design of multimodal systems
created with the ISPM (Chapter 3). Although several attempts of extending WOz sim-
ulations to multimodal systems have already been published [101, 45, 112], we feel that
a detailed description of this method (especially in the multimodal case) is still missing.
We therefore first review the WOz methodology and development cycle used for natural
language dialogue systems (section 4.1). Then, we explain the impact of a multimodal
environment on the initial and advanced phases of multimodal system design (sections 4.2
and 4.3 respectively). The section 4.4 provides details about the hardware configuration
of the WOz environment and section 4.5 describes the graphical interfaces that our wiz-
ards used to control the system. We evaluate the wizard’s performance when using the
provided interfaces in section 4.6, and practical guidelines for carrying out WOz studies
are given in section 4.7.

39

Chapter 4. Experimenting with Wizard of Oz simulations

4.1 Free and Constrained WOz simulations for voice-
only systems

Having voice as the only interaction channel allows for complete simulation of the whole
system by wizard — we call such experiments Free WOz simulations. The advantage of
Free WOz simulations is a quick setup (no implementation of any specific system needed,
the user and wizard are usually connected only over telephone line, sometimes wizard
uses a text-to-speech synthesizer for his outputs). In addition, any interaction problems
are easily identified and naturally solved as in human-to-human interaction, because the
wizard’s decisions are not limited by existing automated system components. On the
other hand, the wizard’s behavior should still be consistent with the capabilities of tar-
geted system and with the performance of existing NL technologies, because otherwise
the user may suspect the wizard’s presence. This would invalidate the experimental re-
sults, because human-to-human interactions are known to be different from man-machine
interactions [41, 32, 26, 107]. Moreover, the observed interactions become useless for sys-
tem design when the complexity of observed interactions is incompatible with existing
technologies. The Free WOz simulations are typically used at the very first stage of vocal
system development for user requirement elicitation.

Once the essential system functions have been identified, most of them can be directly
implemented. Those typically include the domain knowledge database, the set of inter-
action contexts (i.e. mGDNs in systems designed using ISPM) and the corresponding set
of predefined system prompts or prompt patterns. At this stage of the development, the
design decisions can be wvalidated by means of Constrained WOz simulations. The main
difference (compared to Free WOz simulations) is that the wizard simulates specific, well-
defined functionalities of the system as opposed to the system per se. In this way, it is
possible to observe users’ reactions to the system before its full and expensive implemen-
tation is made. However, the overall appearance and performance of such a system is
from the user perspective close to the final product and the gathered interaction data are
far more realistic compared to the Free WOz simulation. On the other hand, not all inter-
action problems can be resolved by the wizard, since the wizard cannot add instantly new
functionalities to the system when need for them arises. The aim of Constrained WOz
simulations is to prove that there are no major interaction problems unhandled by the
existing or envisioned system functions and that the already implemented functions work
adequately. The Constrained WOz simulations also allow gathering detailed specifications
for the implementation of functions currently simulated by the wizard.

4.1.1 Development cycle

The development cycle for natural language interfaces starts with gathering user require-
ments using the Free WOz simulations. It allows identifying all essential system functions
and building the very first system prototype from those functions. The functions that do
not require too much development time are directly implemented, while functions difficult
to implement or those requiring training data for correct implementation are simulated
by the wizard during the Constrained WOz simulation.

Outcomes of Constrained WOz simulations are an evaluation of the quality of imple-
mented functions and an identification of potential problems unhandled by the system.

60

4.2. User requirements elicitation in a multimodal environment

The designer then iteratively (with the help of Constrained WOz simulations) refines
the problematical functions and progressively automates the prototype, finally reaching a
fully automated system.

While the early WOz studies can be carried out with any user (co-workers, colleagues,
friends), at a certain point it is important to start using naive test subjects. The term
‘naive test subject’ refers to persons who have no previous experience with the system
and are not aware of the wizard simulating the system. Only such users can give a
realistic view on the complexity of the interaction and naturally discover problems in the
existing prototype. In contrast, users who know the prototype can be more useful during
the initial stages, when the system needs to be debugged and the whole experimental
procedure tested.

Validating all system design decisions by WOz simulations with naive users enables to get
an early feedback on the decisions and thereby increases chances that the final automated
system is better accepted by users [93, 119, 22].

4.2 User requirements elicitation in a multimodal en-
vironment

The previous section described the development cycle of vocal dialogue systems using WOz
simulations. Our goal is to adapt the WOz technique for the design and development of
multimodal dialogue systems.

However, the Free WOz simulations of multimodal systems equipped with screen output
are normally not that easy as simulations of voice-only systems. The main problem
is that in the situation when the model of user requests is unknown, it is impossible to
predict and predefine all necessary graphical system outputs. Online synthesis of graphical
outputs involving synchronized text, graphics and video is too much time consuming and
therefore beyond the wizard’s capabilities. This task is apparently much harder than
online generation of system responses in natural language, where the wizard typically
writes the response on keyboard and the response is then vocalized using a text-to-speech
synthesizer.

The initial phase of multimodal dialogue system development (user requirement elicita-
tion) cannot usually be done simply by means of Free WOz simulations. Instead of it,
the user requirements and necessary system functions are identified by other techniques.
One of the employed techniques is scenario-based design [98], based on informal narra-
tive description of user activity and experience when performing a task. The scenario,
created together with the potential user, describes what a user would have to ‘do and
see’ step-by-step in performing a task using a given system. Another technique relies on
creating low-fidelity prototypes of the system [19] in the form of paper mockups of the user
interface (rough sketches of the main interfaces and dialogs). These two techniques can be
combined in the form of electronic mockupsor storyboards — a set of system screens inter-
connected to represent an interaction scenario, prepared usually in presentation programs
like MS PowerPoint, Macromedia Flash, etc.

The goal of all abovementioned techniques is to brainstorm and get first user feedback. In
contrast to Free WOz simulations, the system is never presented to the user as a working

61

Chapter 4. Experimenting with Wizard of Oz simulations

prototype, but always as a design example. The low-fidelity prototypes are advantageous
because it is easy and cheap to change them and because they maximize the number of
interactions before committing to certain functions and coding.

4.3 Constrained WOQOz simulations in a multimodal
environment

Once the user requirements were collected and the necessary system functionalities were
identified, the system can be at least partially implemented. We have adapted the Con-
strained WOz technique for multimodal systems developed using the Interactive System
Prototyping Methodology (ISPM, see Chapter 3). Our methodology directly supports
simulations of missing system components by providing a Wizard’s Control Interface
(WCI). The resulting system can be considered as a high-fidelity prototype, because it
looks and reacts as the targeted system, allowing for a detailed examination of all usability
and interactions issues. This is important especially in later stages of system develop-
ment, because (as we believe) the final quality of the multimodal system depends on a lot
of fine-tuning.

In order to highlight the differences between the design and evaluation of voice-only
systems versus multimodal systems, we will first describe the particularities of WOz sim-
ulations for voice-only interaction in section 4.3.1, since vocal dialogue systems can be
seen as a special case of multimodal dialogue systems. In section 4.3.2, we explain the
specificities of WOz simulations in multimodal environments.

4.3.1 Particularities of WOz simulations with vocal dialogue
systems

In earlier work we developed a methodology for rapid design of vocal dialogue systems with
mixed initiative [13]. Using this methodology, the designer of the interactive vocal system
only needs to provide a domain model of the application and the application-specific lan-
guage resources (grammars, prompts). Our Java implementation accepts those resources
and makes the dialogue system operational; it also automatically provides a graphical
interface for the wizard which can control or simulate some system functionalities.

In our experience, the modules usually simulated or supervised are the speech recognition
engine, the natural language understanding module, and sometimes the decisions of the
dialogue manager. WOz experiments allow for the simulation of full grammar coverage
(with an excellent speech recognition rate) and can also be used to find the minimal speech
recognition performance necessary for smooth interaction flow [49].

We have found that WOz simulations in voice-only settings are relatively uncomplicated
from the technical point of view. This is due to the fact that the dialogue manager and the
wizard’s interface are running as one application on one single computer (fully under the
wizard’s control) and only audio signals need to be transmitted to the user (test subject),
making the hardware and software setup relatively simple.

62

4.3. Constrained WOz simulations in a multimodal environment

The cognitive load of the wizard in vocal dialogue systems is lower in comparison to WOz
simulations with a multimodal dialogue system, because the wizard chooses his actions
based mainly on listening to the ongoing dialogue, i.e. auditory input. In multimodal
systems equipped with a graphical user interface, the wizard must also control and be
aware of what is happening on the screen, which increases his load.

We also found that users tolerate the wizard’s reaction time (which forms a large part of
the overall system response time) if it is within a few (approx. 5) seconds, since they are in
general not yet familiar with speech interfaces and seem to understand that processing of
speech takes time. However, users will not accept slow response times with GUI-equipped
systems, since they are accustomed to fast reaction times with such systems.

4.3.2 Extending the WOz methodology for multimodal systems

When designing a dialogue based multimodal system, we must look at four elements si-
multaneously — the dialogue management, the language model, the use of all interaction
modalities and the graphical interface — each directly influenced by user needs. These
elements also influence one another, making their decoupling during the design and eval-
uation process impossible. For example, the sizes of the graphical elements might depend
on whether touch is used as an input modality, the choice of graphical elements depends
on the dialogue management elements which in turn constrain the types of linguistic in-
teractions possible. These in turn play a more general role in influencing which modalities
a user will choose for a specific task (see Figure 4.1 for the types of influences and the
scope of the traditional Wizard of Oz vs. the proposed extended methodology).

Graphical
user interface

Other
modalities

Natural
language

Dialogue

manager

Traditional Extended
WOz WOz

Figure 4.1: Influences of elements and scope of the WOz methodologies.

In terms of the wizard’s simulation tasks there are several differences between controlling a
unimodal language interface and a multimodal system. First, the wizard has to manually
interpret or confirm generated interpretations from inputs in all modalities (for instance
pointing, speaking and typing). To do it in a uniform way, the wizard needs to have the
same interpretation formalism for all modalities. Moreover, the degree of automation of

63

Chapter 4. Experimenting with Wizard of Oz simulations

modules for the different modalities changes during system development, since modules for
some modalities are easier to automate than others. For instance, mouse pointing is easy
to automate because the interpretation of a click is unambiguous. On the other hand,
interpretation of speech requires a sufficient-quality speech recognizer and appropriate
NLU algorithms. This means that the wizard will produce the interpretations for this
modality manually in the early phases of system development. The same is true for
keyboard input, a modality not being used at all in voice-only systems. Consequently,
multimodal systems allowing for both voice and keyboard input automatically require
extra development steps.

In addition to higher cognitive load of the wizard when simulating the missing parts
of a multimodal system, his reactions must be fast, precise and consistent in recurring
situations. In order to decrease cognitive load, Salber and Coutaz [102] suggested to use
multiple wizards, each specialized on specific tasks.

Finally, the wizard’s reaction time should be balanced for all modalities, as a long reaction
time of one modality may possibly influence a user natural modality selection during the
experiments. The problem arises when both pointing and language are represented in
the system. Pointing can be processed automatically and is therefore very fast, whereas
language input requires manual interpretation by the wizard, which naturally takes more
time. To balance the time difference, either the speed of the pointing modality can
be degraded (although this is not advisable since most users expect pointing to be fast
and may react negatively to the degradation), or the wizard has to be very fast when
interpreting the language input. The latter requires that the interface for controlling the
system by wizard has to allow for very efficient interpretation techniques.

4.4 Physical settings and hardware configuration

In this section, we describe the physical settings and hardware configuration of Con-
strained Wizard of Oz simulations that we have used to design and evaluate a multi-
modal system. Since the settings are generic enough to be used in any experiments with
a multimodal system and because the literature on the topic is missing, the description
is sufficiently detailed to allow the reader to reconstruct the experimental environment.

In our Wizard of Oz environment the evaluator of the interface, the user, sits at a standard
desktop PC with a 15 inch touchscreen and a wireless mouse and keyboard (Figure 4.2).
Users are also given a small lapel microphone. The user can therefore provide an input in
spoken or written natural language, using mouse clicks or directly point on elements on
the screen. The system gives graphical and textual feedback using the screen and audio
feedback (natural language prompts) using loudspeakers.

The user’s actions are recorded by two cameras situated on tripods. One camera faces
the user and records his/her facial expressions as he/she interact with the system. The
second camera is positioned to the side and slightly behind the user in order to record the
modalities he/she is using. The computer desktop screen (multimodal graphical interface)
and audio from lapel microphone are recorded as well, giving the experimenters a total of
three views to work with during the analysis of multimodal behavior of the user.

64

4.4. Physical settings and hardware configuration

Camera - interatﬁim!nds view

Camera - face view

Screen recording equipment

Figure 4.2: View of the user’s work environment.

The wizard sits in a separate room since the user must be given the impression of inter-
acting with a fully automated system. The wizard’s room (Figure 4.3) is equipped with
two observing monitors providing a view on the user’s desktop and the user’s face. The
audio from the user room is also transferred to the wizard’s room. Such a setup gives a
sufficient overview of the situation in the user room: the wizard sees what the user is doing
with the interface and the user’s reactions to the interface, including facial expressions
allowing detecting when the user is confused or does not know what to do. Since the user
is normally left by the experimenter alone in the room (in order to eliminate a possible
influence from the experimenter’s presence or feeling of pressure), the facial camera is ad-
ditionally useful in unexpected situations that could influence an ongoing experiment, for

Figure 4.3: View of the wizard’s environment. (A) Output Wizard’s Control Interface, (B)
Mirror of the user’s desktop, (C) User’s face, (D) Input Wizard’s Control Interface.

65

Chapter 4. Experimenting with Wizard of Oz simulations

J 8 8 8

Laptop 1 (VNC client) User desktop view User's face view Laptop 2 (VNC client
Wizard’s control interface 1)) Wizard’s control interface 2
(VNC client) (MPEG stream viewer)

Observation PC

Wizard’'s room T
LAN (1Gb) 0
User's room T LIN
VNC protocol]
L video Ttream
. User's PC: MPEG4 streamer
(=
CPU Pentium 4, 3GHz VIP 1000
speaker RAM 1GB

HDD 80GB 7200rpm
Ethernet 1Gb

”””””” wireless——-—-—————1 [AV capturing card)] h

: Running programs:

|| — wireless - --------1 1. Multimodal dialogue system
(includes VNC servers for wizard's
control interfaces)
2. VNC server (desktop)
3. Audio&video capturing server

VGA
Video splitter (converter) [(desktop)

audio & composite video

Sean Do (face view)
T Ny composite video Audio & Video capture (recording)
(desktop) iEi
IVC-4300
audio
(user)
VGA (desktop)
(@) audio & composite video
(hands view)
. wire‘less
Wireless tie-clip Camera 1 c >
microphone amera
T(?’uchscreen P (hands view) (face view)
15" 1024x768 Sennheiser
EW-300 G2 SONY DCR-HCA40E SONY DCR-HC40E

Figure 4.4: Wiring diagram of Wizard of Oz environment with specification of main hardware
components.

66

4.4. Physical settings and hardware configuration

instance a user ignoring instructions given to him/her by the experimenter, the wireless
mouse not working due to discharged batteries, the user writing an SMS message dur-
ing interaction, technical or cleaning personnel entering the room during the experiment
(these are examples of real situations we have experienced during our WOz experiments).

Besides a general view on the interaction through observation screens, the wizard also
has his own laptop running the Wizard’s Control Interface (WCI, see section 4.5) with
information about the internal dialogue state, and which allows the wizard to simulate or
supervise specific system functions. In case of multiple wizards, each of them has his own
laptop.

Technically, the user’s and wizard’s rooms are interconnected with an Ethernet network
with IP protocol (Figure 4.4). The audio and video from face view camera is streamed
by an MPEG4 streamer (VCS VIP 1000) over the Ethernet. We found the streamer
convenient, as it has good quality and only low latency and is running independently of the
main User’s PC. On wizard’s side, the streaming browser is launched on the Observation
PC at the beginning of the series of the experiments and is continuously running, similarly
as the VNC client showing the user’s desktop. The VNC server for the user’s desktop
view is installed as a service on the User’s PC and it is automatically launched on the

User’s PC start (further decreasing experimenter load, as he does not need to control it
all).

4.4.1 Audio and video recording solution

An important issue for Wizard of Oz experiments is the capturing and recording of the
experimental sessions. The requirements were to record and digitally store audio and
video from all three channels (hands, face and screen views) in a quality sufficient for later
analysis of the experiments. The three videos had to be mutually synchronized during
playback together with the logfiles of the multimodal system, thus giving full overview of
the interaction state. The required precision of the synchronization was defined as lower
than one second — sufficient enough for reviewing of the recorded interaction by a human
expert. Considering all those requirements, we have finally decided for the IVC-4300
MPEG AV capturing board!. The board is able to simultaneously capture up to four
audio and video channels and store them into separate AVI files on hard drive. The video
encoding is done on the board without using the power of the main CPU. Therefore, the
board can be plugged into the User’s PC without any loss of computing power, while an
option of using an external PC for recoding is still available — for instance when User’s
PC is only a small tablet PC or laptop.

We have implemented a server application allowing control of the capturing board
(start/stop recording, storing to videofiles) over TCP/IP sockets. In this way, record-
ing is directly controlled by the tested multimodal interface, the timestamps of start/stop
of recording events are marked in the main logfile of the application, and the captured
videofiles are automatically stored on disk. All this guarantees trouble-free synchronized
documentation of the experiments, without any further action required from the experi-
menter. Reducing the load of the experimenter is an important factor, as he already needs
to perform a number of procedures, for instance giving consistently the same information

'We acknowledge the help of our colleagues from Fribourg University and IDIAP research institute
with the installation of the IVC-4300 capturing board and technical support.

67

Chapter 4. Experimenting with Wizard of Oz simulations

to all users, starting the correct version of the experimental interface, and keeping track
of all documents given to user (consent form, manual, tutorial, tasks given to the user,
questionnaire).

Prior using the IVC-4300 capturing board, we were recording the experiments manually.
Each camera recorded an experiment on mini DV tape and the User’s PC desktop was
recorded by DVCAM recorder. This setup turned out to be quite problematical, as the
experimenter had always to insert blank MiniDV tape to the recorders, start each recorder
separately before the experiment and launch a synchronization signal on the User’s PC
(three audio beeps and video flashes) in order to allow post experiment synchronization.
After finishing the experiments, all MiniDV tapes had to be encoded into MPEG files, cut
according to the synchronization signal and stored on disk for further use. Every experi-
ment post-processing took about three hours for 40 minutes of recorded interaction. Using
IV(C-4300 capturing board does not require any specific action from experimenter during
the experiments, minimizes experiment post-processing and makes the experimental setup
cheaper (no need of expensive MiniDV tape recorders).

4.5 The wizard’s control interfaces

The main role of the wizard is to simulate the system’s functionalities that have not yet
been implemented, or supervise functionalities that are not yet working correctly. To do
this, the wizard uses a Wizard’s Control Interface (WCI).

The WCI consists of a set of graphical windows, each dedicated to the simulation or
supervision of one specific system functionality. When the multimodal system is running
in WOz mode, the data flows are redirected to the graphical modules of WCI, allowing the

. Input Output
V\Illzard’s WCI WCI Dialogue
ogger state info
Dialogue state
o
‘ Sem. pairs > 3'::1%%1?
Multimodal output :
Wizard’s
" Input a4/~ System output
¢Sem. palrsf eﬁzr;cécrad
A \
Sem.‘palrs Multimodal output
Useirr:egrlr:gg fea Sem. pairs—p Fusion manager Fission ?anager
A Output modules
Sem. pairs

\
User’s text
input display Text— NLU
TAXt MM syst
€
‘ mo?j):;sleesm WOz modules
User’s text field

The meaning of the symbols

Figure 4.5: A simplified architecture of multimodal system with integrated wizard’s modules.
The modules correspond to individual graphical windows of WClIs shown in Figures 4.6 and 4.7.

68

4.5. The wizard’s control interfaces

wizard to check, modify, or even create new pieces of data if necessary. Once the wizard
is satisfied with the data, he confirms them and the dialogue processing can continue.
The wizard’s graphical modules are an integrated part of the multimodal system, and are
plugged into the system as every other module (see section 3.6 on page 50 for a description
of the software architecture of our multimodal systems). Although the WCI is running as
a part of the multimodal system on the User’s PC, the graphical windows of the WCI are
not displayed on the user’s screen. The wizard uses a standard VNC client to connect to
the multimodal system and to see and control the WCI (as described in detail on page 51).

The wizard can control any functionality of the system that can be ‘externalized’ into
modules with well-defined interface. In the rest of this chapter, we focus on those used
during our simulations. In our settings (Figure 4.5), we wanted the wizard to simulate
the speech recognition engine (SRE), as the speech recognizer was not integrated to our
system. The performance of the natural language understanding module (NLU — trans-
forms textual representation into a formal representation) was very limited, so we wanted
the wizard to supervise it. On the system output side, we wanted the wizard to supervise
the textual (and vocalized) response of a system, as the quality was not always sufficient
in our system. We also had a setup allowing the wizard to supervise decisions made by
dialogue strategies, but this is described elsewhere [79].

In order to increase efficiency and minimize the wizard’s cognitive load, we propose sharing
the wizarding tasks by two wizards, each managing a different part of the interaction: the
interpretation of the user’s input (Input Wizard) and the control of the system natural
language output (Output Wizard).

4.5.1 Input wizard’s interface

The user of the multimodal system can provide his/her input using several modalities,
making the overall interpretation of his/her input more challenging. Therefore, in our
approach each modality is processed separately, yielding (in some cases empty) sets of
semantic pairs (see page 39 for details). The obtained semantic pairs may have associ-
ated confidence scores and can also be ambiguous (if the input provided through a given
modality is ambiguous). The semantic pairs generated by the input from each modality
are then combined (and disambiguated in the context of current mGDN) by the fusion
algorithm into a single set. The role of the Input Wizard is to check that the set correctly
represents the user’s overall input and to make corrections or add new semantic pairs if
necessary. In this way, the Input Wizard simulates or supervises the functionality of the
SRE, NLU, and Fusion management modules in the system (or other modules processing
other modalities, if they are present in the given system).

The Input Wizard’s interface is shown in Figure 4.6. The wizard can see the semantic pairs
resulting from automated system processing in (A). These can be removed from the set
using the delete key. To add a semantic pair, the wizard has to select its category (name)
from the list (B) first, then select the appropriate value for it (C). The list of available
semantic pairs is generated automatically from the domain model (see section 3.2) and
information provided by the mGDNs at application start-up. Once the wizard is satisfied
with the interpretation of user’s last input, he confirms it with Submit button.

69

Chapter 4. Experimenting with Wizard of Oz simulations

MEwo0z inteface

T wizard's logger 04:31

™
\a ok |Speaking!

| Input Simulator - active {inputSource has finished
) No Input

[] AutoSubmit

) No Match

Submit ® Use Semantic Pairs

Online search

— . Ej (St FirstName:Mirek) --not specified--
[FJmput Shorteut - active D [Addressinstitute:EPFL) A ArgSegClass
Go: Location Go: Date Go: Speaker Bookcase
Go: Content Go: Topic Go: Keyword C :uo:case\r:u:?onlt;mim
ookcaseVerticalDim
Go: D t Go: DigElement Go: LargerSelect Bookcase[A] B EPFL Content
Go: SmallerSelect |Go: Bookcase Go: History BookcaseHarizontalDim[A] ISSCOMIMETI DialogAct
BookcaseVerticalDim[A] unknown ,
Book: HitUp Play video scroll UP DialogAct[A] glalll:;gueEIEmemS
ocBrowser
Book: HitDown Stop video scroll DOWH DocTitle[a] DocTitle
Book: PrevPy Book: NextPy Book: Cover DocTypelA] DocType
= History{A] Document
Book: TOC Book: Transcript Book: Documents Keyword[A]
History
Task Finished Restart Close (focused) MeetingCity]A] Keyword
MeetingDayOfMonth[A] MeetingCrty
MeetingDayOfweek[A] MeetingDate
Meetinginstitute[A] = MeetingDayOfMonth
IEUser'sinputtranscription-ﬁnished : =il I'\ﬂeetlngTomh'['.:\]] MeetingDayOfWeek
[wantta select Mirek from EPFL J * Bhncctingveara] Meetngmsite
i} MeetingMonth
OpenBook[A] MeetingPlace
SpeakerAddressCity{A] MeetingRoom
Speakerfddressinstitute[4] MeetingYear
SpeakerAddressRoom[A] OpenBook
SpeakerFamibName[A] Speaker
SpeakerFirstName(A] Speakerfddress
SpeakerFunction[A] SpeakerAddressCity
Topic[A] || SpeakerAddressinstitute
global.close[A] SpeakerAddressRoom
global.control[A] SpeakerFamilyMame
global.newfocus|A] SpeakerFirstName
local[A] SpeakerFunction
local jumpto.letter[A] — Start

Topic

Name | values L ic pairs |

Figure 4.6: Input Wizard’s Control Interface: (A) semantic pairs generated automatically by
the system or added by the wizard; lists that allow the wizard to create a new semantic pair:
(B) the list on the left shows names of semantic pairs, (C) the list on the right displays all
possible values associated with the selected name of the semantic pair; (D) shortcut buttons;
(E) semantic pairs filter; (F) a request typed-in by user using keyboard; (G) a textbox for wizard
to write down a time-stamped free-form notes about the experiment.

Since the wizard’s response time has to be as short as possible, we have optimized the
interface during several runs of pilot experiments. One of the improvements is a panel
with (D) shortcut buttons that replicates common actions on the user’s interface. Those
are typically actions that the users can access in ‘one click’ on their multimodal interface
(we call them navigation commands). Slow reactions of the system on these actions when
using other modalities (especially voice) could influence the user’s natural selection of
modality for the next use of navigational commands, negatively affecting the validity of the
experimental data. By clicking on the shortcut button, the corresponding semantic pair is
generated and immediately submitted. For instance, as a reaction to user’s input “Show
me the available locations”, the wizard had to click on Go:Location button, generating a
newFocus:Location semantic pair.

Another improvement is a quick-search mechanism for finding items in the semantic pair
(SP) list. Although the two-level organization (first select SP name, then SP value) is
convenient in certain cases, the online search field (E) restricts the displayed SPs to only
those containing the typed expression. This is important particularly when the whole list
of possible SPs contains too many entries (in our case over 2100 entries in 35 categories).
When the number of SPs is lower than a predefined threshold (less then 20), the SPs are

70

4.5. The wizard’s control interfaces

displayed in a simple list (instead of two-level lists) in order to facilitate SP selection.
The quick-search mechanism also helped the wizard to disambiguate uncertain situations
by highlighting the items possible in the given context.

The Input WCI contains also the Stop user’s input button. This button is used by the
wizard to signal to the user that the system (wizard) is busy processing his/her last input.
Signalization is done by showing an inactive, grayed-out user’s screen and mouse pointer
displayed as an hourglass.

Another control element on the WCI is the autosubmit checkbox. When ticked off, the
system does not wait for the wizard to modify the semantic pair set resulting from auto-
mated processing. The button is useful in situations when input recognition modules are
fully automated or when the user is using only modalities that can be reliably transformed
into semantic pairs (e.g. clicking on graphical elements).

Altogether, the structure of the wizard’s interface permitted fewer "human-like’” interpre-
tations of the user’s input, since the number and types of possible wizard’s actions is
limited. This was particularly useful given the amount of information to be processed
by the wizard in a short time. Part of the overhead of thinking about what the system
would or would not be capable of processing was thus eliminated. On the other hand, we
allowed the wizard to write down any notes about the ongoing experiment in an unstruc-
tured form. The note is typed into a text box (G) and automatically annotated with a
timestamp. However, it turned out that the wizard is unable to use this text box during
interpretation of user’s input due to already high cognitive load.

4.5.2 QOutput wizard’s interface

The second wizard controls the vocal NL output given by the system using another inter-
face on a different machine (Figure 4.7). The modification of the output was necessary
in cases when the default prompt (A) suggested by the existing dialogue management
module was insufficient or inappropriate given the current dialogue situation.

Depending on the actual internal state of the dialogue system (D), the wizard would select
a new prompt from a predefined list of prompts (C), or create a new one on the fly (B),
which was then automatically added to the list. This ensured that the same set of prompts
was available during the experiments and thus introduced less unwanted variety in what
the system could answer. All modified and new prompts together with the corresponding
dialogue system states are logged for further analysis of dialogue strategies quality.

The system-suggested prompt is determined by the dialogue manager only after the Input
Wizard has finished the interpretation of the user’s last input. In order to minimize
the delay before the Output Wizard select the prompt, our interface allows the Output
Wizard to pre-select the prompt even before the Input Wizard finishes his work. When
the system-suggested prompt appears to be appropriate, the wizard can confirm it by the
first Submit button (A), otherwise the output wizard confirms the modified prompt by
the other Submit button (B). This ergonomic feature turned out to be very useful for
reducing an overall system response time perceived by user.

Because the task of Output Wizard is cognitively slightly less demanding compared to
the task of Input Wizard, we have decided to make him responsible for logging of the

71

Chapter 4. Experimenting with Wizard of Oz simulations

MEwo0z inteface

[Foutput Component2
[] Auto

Entering GDN: OpenBook
Leaving GDN: Start

[]Dialog GDN Info

_ FPROMPT: "You can browse or play the media"

SP's just acquired: m
(SpeakerFirstName:Mirek) L=

ou can find the resu|

(Meetinginstitute:EPFL)

The result of your search can be found in the books.
The ansiwer to your question is in the books.
Relevant baoks are highli 0
The resultz of your zearch can be found in the book. aWizard's extended logger 37:15
The answer to your question is in the book. Participant Nb: FO07
|
|
|
|
1

M|o)>

Fm not sure what yau mean
Mihat would wou like to do nesxt?
The back has been loszd.

ihat are you losking far?
Tape sethb: |15

Al books satisfy wour search criteria.
All meetings contain relevant infarmation.

m

81T [

The book you have selected doesn't contain any relevant information.
This book doesn't match yoursearch criteria

This criterion has alieady been specified.
These criteria hawve already been specified.

Condition: all
This information has already been specified.
Thiskeywiord is not in the system. Input Wizard: mirek

Yoursearch criteria don't lead to any solutions.

“r'ou have to change yoursearch criteria in order to continue
Please modify your search criteria first

Output Wizard: |aghes

One more, please.
rou can aceess the documents through the book Logit!

Wou can find the anawer in the maeting t ipt orin the

One critarion has been delated.

Flease delete ane mare.

ou ¢an alse find information in the attached documents.

Miould you like to see the referenced documents?

Do youwantto change the wertical or horizontal label™
The bookshelf was rearganized.
Use up and deven arrows for browsing results tabs.

Your criteria have changed.

The content eriterion is alraady shown
Sorry, | can'tfind that.

Mihat would you like to find™

The criteria list is now empty.

Sormy | cannot do that

| didn't understand

ihich keyward are you looking for?

Figure 4.7: Output Wizard’s Control Interface: (A) the prompt automatically determined by
dialogue strategies; (B) the prompt suggested by wizard, which can be freely modified; (C) a list
of predefined system prompts used by wizard; (D) an internal system state information used by
wizard to determine most appropriate prompt; (E) information about interaction session entered
by wizard.

interaction session information (E). This information is essential for keeping track of all
performed experiments.

4.6 Performance of the Wizards

In this section, we provide a quantitative evaluation of performance of Input and Output
Wizards, which serves for an estimation of the quality of the interface. The data used for
the analysis come from Wizard of Oz experiments that we have carried out in order to
evaluate the Archivus system. Details about the Archivus system and the experimental
setup are given in Chapters 5 and 6 respectively.

4.6.1 Input wizard performance
Although only one human operator (wizard) controls the Input WCI at one time, two
distinct persons acted as the Input Wizards due to their limited availability for the WOz

experiments. Both wizards underwent an intensive training during pilot experiments with
the interface. We wanted to know how quickly and consistently the wizard responds to

72

4.6. Performance of the Wizards

1400

Histogram of input wizard's response times
1300 -

1200 -

1100

© © o

o o o

o o o
L L

D

o

o
I

Frequency [nb. of casesl
g g

S

o

o
I

300

200

100 ~

GOOOOHHHHNNNNC’)C’)C’)(‘OQ’WW?LOLOLOU)LO&OLHO

Response time [s]

16

Figure 4.8: Histogram of the Input Wizard’s response times

various user requests. The users did not have any previous experience with the tested
system.

The collected data consists of 8215 cases when the wizard had to confirm, modify or create
an interpretation of user’s multimodal input (set of semantic pairs). The system contained
about 2100 possible semantic pairs to choose from, organized in 35 available categories.
The user produced his/her input using mouse, pen, voice or keyboard. For each case, we
have logged not only the wizard’s response time, but also his identification (W1, W2),
the method that the wizard used to submit the data (either using the shortcut buttons
or by the submit button), and the modality used by user.

An overall average Input Wizard’s response time was 2.8s (with standard deviation 3.0s).
As depicted in Figure 4.8, the response times are not evenly distributed — in fact, the
wizard’s response was in 68% of cases shorter than 2.8s. The histogram clearly shows
two main peaks of the response time — the first around 1.0s and the second around 4.5s.
We have further investigated the reasons for such a distribution. For such analysis, we
removed 0.5% of data from each extreme side of the histogram (i.e. response times shorter
than 0.5s and longer than 17s). The very long response times were caused by technical
problems or wizard’s inattention, rather than by actual need of so much time to prepare
the response.

The results of the further analysis are summarized in Table 4.1. Firstly, we found that
the average reaction speed of the two wizards slightly differs (0.6s) and that the slower
wizard is slightly less reaction-time consistent (higher standard deviation). However, this
does not explain the two peaks in the histogram of wizard’s responses.

Secondly, the average wizard’s reaction time depends on the modality that the user used
to produce his/her last input. This follows from the absence of a speech recognizer, thus

73

Chapter 4. Experimenting with Wizard of Oz simulations

Category Response time [s] Remark
Average ‘ Std. dev.

By wizard:

W1 2.5 +2.4

W2 3.1 +3.2

By modality used by user:

mouse or pen (MP) 1.2 +0.7 confirms SP

voice (V) 4.0 +3.0 creates SPs

keyboard (K) 4.2 +3.2 | modifies SPs

By method used by wizard:

used shortcut button (VK) 1.6 +1.1

used submit button (V) 5.4 +2.9 creates SPs

used submit button (K) 4.3 +3.2 modifies SPs

Table 4.1: Input wizard response times by various categories.

the wizard had to generate the whole semantic interpretation each time a voice input was
used. For the typed natural language, the system contained a simple NL understanding
module. However, the performance of the module was quite low and the wizard often had
to modify the interpretation proposed automatically by the system. For pen and mouse
input, the system always produced a correct semantic interpretation and the wizard had
only to confirm it (or extend it with other semantic pairs in case when the user used a
combination of modalities — this however happened so rarely that we do not consider it
in this analysis). As a result, the wizard’s reaction time primarily depends on the type of
action that the wizard had to take — confirmation, modification or generation of semantic
interpretation.

Finally, we found that the generation of semantic pairs is largely facilitated by the short-
cut buttons created for user’s navigational commands in natural language. Using these
buttons, the input in natural language (voice or keyboard) can be processed nearly as fast
as pen or mouse input (1.6s vs. 1.2s).

We can conclude that the wizard’s interface allows for a quick response (within 1-2s) to
any pointing modality (mouse, pen) and to navigational commands in natural language.
As for the other requests in NL, the wizard is able to serve them in about 5s on average.
This explains the two peaks in the histogram of the wizard’s response times. The higher
response time of NL non-navigational requests is caused by two facts: (1) appropriate se-
mantic pair has to be found among 2100 semantic pairs used in the system; (2) about 17%
of non-navigational requests in NL require more than one semantic pair for interpretation.

4.6.2 Output wizard performance

The Output Wizard needs to quickly propose another NL prompt in situations where the
default prompt selected by the system is insufficient or inappropriate given the current
dialogue situation. During our experiments, only one wizard controlled the output WCI.

The wizard usually selects the prompt from a predefined list, but can also create a new
one, which is then automatically appended to the list. The initial list was collected during
several runs of pilot experiments and contained 38 prompts. During further experiments

74

4.6. Performance of the Wizards

Histogram of output wizard's response times

NOOOO 1 =1ANANNNMNMNMN T T < T LOLOLOLN WO WO WO W

Response time [s]
Figure 4.9: Histogram of the Output Wizard’s response times
(91 users, each interacting with the system for 40 minutes), the list was extended to 60

prompts. The prompts in the list were slightly typographically modified between the
experimental sessions and reorganized in the list according to their context of use.

Action type Response time [s]
Average ‘ Std. dev. ‘ Median
all actions 1.2 +1.2 0.7
confirm prompt 1.2 +1.1 0.8
select prompt from list 1.2 +1.3 0.7
define new prompt 5.2 +5.0 3.0

Table 4.2: Output wizard response times by various types of taken actions.

Concerning the wizard’s response times, the histogram in Figure 4.9 clearly shows that
in most of the cases, the wizard was able to respond within very short time (less than
two seconds) and that longer response times (more than four seconds) are very rare. The
comparison of average response times for different wizard’s actions in Table 4.2 confirms,
that the most frequent actions (i.e. the confirmation of system-suggested prompt and the
selection of prompt from a list) are almost equally fast. The only action that takes several
seconds is a definition of a new prompt, which is however very infrequently used (0.3% of
all wizard’s actions).

Interestingly, the median of time necessary for selecting a prompt from list is smaller than
the median of prompt confirmation time. We speculate that this is caused by fact that
the Output Wizard can pre-select the prompt from the list during the time the Input
Wizard needs to process the user’s last input.

75

Chapter 4. Experimenting with Wizard of Oz simulations

The submission of the pre-selected prompt is very quick, while the system-suggested
prompt has to be reviewed before submitting it (the system prompt is determined and
appears on wizard’s interface only after the Input Wizard has finished his work). This
validates our hypothesis that the two wizards (Input and Output) can, in a number of sit-
uations, work simultaneously and thus the WCI should support the concurrent operation
of both wizards.

4.7 A general design of the W0z study and the col-
lected data

For WOz simulations, it is important to define a certain evaluation protocol and con-
sistently give the same amount of information to all participants in the study, in order
to minimize the risk of introducing a new, unwanted, and uncontrolled variability to the
experiments.

Since a detailed specification of the evaluation protocol depends on a number of criteria
(such as the maturity of system, its purpose, or an overall objective of the study), we do
not provide any specific guidelines about the evaluation protocol. The evaluation protocol
for our WOz experiments was carefully designed by our colleagues from the University
of Geneva within framework of another doctoral thesis. The interested reader is referred
to [57] for further details. In this section, we discuss some general issues to be taken into
account and give more detailed information about the data (logfiles) that are collected
during the experiments.

Our experience shows that several runs of initial pilot studies with the system are indeed
necessary. They typically involve only few users (4 to 8) and can very quickly reveal
problematical parts of the interface even without any formal evaluation. During the
pilot studies, the interface can undergo quite substantial changes, the code is debugged,
the wizards get necessary training, and the whole experimental protocol is tested. The
pilot studies are particularly useful for systems that were not designed using Free WOz
simulations and where several design decisions still need to be validated.

Concerning the typical procedure of the experimental protocol, the experimenter should
welcome the user, provide him/her with a short description of the project and inform
him /her about the interaction being recorded during the whole session. The presence of
wizards should not be revealed at this point. Although some authors [32] argue that it
is ethically incorrect to deceive users about wizard’s presence, another author [27] claims
that it is acceptable to reveal the truth at the end of experiment. If the user agrees with
the experimental conditions, the experimenter asks him/her to sign a consent form.

The user then receives instructions on how to use the system. This can be done by means
of a manual or tutorial. While the manual is useful for systems that are intuitive to
use, the tutorial is more suitable for systems involving new types of complex interactions.
However, defining an unbiased tutorial procedure (i.e. a tutorial teaching every user in
the same way how to use the system, without favoring using of some specific modality
for specific action or implying any predefined interaction pattern) is quite a challenging

task [58].

76

4.7. A general design of the WOz study and the collected data

Before starting the actual experimental session, the user is given a precise interaction
context with scenario defining the situation for using the system (“You have arrived into
a city that you do not know and your hotel is equipped with a multimodal information
kiosk”). The user is then connected to the system and is asked to perform a set of tasks
(e.g. “Find a Chinese restaurant in the city and reserve there a table for five persons
tonight” or fact checking “How many Chinese restaurants are there in the old town?”).
The experimenter should not help the user during this phase in order to minimize the risk
of biasing the interaction. Ideally, the experimenter leaves the room, but is available (via
ring, or in the next room) in case of unexpected technical problems.

After the user has finished all necessary interaction sessions and the interaction data have
been collected (objective indicators), the user is asked to complete the final question-
naire. The questionnaire typically contains the demographical and background informa-
tion about user, questions concerning user’s satisfaction with the system, usability related
questions, the interaction related questions, and other subjective measures. Even though
the questions requiring structured answers (scale or yes/no) are much easier to evaluate,
the questionnaire should also give the user a possibility of freely expressing his/her opin-
ions of the system and of the experienced interaction. In addition to it, we have also
acquired a lot of valuable information during an informal interview with users at the end
of the experiment. Finally, the users are often given a compensation for their participation
(a gift or financial reward).

4.7.1 Collected data

During the experiments, the entire interaction is videorecorded from three views (screen
view, user’s face view and hands view) and the system produces logfiles — a structured
information about the interaction. While the videofiles are suitable for manual review
and annotation of the interaction by a human expert, the logfiles are a great source for
automated analysis of experiments.

However, it might take a substantial time and effort to analyze the logfiles without an
optimal log format. Since the author of this thesis experienced certain problems when
analyzing the logfiles, the experience is reported and recommendations are made in this
section.

Our logfile has a textual format. Every logical action of the modules in the multimodal
system is annotated (in the module source code) with a specific message and with a call
of logging routine. The logging routine appends the message to the logfile, together with
the module identification and the timestamp. The resulting logfile is a human-readable:
it is a time-stamp organized sequence of actions that the multimodal system performed
during the interaction with user.

Our first encountered problem was that the logfiles did not always contain the necessary
information, although we have used the policy ‘log as much as you can’. We have learned
that it is crucial to define beforehand the necessary parameters that need to be logged and
verify that all necessary information is then indeed consistently logged by the system. For
instance, although we have always logged the semantic pair set produced by wizard, we
did not log the semantic pair set displayed to the wizard for correction. This would have
helped to easily identify the modality used by the user in his/her input (we finally managed

77

Chapter 4. Experimenting with Wizard of Oz simulations

to gather this information by inferring it from other sources, but the identification routine
was complex).

For convenient data processing, we have transformed the logfiles into a SQL database.
The relational table contains one record for each dialogue turn, clearly separating dialogue
state changes. While using the SQL database instead of sequential textual logfiles sig-
nificantly facilitated the evaluation, the transformation procedure turned out to be very
complex. The identification of the log messages belonging to the same dialogue turn was
problematical, because no message was clearly separating two dialogue turns. Although
we finally managed to identify them, the procedure was again quite complex and had to
deal with many of specificities (due to multiple threads in our system, the messages had
no fixed order, often having the same timestamp, etc).

Based on this experience, we propose that each logged message should contain (besides
the timestamp) a logical identification of the session (a sequential number, increasing
at every start of the multimodal application) and a turn number (a sequential number,
increasing at every new dialogue turn). The session and turn identifiers can be auto-
matically appended to the logged message within the logger routine (similarly as the
timestamps). Such logfile organization enables a simple identification of starts and ends
of the experimental session and assigning them to particular users, and is also convenient
for further annotation (e.g. manual transcription of user’s utterances), since annotations
can be uniquely associated with dialogue turns. Transformation of the logfiles into a se-
quence of dialogue states in SQL table is then trivial. The turn-based organization makes
it also easy to detect information missing in some of the turns (i.e. information logged
inconsistently).

4.7.2 Data exploitation tools

In order to review experimental sessions, we have implemented a tool that enables simul-
taneous playback of several recorded videofiles aligned with a view on the logfiles. Such
tool gives to a human expert a full and comfortable view on the experiments.

Another tool that we have used were simple queries in SQL language. Once the data were
consistently organized in a database, it was easy to retrieve various statistical indicators
about the interactions. However, as mentioned earlier, the transformation of data from
textual logfiles into a database was sometimes quite cumbersome.

In order to retrieve information that was initially forgotten to log, we have implemented
a tool named dialogue simulator. The dialogue simulator repeats the entire dialogues
recorded in logfiles by supplying the dialogue manager with the same semantic input as
during the experiments. Because the dialogue manager works in a deterministic manner,
the simulated run of the dialogues involves exactly the same dialogue strategies, but
the information can be logged in greater detail during this simulated run. Of course, the
newly retrieved data can only expand the information about the system steps — no further
information about the user actions can be retrieved automatically. The user actions can
be further annotated only by manual review of the videofiles.

78

4.8. Summary

4.8 Summary

One of the most productive exploitation of rapid prototyping to date has been to use it as
a tool for iterative user requirements elicitation and human-computer interface design [77].
Indeed, observing the prototype in interactions with users reveals real user needs and their
preferred ways of interaction. However, such an observation cannot be achieved without a
nearly fully functional high-fidelity prototype, as the degree of maturity of the prototype
strongly influences the user’s reactions.

We propose Wizard of Oz techniques for the testing of multimodal systems. Although
WOz simulations have been traditionally used for vocal dialogue systems only, we show
that they can be extended to multimodal systems.

Even though the idea of using WOz simulations for the design of multimodal systems
is not new, to the best of our knowledge, there is no available literature describing the
experimental environment in detail. Therefore, our contribution consists of three main
parts: (1) a detailed description and analysis of the requirements for the experimental
environment, (2) an experimentally validated integration of WOz techniques within a
generic design methodology and (3) practical recommendations for carrying out WOz
simulations. A major part of our environment is generic enough to be used for testing of
any multimodal system, not necessarily only of those designed with our methodology.

The Wizard’s Control Interface (i.e. the software used by wizards to simulate not yet fully
implemented functionalities) can be tailored to the targeted application. In addition, the
interface can be easily distributed over several computers to be simultaneously used by
several wizards. We describe two particular examples of wizard’s interfaces that are typ-
ically used at initial stages of any multimodal system development. In these examples,
the interfaces allow the wizards to interpret inputs from different modalities and to pro-
duce/adapt system responses accurately and efficiently. They are implemented in the form
of modules integrated within the multimodal system, and can therefore be reused for a
broad range of applications. We describe the interfaces and their functionality and discuss
usability and ergonomic issues. In this perspective, our main conclusions are:

e The wizard’s interfaces must be carefully incorporated into the system in order to
allow the wizards to have a sufficient degree of control over the system and its
interaction with the user.

e The interfaces have to ensure speed and consistency for wizard responses and er-
gonomic issues have to be very carefully taken into consideration (e.g. shortcuts
for frequently used actions, fast access to a database with interpretation elements,
support for several wizards working simultaneously). Not surprisingly, the overall
wizard’s (in)efficiency has a strong impact on the perception that the users have of
the system’s efficiency.

e Scveral runs of pilot experiments are necessary to correct initial potentially wrong
system design decisions and to train the wizards.

79

Chapter 4. Experimenting with Wizard of Oz simulations

80

Chapter 5

Case study: the Archivus system

The Archivus system was the main case study we used for testing, evaluating and vali-
dating the Interactive System Prototyping Methodology described in Chapter 3 and the
Wizard of Oz simulations presented in Chapter 4. In addition, the Archivus system also
served as an experimental framework for the evaluation of the efficiency of our local and
global dialogue strategies (Chapter 6).

The Archivus system was designed in the framework of the IM2 project! in tight col-
laboration between the University of Geneva and EPFL. As such, it also served as an
experimental framework for two other doctoral theses: the first one [57] focused on deter-
mining which input modalities are the most useful and appropriate for meeting browsing
and retrieval; the second (currently ongoing) investigates the role of natural language in
multimodal interfaces.

In this chapter, we present the Archivus system as an illustrative ezample of a multimodal
dialogue-based system developed with our prototyping methodology. In section 5.1, we
first start with a description of the system. The section 5.2 presents the individual steps
for designing such a system using our ISPM. In section 5.3, the improvements made during
the iterative development of the Archivus system are summarized, in order to illustrate
the very valuable experience for designing of any multimodal dialogue-based system that
was acquired during such a process.

5.1 System description

Archivus is a multimodal dialogue system for accessing a database of recorded and anno-
tated meeting data [60, 17] (the Smart Meeting Room application). In short, the system
helps the user to answer questions like “What were John’s questions related to the budget
i the meeting in April?”. The user can retrieve specific pieces of information about
what happened in different meetings, for example topics that were discussed, decisions
that were made, documents that were presented, or people who were active in proposing
ideas.

IM2: Interactive Multimodal Information Management, http://www.im2.ch, funded by the Swiss
National Science Foundation.

81

Chapter 5. Case study: the Archivus system

5.1.1 Input and output modalities

The Archivus interface was designed and developed to be flexibly multimodal, meaning
that each system action can be invoked with any available modality. Flexible multi-
modality gives the users freedom in controlling the system: the users can interact with
the system either using only one fixed modality all the time, or they can flexibly switch
between modalities in a way that is most comfortable to them. It is also possible to
control the system truly multimodally and use several modalities simultaneously.

The input modalities available to the user are of two main kinds: pointing (mouse, pen,
touchscreen) and natural language (voice, keyboard). We believe that the voice and
complex natural language expressions can be particularly useful in the meeting search
domain and we also believe that this domain encourages users to try out and consistently
use such novel input modalities.

The output modalities used by the system are: audio responses in natural language, screen
based textual feedback, images and video.

5.1.2 Accessed data

The Archivus meeting database contains captured audio and video from the meetings
(recorded in special meeting SmartRooms [72]) and electronic copies of all documents used
(paper artifacts, slides, etc). In order to facilitate retrieval of information stored in the
database, manual annotations have been made on the data. The participant discussions
were transcribed and annotated with dialogue acts, topic segmentation, argumentative
annotation, and explicit references to stored documents. Each of the meeting is also
stored with metadata such as the date and location of the meeting and information about
the meeting participants.

Overall, our database includes 6 meetings (192 minutes of video data) held in English
by a total of 8 different participants with typically 4 participants in one meeting. The
rooting scenario of four meetings is a room furnishing, while the other scenario is a movie
club meeting and a meeting to determine a design of a remote control.

5.1.3 Functionalities of the system

The major tasks that the user can perform using Archivus are:

e find meetings, parts of a meeting, or specific information in a meeting based on
following criteria or any of their combinations:
— the date, location or participants in a meeting
— the topics covered, keywords spoken, or documents used in a meeting
— the dialogue acts (i.e. questions, statements, etc.) or argumentative sections (dis-
cussions, arguments, etc.)

e get an overview of all meetings that are relevant to a user’s goals

e browse quickly and easily through only the meetings or meeting sections that are
relevant to the user’s goals

82

5.1.

System description

Constant view of meeting database
(search space)

£ User interface

archlivus

Eeww

-
=3

- |

6!

1 Change label

4+ Change label

#

|Aﬂr\bute |Va|ue

6116

(ﬁﬂ!ﬁ

9

Direct access to
sought information

/

Agnes Oleay, soif .. is that it Susan or -
Susan wesh, that's it, yeah

Meeting book

Denis' presentation

Agnes
7 Denis' presentation Denis
7.1 Introducing conceptual idea Denis
Okay, so then I will .. give Denis the
floor

Is the cable on it?

Agnes
Agnes

Andrei
Denis

Mihtn, it's cotnitg
5o, basicalty T1o- [went onub - Tkea

siteand [- T - T just took the - the Andref
standard design they propose Denis
Bo - I just tried to state the problem Denis
again Andrei
So - uh, maybe [didn't emphasize Agnes
cnough on the reading aspect of the

Andrei

room.

61

Access to
multimedia

=101 x|

x

Furniture 2

But, I think it shall be as well a room
for resting, for brainstorming, and vh -
a - collaborative workspace as long
as there is nobody reading .. we say.
yeah

30, my proposition ie gquite similar to
Andrei proposition,

1 suggest to have two armchair, one
comfortable armchair, and one small
table a- with four chaire a- around for
uh informal discussions

7.2 Issue of not having a sofa

Sono sofa?

Um .. w- well see

1 don't remernber actually (Jaugh}.
surptise {lavgh}

There - there doesn't have to be one, [
i=

Mononol-T1didn't - T didn't say that

62

1 -" Straller secti.. Staternent

2 Jrg Topic

Denis' prese

3| i Firstname

Agnes

A

9

You can browse the meeting book or play the audio and video from the
meeting.

i Repeat

‘Where was this meeting?|

" Resat

=

1008 =

age 1of 1 Delete / Lm:aiiln Date of ing peaker Content Dialog
7 |
Curent search System ouput Natural language Access to System control
criteria list prompts input criteria selection buttons

Figure 5.1: The Archivus system graphical user interface

criteria, for example by date and speaker

5.1.4 The Archivus metaphor

view documents from a meeting and browse through them
watch video, listen to audio or read the text transcript of a meeting
browse through any meeting without specifying search criteria

customize the organization of the entire database of meetings based on one or two

An interaction metaphor uses the terms and concepts already familiar to users, in order to
explain them how to interact with an unfamiliar application and what its functionalities
might be [30]. Since the Archivus system is a novel type of application, it was vital to
find a suitable metaphor to which to situate the system.

For Archivus, we have chosen a library metaphor (Figure 5.1) as we have found that
meetings can be mapped quite easily and naturally to the content of a standard book and
that a database of meetings can be mapped to the structure of a library.

Thus, in Archivus, the database of stored meetings is represented by a series of bookcases
containing meetings data. Each individual meeting is represented by a book (detailed

83

Chapter 5. Case study: the Archivus system

views on possible book layouts are in Figure 5.4 on page 89), and a set of related meetings
as a volume of a series. The title of the book becomes the main topic of a meeting, while
the authors are the meeting participants. The publisher’s information page contains
the time, date and location of the meeting. The table of contents corresponds to the
agenda of the meeting, listing the topics of the meeting. Chapters in the book always
represent individual topics in a meeting, chapter sections reflect the dialogue structure of
the topic, and individual paragraphs are the specific utterances that participants make.
The documents that were used or referred to during the meeting are shown as the appendix

of the book.

5.1.5 Platform

The platform and environment for which the Archivus was designed is a laptop (tablet
PC) or a desktop PC with touchscreen used in an office-like environment.

This decision was based on two facts. The first is that a PC environment reduces learning
curves introduced by new hardware. The second is that while the use of PDAs and mobile
phones is rapidly gaining popularity, we are not convinced that the general population
is sufficiently familiar with their use for information browsing and retrieval, nor that
the devices are powerful enough to handle the information types in question. However,
modification of the Archivus interface for use on handheld devices may be investigated in
future work.

5.2 Building the system using ISPM

In this section, we present the individual steps of our Interactive Systems Prototyping
Methodology that we took in order to design the Archivus system.

5.2.1 User requirements elicitation

The initial step is to identify the functionalities that the system must provide. This was
in our case largely complicated by several factors. First, the domain of application is
entirely new to the users. Specifically, no similar application exists and therefore users do
not have any pre-existing set of functionalities that they might require from the system.
Second, even the set of potential users was unknown, as this system was designed as a
research prototype and not as an application for a specific client (user). Finally, the use
of multiple modalities is quite uncommon in the office-like environment that we wanted

to build.

The user requirement study under such complicated circumstances was carried out by
our colleagues from University of Geneva and it is described in [56, 59]. Firstly, a set of
possible scenarios and possible users was created based on the initial objectives of the
application. Those were the following:

e A manager tracking employee performance

e A manager tracking project progress

84

5.2. Building the system using ISPM

1
‘archivus =
] ' S LALEL R A A
: o P oL b 0
< -]
Exit
,
2
= 5|
"
3 First name: First name: First name: First name: First name:
1 Denis Martin Agnes Andrei Susan
. Family name: Family name: Family name: Family name: Family name:
i R. L P
Function: Post- Function: Function: PhD Function: Post- Function:
doc researcher Professar studert doc researcher Professor
4
L . Location: Lni Location: Location: Uni Location: Uni Location: Uni
. Friboury EPFL Geneva Geneva Geneva
|
\ 5
e = —] 54)
j: i
/ 6
B | “ lcon [Attrioute [value |
* | Topic I
y J I
e
; AENL AR
I ; ‘ <
. | — . . - Dialague
- -|L' — ‘“T 5 Date Place Person Topic Element | |Document Event
i J TSSC0
(I B T 1 W

Figure 5.2: An initial electronic mockup of the Archivus interface, created as a series of MS
PowerPoint slides representing an example of multimodal interaction with the system. Compare
with the final version of the system in Figure 5.1.

e A current employee who has missed a meeting
e A new employee who needs to learn about a project
e Fact checking: a person was in the meeting, but needs to recall or verify certain fact

In order to identify the tasks for which the Archivus system would be used, a user require-
ment study was carried out using the five above mentioned scenarios. The study involved
20 participants from different backgrounds, who were asked to list the types of questions
that they would pose to the system, or the type of information that they would like to
find.

As a result of the user requirement study and a series of in-house brainstorming sessions,
we have obtained an electronic mockup of Archivus (Figure 5.2), which demonstrates a
possible interaction with the system. The mockup and the set of user requirements was
our initial entry point for the development of the Archivus system.

5.2.2 Domain model

Based on the natural language queries from the user requirement study, we have identified
the types of constraints that users prefer to use for searches in the meeting domain. A
full list of those constraints is in Table 5.1, nevertheless, the sought meeting information
was essentially described in the following principal terms:

e Location of the meeting (MeetingPlace)

e Date of the meeting (MeetingDate)

85

Chapter 5. Case study: the Archivus system

e People participating in the meeting (Speaker)

e Topics of the conversation (Topic)

e Keywords uttered by meeting participants (Keyword)

e Names or types of documents used during the meeting (Document)

e Dialogue act types used by participants (DialogAct), such as questions, statements,
answers, etc.

e Larger sections of the meetings (ArgSegClass), such as decisions, suggestions, pre-
sentations, etc.

The user requirement study also suggested the targets of the queries. These were mostly
meeting utterances and information associated with utterances (speaker, date, referenced
document, etc).

The constraints and the targets of user queries allowed us to implement the domain
knowledge model of the Archivus application (for general approach to domain modeling see
section 3.2 on page 25). Due to a quite high complexity of the underlying meeting data, we
have decided to implement the Archivus domain model in a form of PostgreSQL relational
database. The database schema is in Figure 5.3. The corresponding domain model
functions are implemented as a dynamic construction of SQL queries. The complexity of
the dynamically created SQL query depends on the actual set of constraints that were
submitted via the domain model function setConstraints. Solely the constraints actually
provided by the user are a part of the SQL query used for selecting the central information
in the database — a compatible set of utterances (table Utter). The set of utterances
compatible with the search constraints is then in turn used to generate compatible values
for any given attribute (domain model function getCompatibleValuesForAttribute). For
instance, when a year of meeting is a constraint, the compatible utterances are only those
that happened during meetings held in the given year. In case when the user needs to
know which persons were discussing in the given year, such persons can easily be identified
as speakers of utterances selected in the previous step.

Although the outlined principle of SQL query construction is valid for most of the at-
tributes of the domain model (see Table 5.1), there are some exceptions. For instance,
the compatible values for bookcase dimension selectors are constantly the same (i.e. the
set of possible selectors), or values of History attribute are basically the actual search
criteria. In this respect, the Bookcase attribute is also specific: the values of Bookcase are
always all meetings (both active and inactive), organized according to currently selected
values of dimension selectors (vertical and horizontal). The corresponding SQL query re-
turns all meetings (augmented with information about number of utterances compatible
with search constraints) associated with information specified by the dimension selector

type.

The SQL query execution time depends on the complexity of given query, varying from
40ms to 500ms. We consider such response times as sufficient for our application and
database size. In case of bigger databases (hundreds of meetings), the database re-
sponse times can be optimized by running the database on a separate machine or using
database optimization methods (adding memory, storing the database on multiple disk
volumes, etc). Another room for optimization lies in caching of frequently used parts of
SQL queries (e.g. compatible utterances, results for bookcase, etc).

86

5.2. Building the system using ISPM

Date
DatelD (PK)
Year
Month
DayOfMonth
DayOfWeek \
- Location
icEpi Meeting
Eziesrg::fs lz::sgj = MeetingID (PK) (Place) LocationID (PK)
MeetingID (FK) L Place.LocationID (FK) PO — | City
Topic PO— —— —— —— —— —+ DatelD (FK) Institute
NestingLevel Name \\\ParticipantList Room
StartTime VideoFileRef
EndTime \ [Participation |
. Participating.MeetingID (PFK)
Uttergncel.ist \ Participant.PersonID (PFK)
Thema_Utter l \ (Address)
— EpisodelD (PFK) [‘
UtterID (PFK) JR \ MeetingList
Utter \ \ Person
PersonID (PK)
UtterID (PK) K
. . ker) FirstName
Meeting|D.MeetingID (FK) (Speal !
PO — —— —— —— ——+ FamilyName
Speaker.PersonID (FK;
TPanscription 9 éﬁgﬁiﬁlocaﬂonm (FK)
ArgClagsList Eﬁ:jr‘tr-li-rlg;e UtterKeyword \
ArgClass ArgClass_Utter tme"D (PFK) \
ArgClassID (PK) ArgClassID (PFK) P‘ggma
Label UtterID (PFK) Startindex (PK) \
Endindex
(xocsAnachedToMeeling)
- . ReferencedDocumentPages
DialogActList o) \
A ReferenceDocBIock pocBlock ggng (PK)
DigAct DIgAct_Utter e DocBlockiD (PK) o« MeetingID (FK)
DIgActID (PK) UtterID (PFK) () DoclID (FK) —
ggctil o< DocBlockiD (PFK) PagelmageRef (Doc pages) | TyPe
Description DlgActID (PFK) PageNb Title

Figure 5.3: Domain model: an underlying schema of a relational database used to store meeting
data. The color code is used to denote different annotations on the data.

5.2.3 Structure of mGDNs

In order to define how Archivus interacts with the user, the attributes of the domain
model were associated with mGDNs and transitional relations between the mGDNs were
established. The mGDNs (section 3.3 on page 27) define the interaction in a specific
context, while the structure of mGDNs is exploited by dialogue strategies to control the
interaction with the user at a global level. The relation between the mGDN structure
and the dialogue strategies is explained in section 3.5 on page 43.

The exact association of mGDNs with domain attributes is shown in Table 5.1. Nearly
all mGDN types were already introduced in section 3.3.2 on page 29, except of the book
browser mGDN. This is because the formerly mentioned mGDNs are regarded as general-
purpose mGDNs, while the book browser is specific to Archivus, though it could be
generalized to information seeking systems that use the book metaphor to present the
sought information.

The book browser is quite a complex mGDN with multiple layouts (Figure 5.4), allowing
the user to access various information about meetings. The entire meeting is always
displayed, but the user can quickly access pages containing information relevant to the
current search criteria using yellow tabs on the left side of the book. Additionally, the
relevant information (utterances) on the page is highlighted in the transcript using a
yellow background. Opening a meeting book is unfortunately quite a lengthy process (on
average 6 seconds, ranging from 2.5s to 13s depending on meeting size), because all the
book pages have to be generated before the book is displayed to the user (otherwise it
would not be possible to display correctly yellow hit tabs and page references in table of
contents). A progress bar appears when the book is being generated. In order to speedup

87

Chapter 5. Case study: the Archivus system

|

Attribute name

Attribute type

\ mGDN type/layout \ GUI area ‘

Start initial empty layout 3
‘MeetingPlace composite constr. map layout 3
~MeetingCity constraint list 3
~MeetingInstitute constraint list 3
--MeetingRoom constraint list 3
‘MeetingDate composite constr. table layout 3
MeetingYear constraint list 3
-MeetingMonth constraint list 3
-MeetingDayOfWeek constraint list 3
--MeetingDayOfMonth constraint list 3
-Speaker composite constr. table with icons 3
--SpeakerFirstName constraint list 3
--SpeakerFamilyName constraint list 3
--SpeakerAddress composite constr. table layout 3
---SpeakerAddrCity constraint list 3
---SpeakerAddrInstit constraint list 3
---SpeakerAddrRoom constraint list 3
--SpeakerFunction constraint list 3
-Content composite constr. switch layout 3
-Topic constraint list 3
-Keyword constraint list 3
--Document composite constr. table 3
--DocTitle constraint list 3
---DocType constraint list 3
-DialogueElements composite constr. switch layout 3
-ArgSegClass constraint list 3
~DialogAct constraint list 3
History constraints overview \ special list 2
Bookcase search space overview bookcase 1
BookcaseVerticalDim view arrangement list 3
BookcaseHorizontDim view arrangement list 3
OpenBook result browsing book browser 3
DocBrowser result browsing document browser 3

Table 5.1: Archivus: a summary of domain model attributes with associated mGDN type and
the placement on user interface (GUI area, referring to Figure 3.11 on page 49). A hierarchical
organization of constraint attributes is denoted by indentation (using dots).

88

5.2. Building the system using ISPM

Cover view (meeting info) Table of contents view {(meeting topics)
Movie club | Table of contents Movie club
1 meeting agenda Direct access 4.3.3 coherence with previous movies
Movie club Change book . - h i 4.3.4 representative of the 00s?
section {view) 2 who W"l.ll start) to given topic PR
3 Agnes' presentation 1.4 The Usual Suspests
3.1 introduction. 4.4.1 introduction
Place: INR222, EFFL, Lavsanne 3.2 The Usual Suspects 4.4 the movie ranking system
Date: Friday, April 8, 005 3.3 The Sixth Sense 4.4.3 wha has seen the movie
Participants: Agnes, Andrei, Denis, Mirek 3.4 The Usual Suspects 4.5 Pulp Fiction
3.5 rariking of the tnovies 4.5.1 keep as an option?
3.0 awards 4.5.2 structure of the movie
5.7 ranking 453 movie soundtrack
3.8 who has seen the movie 4.5.4 voting at the end
3.9 about The Sixth Sense 1.6 Goodfelas
3.10 sirilarity between the movies 4.7 Silence of the Lambs
3.11 awards for The Sixth Sense 4.7 infroduction
. 4 Mirck's presentation 4.7.2 plot of the movie
Directacces 4.1 introduction 4.7.3 who has seen the movie
to relavant utterances (hits) Start 4.2 first movie 4.8 American Beauty
video / audio 4.3 Schindler's List 4.8.1 introduction
playback 431 introduction 4.8.2 plot of the movie
4.5.2 anniversary of liberation 5 goal of the movie choice
! 2 J | 3 Previous and next page 4 J
20 o 2y =8
Documents Movie club Mirek's presentation Movie club
Video aligned
e with transcript = Mirek you can read the plot outtine o the on
.8 American Beauty the on the projectar, [£]
01 Agnta Mirek | tut it's basically deep, wonderful and
posters 4.8.1 introduction penetrating movie, extraordinary uh
21 Paster proposals Denis Okay, American Beauty w- w- was irony and the p- and the psychological
Slides cotming next, seven, was quite quite dearma about American lfe.
nice actually.
3] Agnes presentation Mirek Yeah Could you go to the next 4.8.2 plot of the movie
[4] Andeei's presentation stide? [] Denis Yeah, it's definitely about Arnerican life.
[5] Denis' presentation Agnes Yeah That was very gooy, yezh. Agnes Yeah
Agnes Veah Agnes Suburban life
[6] Mek's preseniation Mirek Yeah, it's here, and that's aually my Denis It's it's kind of crude the critique, but
ast slide. So um [6] uh on the other way it's quite poctic,
Denis Why you choose you choose keven it's u - yeah
tmovie? Agnes There's a Lot of very true things in it
Denis Okay. \ Releant Mirele . Poetic?
Andrei Indeed utterances Yeah, you know, with the the way of
Mirek So American Beauty, higlighted filming and um -
Mirek 5o [can perhaps read a little bit the Agnes Veah
! wser comment if you want, or vh Denis 1 don't know, I found it pretty -
s ; L yeab, [6]
107 k f 53
W - -
0 . 5 = References ’ 0
. to documents <

Figure 5.4: Book browsing mGDN: user can browse the meeting as a book. Several views on
meeting data are available.

the book opening, we have implemented a cache for displayed data. In case when the
user reopens the same book and no hits were changed, the response is nearly immediate
(about 350ms).

The book browsing mGDN provides a multimedia player that is used to play the video
and audio recorded during the meeting. Video is visually synchronized with the meeting
transcription — a small blue vertical line is displayed next to the utterance that is being
played. The player is tuned to start the recordings at the page from which it was started,
giving users easy and quick access to very specific points in the meeting. The meeting book
contains also references and list of all documents used during the meeting. The document
browser is actually another mGDN, which is accessed immediately after a document was
selected within a book. The document identifiers are the values of global semantic pairs
resulting from the interaction with the book.

Concerning the overall Archivus interaction model, the constraint mGDNs are organized
hierarchically as indicated in Table 5.1. The explicit hierarchical organization is encoded
in a declarative config file and makes it possible for the branching logic (global dialogue
strategy) to determine the next mGDN under focus after a value for the current constraint
mGDN has been provided.

On the other hand, the relations between mGDNs participating in the result browsing
phase of the dialogue (book and document browsers, search space overview mGDN and its

89

Chapter 5. Case study: the Archivus system

horizontal and vertical arrangement mGDNs) are not encoded declaratively in the config
file. Those are only implicitly encoded in the Java source code of the dialogue manager
(within the main loop of the interactWithUser() method) together with commands for
other dialogue strategies. Although the transition rules for ‘result browsing mGDNSs’
represent in total less than 50 lines of Java source code (split in three blocks), we are
conscious that an explicit formalism for relations between mGDNSs is desirable. Such a
formalism is currently missing in the implementation of our methodology and we regard
it as future work. The reason for which we have not yet defined any explicit formalism for
all relations between mGDNs is that we had not enough time (and examples of systems)
to define it properly. Furthermore, we believe that a formalism with a weak expressing
power could have caused the system designer more complications when reaching its limits.
The adaptation of an insufficient formalism is more complex compared to the current need
of adaptation of relatively few lines of existing Java source code.

5.2.4 Graphical layout of the application

We have organized the graphical components of mGDNs according to the principles pos-
tulated in section 3.5.3 on page 48. The visibility of various components is directly
controlled by the mGDNs according to theirs status. Most of the graphical components
become visible when their controlling mGDN is under focus. The only exceptions are the
bookcase and history components — those are visible all the time.

Yet another aspect that influenced the graphical layout are the input and output modali-
ties used in the Archivus system. In particular, we planned to use a 15 inch touchscreen.
This imposed that all the control elements had to be big enough to be comfortably se-
lected with finger-touches (the precision of touchscreens is lower than the precision of
mouse pointing).

5.3 Improvements and modifications during pilot
studies

The design of Archivus was an interactive process with many system modifications during
the initial series of WOz experiments. The initial experiments were split into three main
series, each lasting about five days and involving altogether 40 participants. An experi-
ment with each participant took about two hours, hence allowing having a maximum of
four participants a day. The number of participants could have been lower in case if the
aim of the pilot studies was only to improve Archivus. However, the studies served the
purposes of two other dissertations and thus had multiple aims, such as finding an optimal
modality-unbiased experimental protocol, testing the hardware setup of the experimental
environment, improving the wizard’s control interface and the entire prototyping method-
ology. The overall aim of the pilot experiments was the preparation of the system and
WOz environment for the data-collection experiments that are described in Chapter 6.

This section presents the major improvements and modifications of the Archivus system
during the pilot studies in the form of the experience report, which is valuable for any
system designer. It illustrates the possible outcomes of WOz experiments related to

90

5.3. Improvements and modifications during pilot studies

modifications of the designed system and clearly shows their importance. Because some
of the necessary improvements formed our ISPM, this section can also be regarded as a
justification for some of the ISPM design principles.

5.3.1 System outputs

Presentation of the system outputs underwent a number of modifications based on the
informal post-experimental interviews with users. The initially used prompts were con-
sidered long, not very informative and too much repetitive. We have therefore carefully
reconsidered wording of the prompts defined in the system, eliminated certain ambiguities
in their meanings and implemented a possibility of defining multiple prompt reformula-
tions that are randomly selected by the system (mGDN) in recurring situations. In
specific situations (e.g. scrolling through the list of items) the consequent prompts are
muted (no vocal output, only textual output). We have also extended our methodology
with conditional prompts. Each conditional prompt is associated with a logical expression
(condition) describing the situation in which this prompt should be used. If the condition
is satisfied, the associated prompt replaces the default one.

The user-perceived system output is also largely influenced by the quality of vocal out-
put. Initially, we have used the FreeTTS? solution — a text-to-speech synthesizer entirely
written in Java and distributed free of charge. Nevertheless, in order to reach more natu-
ralistic vocal output, we have integrated a commercial Nuance TTS? system, which is easy
and pleasant to listen even repeatedly. The prototyping platform also offers a possibility
of using fully prerecorded prompts, but this feature was not used in the Archivus system,
as Nuance TTS is more practical and with a sufficient quality.

As a consequence of improved prompt quality (both content and audio form), we have
observed that users hardly ever turned the audio output off during the experiments,
which was not the case during the initial runs of experiments. Ensuring that the users
naturally leave the prompts on was important for an evaluation of natural language use
— we speculate that muted system prompts could discourage users from using their own
voice for controlling the system.

Concerning other system outputs, we had to tune the system confirmations of newly
acquired constraints. Our previous experience with vocal-only systems shows that some
kind of confirmation is necessary, but vocal confirmation in systems equipped with screen
is negatively perceived by users (long prompt, redundant with information displayed on
screen). As a result, we have removed the confirmation prompt, but we attract the user’s
attention to the newly added constraints visually: they are flashing on screen for a short
time (2.2 seconds) after they were recognized by the system. Similarly, we attract the
user’s attention to changes in the search space: each time there is a change in the result
set, the relevant books (i.e. meetings containing sought information) in the bookcase are
moving for a while. Those changes minimized the number of users repeatedly specifying
the same constraints as they did not notice the effect of previously provided constraints.

2FreeTTS version 1.2.1: http://freetts.sourceforge.net/
3Nuance Vocalizer version 3.0.8: http://www.nuance.com/realspeak/vocalizer/

91

Chapter 5. Case study: the Archivus system

5.3.2 Functionality and usability improvements

During the pilot experiments, a need for extended types of interaction emerged. An
example of extended interaction is a map layout for geographical location selection that
replaced the initially used table layout. The list layout (Figure 3.1 on page 31) was found
impractical for long lists and therefore we have introduced a possibility of jumping to a
predefined part of the list using alphabetical buttons.

Other functional modifications concerned the refinement of the hierarchy of constraint
mGDNs, with the aim of grouping together conceptually similar elements and enabling
an option of using multiple constraints of the same type for searches (typically required for
keywords). On the database side, the labels of some annotation types (dialogue acts and
argumentative annotation) were reformulated in order to become more intuitive for non-
expert users, and the labels were unified (such as lemmatization of keywords or turning
the topic labels into singular forms without articles) in order to present the constraints
in a coherent way.

Because the initial pilot experiments were carried out without tutorial, we could observe
how intuitive the interface seems to be to users. From this perspective, the original
label “History” of the mGDN for manipulation with search constraints was misleading,
because users provided us with at least three different wrong interpretations of the purpose
of that particular mGDN during the final interview. The wrong understandings were the
following: (1) the component just enumerates all previous searches, (2) it provides an
‘undo’ functionality — when clicked somewhere in the middle, it rolls back to this point
of interaction, (3) it gives a direct access to the displayed piece of information. Such
misunderstandings were eventually resolved by the unambiguous label ‘Current search
criteria’.

Another misleading functionality was triggered in the column layout (Figure 3.5 on
page 34), where many users wanted to scroll down the columns. Therefore we have
highlighted the hyperlink to the underlying mGDN (label ‘...more...”), where scrolling
was possible. The overall intuitivity was also enhanced by a slight reorganization of the
interface layout (compare Figures 5.1 and 5.2) and by using a new system graphics (the
previous one was regarded as boring and old-fashioned by users during the final interview).

5.3.3 Book view

Although the book view follows a real-life metaphor, its mapping to meetings is a fairly
novel approach. As such, it required several modifications and fine-tuning during the pilot
experiments.

We have modified the labels on the tabs (see final version in Figure 5.4) in order to make
them more intuitive: ‘Contents’ become ‘Toc’, ‘Appendiz’ become ‘Documents’; and we
have added a tab for the actual content of the book (‘Transcript’). On the other hand, we
have completely removed the list of keywords in the book (‘Indez’) as this was typically
too long and not very usable. Besides highlighting the relevant utterances in yellow, we
have also decided to highlight particular keywords in orange color as it was sometimes
unclear to users why a given utterance was marked as relevant.

92

5.4. Summary

A functional enhancement was required in the part of the book that presents the meeting
content in the form of a hierarchical list of topics. The initial prototype listed the topics,
but did not allow directly accessing the corresponding part of the meeting. This was
changed by adding an appropriate local dialogue strategy (responding to utterances like
“Go to topic 1.4 and displaying hyperlinks next to each topic).

The system behavior was also improved in less frequently occurring situations, which were
actually revealed only during WOz experiments. For instance, we had to decide how to
behave in situations when the user (during book browsing) adds vocally a new search
constraint, causing the currently selected book to become inactive, while another one
remains active. We have considered the possibility of directly switching into that active
book, but finally we have decided to vocally inform the user that the currently selected
book does not contain any relevant information anymore, and it was up to the user to
decide whether he/she wants to continue browsing the current inactive book, modify
search constraints or to switch to the active book.

5.4 Summary

Designing a dialogue system with multiple input and output modalities is always a chal-
lenging task, even if methodological guidelines and predefined software building blocks
are provided. In this perspective, concrete experience with building similar systems is of
invaluable help.

Therefore, we present the full design process of such a system — the Archivus system.
As the Archivus applicative goal (retrieving information from a multimedia meeting
database) corresponds to a quite novel application, it is thus difficult to predict the be-
havior of the users when faced with the associated multimodal interface. We present and
justify our design decisions and discuss the changes that were made during the iterative
system refinement. Some of those changes might be regarded as fairly generic and might
inspire the designers of future similar systems.

93

Chapter 5. Case study: the Archivus system

94

Chapter 6

Evaluation of dialogue strategies and
the Archivus system

This chapter focuses on several evaluations based on the data collected during large-scale
WOz experiments carried out with the Archivus system. These experiments involved
91 naive users and were made with the most mature version of Archivus after several pilot
experiment runs (the pilot experiments involved additional 40 users and the improvements
made to the Archivus system during these experiments were summarized in section 5.3).

The main goals of this chapter are (1) to analyze how the various strategies and features
implemented in the interactive system designed with our methodology are used and per-
ceived by users in order to derive conclusions about their relative importance, and (2) to
evaluate the quality of the Archivus system, from the perspective of user performance,
satisfaction, and encountered problems.

The large-scale Wizard of Oz experiments were carried out in a collaborative framework
with colleagues from the University of Geneva and the EPFL. The experimental protocol
builds upon several groups of users with different access to the Archivus modalities, al-
lowing an inter-group, modality-based comparison. However, for our specific evaluation
purposes, we only took into account the PVK (pen, voice, keyboard) and MVK (mouse,
voice, keyboard) conditions and we balanced our data in order to have the same num-
ber of users within each modality condition (see section 6.2 for details). No inter-group
comparison was performed in our case, because the variable ‘modality condition’ which
defines the groups is not in the main focus of our analysis.

The chapter is organized as follows: first, the experimental setup and the gathered data
(users” demographic information and global interaction measures) are described (sec-
tions 6.1 and 6.2). Then, the use and significance of the global and local dialogue strategies
is evaluated (sections 6.3 and 6.4). The use of various modalities and their role in the
interaction is described in section 6.5. Next, we evaluate the Archivus system as such.
In particular, we look at objective measures such as the speed and accuracy of the users
when solving the assigned tasks, and we analyze the causes of problems encountered by
the users during their interaction with the system (section 6.6). Finally, we provide an
overview of user’s subjective opinions about the Archivus system (section 6.7).

95

Chapter 6. Evaluation of dialogue strategies and the Archivus system

6.1 Experimental setup

The user (the experiment volunteer) was first welcomed and briefly introduced to the
experimental evaluation by an experimenter. During the introduction, the users were
warned that the experiment is recorded, but they were not informed about the presence
of wizards (who sat in a separate room). After having signed a consent form, the users
had to fill out a demographic questionnaire and then received detailed information about
the experiment together with a description of the applicative scenario (“Imagine you are a
new employee of a company. Your manager asked you to find and check some information
for him. He has told you to use the Archivus system that ...").

The actual experiment was split into two twenty-minute sessions, during which the users
solved tasks provided to them on paper cards. The tasks included true-false questions
(statements) like “The budget for the room furnishing was 1000CHF” and short-answer
questions like “Who attended all meetings?”. As the original main purpose of the ex-
periments was to identify the most useful modalities in Archivus and determine whether
there is a modality-learning effect (see [57]), only a subset of all input modalities was
available to the users during the first session (for example voice only, or pen and typed
natural language only). In the second session, which immediately followed the first one,
the users were allowed to freely use any of the modalities available in the system (speech,
typed natural language, mouse or pen), with exception that pen and mouse were never
allowed simultaneously. Table 6.1 shows all the combinations of modalities that were
made available to the users. In order to familiarize users with the system and to intro-
duce the modalities available to them, each twenty-minute session was preceded by an
approximately fifteen-minute tutorial. The tutorial took the user through three sample
tasks (similar to those that were given on paper cards) and explained how to control each
part of the system with the available modalities using a guided interaction.

Group | Modalities available during Number of users
first session ‘ second session total ‘ discarded ‘ analyzed

G1 M MVK 9 1 8
G2 P PVK 10 2 8
G3 MK MVK 9 1 8
G4 PK PVK 8 8
G5 MV MVK 9 1 8
G6 PV PVK 8 8
G7 PVK PVK 11 3 8
G8 MVK MVK 10 2 8
G9 \Y MVK bt 3
G10 \Y% PVK 3

GI11 VK MVK 6 1 3
G12 VK PVK 3

Table 6.1: Experimental setup: modalities (the modality condition) available to users during
the first and second experimental sessions. In order to guarantee a uniform distribution of
experimental conditions per users, some of the users were not considered for further analysis.
Acronyms used: M — mouse, P — pen, V — voice, K — keyboard

96

6.2. The gathered and analyzed data

At the end of the experiment, the users were asked to fill out a post-experimental question-
naire, the goal of which was to elicit their overall opinion of the system. The experimenter
was only present in the room when instructing the users about the next evaluation steps
and each user was left alone in the room when doing the two experimental sessions and
tutorials. This helped to keep the experimental conditions constant and the experimenter
could also act as an output wizard, thus reducing the overall number of operators needed
during the experiments.

The experiment participants (naive users) were recruited through flyer advertisements
distributed on three Swiss universities (EPFL, University of Lausanne and University of
Geneva). Volunteers were asked to contact the experimenters by email and were awarded
20 CHF (about 13 EUR) and a free drink for their participation in a two-hour experiment
at EPFL or at the University of Geneva.

6.2 The gathered and analyzed data

Several types of data were gathered during the experiments: first (1) user’s personal in-
formation collected from the demographic questionnaire and (2) user’s subjective opinions
of experience with the system from the post-experiment questionnaire. Next is (3) the
audio and video recordings (in three channels: user’s desktop, hands and face view) of
each of the twenty-minute sessions, and (4) the system logfiles that keep track of all sys-
tem actions and allow to determine user actions, such as where the user pointed, what
he/she typed, what modality he/she used, etc. After the experiments, the logfiles were
manually annotated and partially corrected using the video files (e.g. added transcription
of user’s utterances, corrected starts and ends of user tasks and aligned with the task
IDs). The interactions during the tutorial were not recorded, as the users were supposed
only to strictly follow the tutorial instructions. In addition, during the experiments, the
wizards took (5) informal notes concerning any specificities that could possibly bias the
collected data (for instance technical problems, user not willing to finish the tutorial, user
performing tasks out of the given order, user saying he/she was ill, etc). The last type of
data gathered were (6) the user’s answers to the given tasks (true-false statements and
short-answer questions).

Although we gathered the six types of data for all 91 users, we only use a part of them for
the analysis performed in this chapter. Indeed, as already mentioned, the experimental
setup was originally designed for the study of modality-learning effects and for inter-
modality comparison [57]. For our work, we only use the data from the second twenty-
minute experimental sessions, during which all modalities were available to the users
(with the exception of pen and mouse, which were never available simultaneously). The
used data was selected in order to be balanced with respect to modalities available in the
first twenty-minute sessions and we preferentially excluded users who experienced non-
standard experimental conditions (e.g. users announcing that they were ill, users who
solved tasks out of given order, etc). An overview of included and excluded data is given
in Table 6.1.

In consequence, if not stated otherwise, the analyses presented in this chapter build upon
the experimental data of 80 participants interacting with the system during the second

97

Chapter 6. Evaluation of dialogue strategies and the Archivus system

experimental session (altogether 80 x 20 = 1600 minutes of interaction). The next two
sub-sections (6.2.1 and 6.2.2) provide a more detailed presentation of the analyzed data.

6.2.1 The users — a demographic information

Among our 80 experiment participants, we had a fairly even distribution of males (58.75%)
and females (41.25%), who ranged in ages from 18 to 55. Of these, just over half (53.75%)
were aged between 18 and 24, 37.5% were between the ages of 25 and 35, 6.25% were be-
tween 36 and 45, and the other 2.5% were between the ages of 46 and 55. Of these, 85%
were non-native speakers of English with a self-assessed good level of reading and speak-
ing skills in English. Most of the volunteers (70%) were university level students. The
others came from a variety of different professions ranging from researchers to engineers
or translators. Nevertheless, 38.75% of them attended meeting a few times a month, with
12.5% attending a few times a week, and 5% attending meetings every day. Only 7.5%
said that they never attended meetings and 21.25% said that they attended them only a
few times a year.

Computer literacy was self-assessed by the volunteers. One of the questions that they
were asked was how many hours they spent using a computer each day. 38.75% said that
they spend 2 to 4 hours with a computer, 23.75% said it was 5 to 7 hours, and 21.25% said
it was 7 to 10 hours. A surprisingly large number (13.75%) said that they spend over 10
hours each day in front of a computer. Only 2.5% said that they spent less than an hour.
An overwhelming number of our users (95%) used Windows systems on a daily basis and
were familiar with browsers (98.75%). Slightly fewer used word processors (90%) and
audio players (82.5%) regularly. Only 63.75% of the users used video players regularly.
A surprisingly high number of users (33.75%) said that they had used automatic speech
recognition programs in the past and 23.75% said that they had used voice to control
their computer. However, only 18.75% had experience with database tools.

We feel that in general, this user population is fairly representative of a population that
could use multimodal dialogue systems of the given type.

6.2.2 Global interaction measures

The analyzed experimental sessions of 80 participants are on average 19 minutes and
58 seconds long, representing altogether 1598 minutes of interaction (see Table 6.2 for aver-
age, standard deviation, minimum, maximum and sum of most of the hereafter mentioned
measures). During that period, users made 6641 dialogue turns (inputs to Archivus) in
total. On average, this represents 83 dialogue turns per session, and in terms of speed,
it is one user input every 14.4 seconds. Actually, the users were providing their inputs
within 10 seconds on an average, and 4.5s is the average system response delay. The
system response delay is caused partly by the wizards simulating or supervising some of
the system functionalities (2.8s) and partly by the system itself (1.7s).

An average duration of system voice prompt! is 3.3s. The prompts are played vocally
only in some of the dialogue turns (exactly in 3579 instances, which represents 54% of all

!The user can provide his/her input in the time when the system plays the voice prompt (barge-in).
Therefore, such time period is included within the durations of user turns (and is not considered as a

98

6.3. Evaluation of global dialogue strategies

’ Interaction measure \ # of data \ Avg \ Dev \ Min \ Mazx \ Sum ‘
Duration of sessions 80 19m:58s | £25s | 18m:29s | 2Im:11s | 1598m
of turns in sessions 80 83 +24 41 181 6641
User turn duration 6641 10.2s +10.5s 0.1s 2m:41s | 1125m
System turn duration 6641 4.5 +5.3s 0.1s 37s 495m
Pure system duration 6641 1.7s +2.9s 0.1s 14s 191m
Wizard processing dur. 6641 2.8s +3.4s 0.1s 32s 304m
Prompt playback dur. 3579 3.3s +1.3s 0.3s 18s 194m
of tasks per sessions 80 10.5 +3.2 5 20 837

Table 6.2: Global interaction measures

dialogue turns). Altogether, 119 distinct vocal prompts were played by the system and
the vast majority of them (117) were played less than 80 times (i.e. less than one times
in a twenty-minute session), indicating that prompts are not very repetitive within one
experimental session.

The experiments were carried out with two different modality conditions. In one of the
condition, a tablet PC with tactile screen was used, enabling pen, voice and keyboard
as possible input modality channels (hereafter called the PVK condition). The second
hardware settings used a desktop PC with 15 inch monitor, mouse, voice and keyboard
input (the MVK condition). We had 42 users following the MVK experimental condition,
while 38 users followed the PVK condition. Unfortunately, the tablet PC was slower than
desktop PC, making the overall average system responses longer by 1.8s. This resulted
into a lower average number of dialogue turns performed during allocated 20 minutes
(73 turns in PVK versus 92 turnd in MVK). In total, our data set contains 2759 (42%)
dialogue turns from PVK condition and 3882 (58%) turns from MVK condition. We take
this into account in analyses where such a disproportion might have an impact on the
results.

Overall, we assume that the collected data is exhaustive enough to be representative of
possible interactions that a great majority of users in a population will have with the
Archivus system (within similar interaction scenarios). It allows us to draw some general
conclusions on the use of dialogue strategies and modalities in Archivus and its overall
usability.

6.3 Evaluation of global dialogue strategies

6.3.1 Automated presentation of possible search results

The Archivus system automatically opens a book with a meeting transcript in cases when
only one book (meeting) contains information satisfying the search constraints provided
by the user. Information matching the user’s query is highlighted in the transcript and
the user has a possibility of directly browsing the relevant pages using book tabs (the
book tabs are shown in Figure 5.4 on page 89). The book opens automatically on the

system processing time — the system processing time is solely the time period when the user cannot
interact with the system).

99

Chapter 6. Evaluation of dialogue strategies and the Archivus system

first page with relevant information. Further details about this global strategy are given
on page 45. We were interested in how often the strategy was used and whether it was
accepted by user.

The analysis of experiment logfiles revealed that a book was opened automatically by the
system in 949 cases (43% of all book openings), while the user opened the book manually
in 1268 cases (57% of all book openings). In total, the strategy of automatically presenting
a possible search solution/result (i.e. utterances within meeting book) represents 7% of
all interactions (dialogue turns?) with the system, making it a fairly frequent dialogue
strategy.

As the strategy is frequently used, it is crucial to know whether the corresponding auto-
mated decision of the system is accepted by users or not. Because users were not explicitly
asked about that issue in the post-experiment questionnaire, we had to establish mea-
sures (based on objective data in logfiles) in order to estimate the acceptance of the system
strategy.

The first measure is a heuristic defining that the user is unsatisfied with the automatically
opened book in situation if he/she closes the book (or accesses some other element on the
interface) within a ‘short time’ after the book was automatically opened. Being aware of
high subjectivity of the term ‘short time’, we rather define it as three potential durations?:
3s, bs and 8s. The results are summarized in Table 6.3. Although the number of cases
of ‘quickly closing the book’ changes with the definition of ‘quickly’ (short time), it can
be seen that a great majority of users examined the information automatically proposed
by the system (in 90% of cases, the users spent more than 8 seconds with a review of the
proposed information).

An interaction time with | # of cases | % of cases
automatically opened book

<3s 18 1.9%
<5s 30 5.3%
<8s 98 10.3%

Table 6.3: Acceptability of dialogue strategy for automated presentation of possible solutions:
the table shows the number of cases when users closed the automatically opened book within
the given time interval. The percentage fractions are with respect to all situations when a book
was opened automatically (i.e. 949 cases)

The second measure compares the overall user behavior in situations (1) when the book
was opened automatically by the system and (2) when it was opened manually by the
user. In particular, we compare the number of dialogue turns and time spent in the book
before it was closed (or another element on the interface was accessed). The underlying
hypothesis is that if users spent at least the same amounts of time and dialogue turns in
the automatically opened books as in the manually opened books, we can consider the

2We have chosen the dialogue turns to be the base numerator of the frequency-of-use of dialogue
strategies, because one dialogue strategy is always triggered during every dialogue turn.

3The duration measures the real time that user spent in the given book (or documents associated with
that book) before leaving it. In particular, it includes the time when the system is actively waiting for
user’s input and excludes the durations of the system processing time, such as the durations caused by
wizards, document and video opening times, etc. The duration of the system prompt playback (which is
on average 3 seconds) is included, as the prompts can be barged-in.

100

6.3. Evaluation of global dialogue strategies

automated decision as to be accepted by users. The results are summarized in Table 6.4.
Apparently, users spent more time in the books automatically opened by the system and
they also performed slightly more dialogue turns in such cases. That indicates that the
automatically opened books contained information relevant to the search query and that
the users invested some time to carefully review it.

’ How was the book opened? ‘ avg duration ‘ avg # of turns ‘

automatically by system 50s 3.8
manually by user 36s 3.6

Table 6.4: A comparison of time spent in a book (meeting view) and number of performed
dialogue turns, depending on the way of opening the book (automatically or manually).

Based on our experimental results, we can conclude that the proposed strategy for an
automatic presentation of possible search results (books) is frequently used in the Archivus
system and well-accepted by users.

In consequence, we recommend that a multimodal information seeking system should
automatically propose possible search results as soon as their number is sufficiently low to
be efficiently displayed, provided that the system has enough evidence about the expected
relevance of these results. Nevertheless, automatically presenting information should nei-
ther prevent users from having the possibility to further browse the search space nor to
enter new search constraints.

6.3.2 Dead-end management

The dead-end dialogue management strategy is invoked in situations when a user re-
quest is over-constrained, i.e. when no solution targets are compatible with current search
constraints. The strategy is described on page 46.

The dead-end situation represents 3.1% of all dialogue turns and 3.6% of all interaction
time was spent in dead-ends.

As the user has an option of erasing only one (possibly conflicting) search constraint
or all constraints together (using clear or reset command), we wanted to know which
option is more frequently used by users. We found that users resolved the over-constraint
situation in 57% of all dead-end cases by careful removal of one search constraint (or
more, but one-by-one), while in 43% they erased all constraints all together (in 33%
by the system reset and in 10% by using the clear button in the history). This result
shows that there is not one unique approach preferred by users and therefore systems
should offer both options (erasing constraints one-by-one and all together) for resolving
the over-constrained situation.

Secondly, we wanted to know whether users immediately understood the problem of an
over-constrained situation. We have observed that in 14% (32) cases of over-constrained
situations, users attempted to add new search constraints. As adding a new search con-
straint to already over-constrained situation is completely irrational action, we assume
that the users were not aware of the problem in those cases. Although the absolute num-
ber of ignoring the dead-end is not very high, it is still quite surprising considering the

101

Chapter 6. Evaluation of dialogue strategies and the Archivus system

indications that are given to users: it is indicated by a vocal prompt* and the incompat-
ible constraints are displayed on the screen in red color with an exclamation mark. This
finding suggests that indication of problematical situation should never be underestimated
by system designers and that users are not necessarily always paying full attention to the
system prompts.

In conclusion, we first recommend that user-friendly constraint-based search systems
should provide at least two ways of resolving over-constrained situations: (1) by erasing
only a specific criterion and (2) by erasing all search criteria simultaneously, as both
of these approaches are frequently used by users. Moreover, it is important to remain
aware of the fact that, for an incompressible proportion of over-constrained situations
(14% in our case), the dead-end will be initially ignored by the users, regardless of the
warning methods used (in our system, audio prompts and constraints in red with an
associated exclamation mark were used). Therefore, our second recommendation is to
very clearly indicate (possibly with redundant techniques) the over-constrained situations
and possibly enable the system to generate suggestions for resolving them. Our hypothesis
is that users sometimes have their own understanding of what to do with the system
and they therefore tend to ignore nonspecific warnings(e.g. “Your search criteria are
incompatible”). We expect that users will better react to more specific system suggestions
concerning already provided user preferences (e.g. “No such cars are available. But if you
accept the price 15.000-20.000% instead of 14.000%, then there is 7 of them. Is it ok to
increase the price?”). This type of suggestions was studied by our colleague [89].

6.3.3 Use of mixed initiative

Mixed initiative systems allow both the user and the system to control the interaction. In
practice, mixed initiative is achieved by permitting the user to specify more information
than required by the system in a given dialogue context. Archivus supports mixed initiative
by processing the information (semantic pairs, SPs) intended for other mGDNs than
currently in focus. In our approach, mixed initiative is not problematical at the dialogue
management level (as the dialogue manager can process SPs independently of how they
were generated), but the complexity and robustness of the NL understanding algorithms
that generate SPs (based on user’s NL input) strongly depends on the degree of mixed
initiative allowed by a system.

During our experiments, the natural language understanding was simulated by wizards
and hence we have permitted a full mixed initiative behavior of users. However, for fully
automated systems, it is important to know to which degree the mized initiative input is
naturally used by users in order to correctly implement algorithms for natural language
processing.

We use the following method to determine the frequency of mixed initiative use: the
semantic pairs® resulting from the interpretation of the user’s last NL input are categorized
according to their relevance to the mGDN currently in focus (i.e. the mGDN controlling
interaction at the time when user provided his/her input). Then, the number of SPs

4The warning system prompt in the History mGDN is “Your search criteria are incompatible. Modify
your selections.” and in the OpenBook mGDN the prompt is “This meeting does not match your search
criteria very well.”

5An overview of all semantic pair types defined in the system is given in Table 3.2 on page 42.

102

6.3. Evaluation of global dialogue strategies

matching the context of the mGDN in focus is compared with the number of all other
(mixed initiative) SPs. Because every binary decision about SP’s relevance to a given
mGDN can be questionable, we rather define the following four categories of SP relevance
with respect to the mGDN in focus (the categories are ordered from lowest to highest
required degree of mixed initiative):

e (C1) Concerns the current mGDN: represents a value (constraint) corresponding to
the mGDN in focus, all local SPs concerning a local interaction within the mGDN
in focus, a command for closing the focused mGDN and a request for system restart.
This category also includes values corresponding to the individual components of
a composite mGDN in focus (e.g. values of SpeakerFirstName when the Speaker

mGDN is in focus).

e (C2) Focus change request: this category contains the SPs corresponding to the
user-initiated focus change requests (that is SPs like ‘global.newfocus:...’).

e (C3) Concerns visible mGDNs: A value (constraint) and local SPs concerning
mGDNs that are visible on the screen together with another mGDN in focus. In
case of Archivus, these SPs correspond to the values and the local semantic pairs of
the Bookcase and the History mGDNs (but only when these are not themselves in
focus).

e (C}) Concerns other mGDNs: all other SPs, in particular SPs representing the
values and invoking the local strategies of mGDNs that are not in focus and are not
visible on the screen.

A proportional distribution of SPs generated by user inputs according to the above defined
mixed initiative categories is shown in Table 6.5. With the assumption that SPs related
to C3 and C4 categories are considered as the mixed initiative SPs, one can observe that
44% of SPs generated by users required the system to support the mixed initiative. Such
result suggests that the mized initiative is an important part of the dialogue management.
The percentage is even higher for inputs wrote by user on keyboard. This is because a
majority (70%) of all typings happened in the Start and OpenBook mGDNs and was used
to specify search criteria (which is considered as a mixed initiative in the context of these

mGDNs).

Percentage of semantic pairs concerning
Type of current focus change visible other
input mGDN (C1) | request (C2) | mGDNs (C3) | mGDNs (C4)
spoken 50% 10% 9% 31%
typed 23% 1% 3% 73%
all natural 47% 9% 8% 36%
language 56% 44%

Table 6.5: Use of mixed initiative: fractions of semantic pairs (generated by user inputs) with
respect to their different relevance to the mGDN in focus. Percentages sums to 100% in each
row.

Further analysis of all NL inputs revealed that the mixed initiative (of C4 category)
was most frequently used in the Start (674 cases) and OpenBook (465 cases) mGDNs.
Detailed results are given in Table 6.6. As it can be seen, the mixed initiative frequency
varies depending on the mGDN in focus. For many mGDNs (denoted as ‘others’ in the

103

Chapter 6. Evaluation of dialogue strategies and the Archivus system

’ mGDN \ # of C4 SPs \ SPs used (only when >10%) ‘
Start 674 46% — C4 Keyword; 17% — C3 Bookcase; 11% — C2
OpenBook 465 66% — C1; 17% — C4 Keyword
Bookcase(visual) 69 37% — C1; 34% — C4 Keyword; 12% — C3 History
Topic 35 49% — C1; 46% — C4 Keyword
DialogueElements 28 37% — C2; 28% — C4 Keyword
History(visual) 23 62% — C1; 32% — C4 Keyword
others <6 71% — C1; 21% — C2

Table 6.6: A list of mGDNs where mixed initiative (of C4 category) was most frequently used.
The last column shows distribution (in descending order) of SP categories used by users within
the given mGDN. Categories C3 and C4 are augmented with the name of mGDN for which the
SP is targeted. Percentages are calculated from all SPs generated with natural language when
given mGDN was in focus.

figure), the mixed initiative was almost never used. The mixed initiative was frequently
used in the mGDNs explicitly enumerated in the figure, but then the users are likely to
address only some of the mGDNs out of the focus (if mixed initiative of category C3 or
C4 is involved, the typically addressed out-of-focus mGDNs are: Keyword mGDN (most
frequent), Bookcase and History).

From our experimental results, we can therefore conclude that mized initiative is fre-
quently used in Archivus, but its extent of use varies significantly over the different appli-
cation contexts (mGDNs). A detailed analysis leads to the identification of the mGDNs
where users are not using mizved initiative. Similarly, for the mGDNs where mixed initia-
tive is used, the analysis can reveal the nature of the mized initiative used.

In consequence, our recommendation is to always perform an analysis of mixed initiative
use before integrating automated NL processing in the system. Indeed, the robustness of
the considered NL processing usually strongly depends on the size and variability of the
used vocabulary as well as on the complexity of the used syntactic and semantic structures.
The mixed initiative use analysis then allows for the identification of the NL resources
to be taken into consideration, thus increasing the robustness and reliability of the final
automated system.

6.4 Evaluation of local dialogue strategies

This section provides a quantitative evaluation of the local dialogue strategies, i.e. the
strategies that do not change the current context of the dialogue. The local dialogue
strategies are implemented internally within mGDNs and they are defined as a part of an
mGDN operational model in section 3.4.3 on page 40. In this section, we focus only on
the local strategies commonly defined by all the mGDNss.

6.4.1 User requests for help

Users virtually never asked the multimodal system for a help advice although the corre-
sponding dialogue strategy was constantly available and the availability was also visually

104

6.4. Evaluation of local dialogue strategies

indicated with a help button on the screen. In fact, users asked for help only three times
(0.02% of all user inputs) during the entire experiments. In one case, the user asked for
help because he did not know where to find a document, while the other two cases of help
strategy were triggered by user’s question “Why?” after the system announced that the
action (previously requested by user) cannot be performed.

We assume that users did not use the help button because (1) a majority of them found the
system easy to use (85% of all users), (2) users felt comfortable working with the system
(78%) and (3) users felt in control of the system (56%), according to the questionnaire
they filled after the experiment. In such settings, users naturally do not require help
advices.

Another aspect that eliminates the help requests could be that the users have learned
using the system with a tutorial (lasting 10-25 minutes, 15 minutes on average). The
tutorial makes them understand all functional aspects of the interface. The only prob-
lematical situations occur when the system cannot understand the user. In such cases,
users typically reformulate the request, as indicated by some of them in the final ques-
tionnaire:

e Participant P122: “I did not use the help button. When the system was not provid-
ing required information, I tried other criteria, which helped in most of the cases.”

e Participant P120: “The system indicates when it could not understand what I was
asking for. In such cases, I simply tried asking the system with another sentence.”

We conclude that although the help dialogue strategy was very infrequently used in
the Archivus system, earlier experiments with vocal-only system for controlling home
appliances demonstrated more frequent use of the help dialogue strategy (about 1.66%
of all system dialogue turns). We therefore speculate that the need for a help dialogue
strategy is lower in systems equipped with a screen output (as users better understand
the interaction context compared to voice-only systems) and in the situations where the
learning of system functionalities through exploration is reduced (e.g. by providing a
tutorial).

6.4.2 User requests for the last prompt repetition

The repeat local dialogue strategy is used to handle user’s requests for the repetition or
reformulation of the last system prompt. The strategy was hardly ever invoked by users
in the Archivus system — it has occurred only in 4 cases (0.03% of all user inputs). In
three cases, the user asked the system to repeat the prompt message because the message
was unexpected in the given context of interaction (the system message was inappropriate
because the output wizard made a mistake in selecting the message). In one case, the
user misinterpreted the concept of the repeat button and intended using it in order to
replicate his last action.

A marginal use of this strategy in Archivus is not surprising, as the user can also see
the last system message on the screen in a textual version. The strategy was primary
developed for vocal-only systems where good understanding of system prompts is crucial
for interaction.

105

Chapter 6. Evaluation of dialogue strategies and the Archivus system

Our conclusion is that the repeat strategy is useless in multimodal screen-based systems.
The three above mentioned cases of use rather indicates that the users were actually
listening to the system prompts, and hence do not provide any evidence about the fact
that the repeat strategy is relevant for the multimodal systems.

6.4.3 Problems with processing of user inputs

In situations when the user’s last multimodal input cannot be interpreted with any of
semantic pairs, the system uses NoInput or NoMatch strategy:

e The NoInput strategy indicates that the system was unable to acquire any signal
from the user within a predefined timeout, or the signal was very noisy. In systems
integrating speech recognition, it means that the user (1) stayed silent for a long time
or (2) that the user said something what could not be understood by the recognizer
(due to acoustic or pronunciations problems, or because the user pronounced only
speech fragments). In Archivus, we have used the strategy only in the latter case
(and we have ignored the former case). Such situation is indicated to user by system
prompts like: “Sorry, what did you say?”, “I could not hear you. Could you say it
again?”. The user is advised to repeat more clearly his/her last input.

e The NoMatch strategy indicates that the signal of user behavior was acquired cor-
rectly, but the system has failed to interpret the signal within the context of the
current dialogue. In particular, it means that the speech recognizer has recognized
a sequence of words, but the consequent parsing with natural language understand-
ing component has failed. This is indicated to the user by system prompts like: “I
cannot do that” or “I cannot find that word in the system”. The user is advised to
change his/her request.

In Archivus, the specificity of NoInput and NoMatch strategies is that they apply only to in-
puts in natural language. Pen pointing or mouse clicking cannot trigger the NoMatch (out-
of-context) strategy, as the semantic pairs are produced in response to clicking (pointing)
on active graphical components within current context (and all out-of-context compo-
nents are not visible on screen and therefore not available for clicking). Although users
can perform ‘invalid pointings’ by trying to click on unclickable components or having dif-
ficulties to physically perform the click with a pointing device like a pen or tactile screen,
such invalid pointings are traditionally ignored by systems. The specificity of these two
strategies also shows the different expression power of modalities: the expression power of
pointing is limited to the context provided by the system (but the context can be changed
with a well-chosen sequence of pointings), while the natural language allows the user to
directly establish the context of the communication (but is limited by the understanding
capabilities of the technology, which is indicated by the NoMatch strategy).

During our WOz experiments, the understanding of user’s vocal or typed natural language
requests was simulated by wizards. This allowed for optimal performance of natural
language processing. Only very unintelligible or out-of-context user requests (that is
requests that cannot be directly satisfied with existing system functionalities) lead to
triggering of the NoInput or NoMatch strategy. We have analyzed how often the strategies
were triggered and obtained the following results:

106

6.5. Evaluation of modality use

NoInput: 1.9% of all voice inputs were unintelligible even to human wizard. The
typical reason is a user pronunciation problem or user speaking too loud or silently
to the microphone.

NoInput: 0.3% of all keyboard inputs were classified as NoInput. This happened in
infrequent cases when the user submitted only partial request or accidentally hit
the Enter key.

NoMatch: 3.1% of all voice inputs were not fully responded by wizard because the
system lacked the required functionality or the user-specified search criterion was
not available in the system.

NoMatch: 12.1% of all keyboard inputs were classified as NoMatch. The proportional
increase in the occurrence of this strategy compared to voice inputs can be partially
explained with two facts. First, the users have repeated their previously NoMatching
vocal input on keyboard (2.0% of all keyboard inputs). Still, such an attempt
led to the same effect, with an increasing proportion of keyboard NoMatches, as
the keyboard is used ten times less frequently than voice. Secondly, the users have
altered the previously (by keyboard) submitted queries in situations when they have
previously made a typo or they have reformulated the queries containing numbers
(e.g. the users have first submitted “7000 CHF”, and then tried again with a query
like “thousand francs”). However, because neither the typo nor the wrong number
format were the origin of a problem (the wizards were instructed to interpret modest
typos correctly), the users has fallen into the same problem again (2.2% of all
keyboard inputs).

After eliminating all previously mentioned cases, 7.9% of all keyboards input were
actually failing due to the unavailability of a given search criterion in the system.
We do not have an explanation for this increase with respect to vocal inputs.

No correlation was found between the user-experienced number of fail events (NoMatch or
NoInput) and subjective user’s opinion expressed in the post-experimental questionnaire
(in particular, we have investigated the user answers to the question “Did you find that
you could talk to the system easily?” and the user agreements with the statement “Being
able to use language to interact with the system was helpful”). We assume that the overall
performance was good enough (90% of users experienced maximum 10 fail events during
40 minutes of interaction) to prevent the users to draw any negative conclusions about
the ease-of-use or usefulness of the natural language for interaction.

We conclude that altogether 5.7% of all inputs in natural language (done by voice or
through the keyboard, counting both NoInput and NoMatch situations) were not answered
by the system. This happened either because the system lacked the required functionality
or because the user’s input was incomprehensible, even to human operators. We therefore
consider the observed percentage as interesting information on the theoretical performance
limit of any interactive system integrating natural language.

6.5 Evaluation of modality use

This section aims at determining the role of available modalities from the perspective of
the dialogue system. In particular, we try to identify how complex the modality fusion

107

Chapter 6. Evaluation of dialogue strategies and the Archivus system

algorithm needs to be and what types of operations are most frequently addressed by
a user in natural language, thus suggesting a minimal necessary language model in the
Archivus system.

The impact of available input modalities on users working with the Archivus system
is thoroughly studied by Lisowska [57], who answers questions like how users perceive
different modalities, what is the frequency of use of various modalities combinations,
whether certain modality helps to learn the system easier and whether the available
modalities have an impact on the user’s speed and accuracy of task solving process.
Therefore, those issues are not the main subject discussed here.

6.5.1 Simultaneous use of modalities

Archivus allows users to perform actions using any of the available modalities or their com-
bination. In response to every user’s (multimodal) input, the interface becomes grayed-out
in order to signalize that the system is processing the user’s last input. This way, the
interaction is segmented into dialogue turns. From this perspective, users can behave
‘sequentially multimodally’ (i.e. switching between modalities used to perform dialogue
turns, but using one modality within one dialogue turn), or users can perform actions
‘simultaneously multimodally’ (i.e. using several modalities in one dialogue turn). Since
the latter type of multimodality requires more advanced multimodal fusion algorithm, we
wanted to know how frequently the simultaneous multimodality is used by Archivus users.

From this perspective, we have found that the users often used the different modalities
available, but used them simultaneously (within one dialogue turn) only in 1.85% of all
dialogue turns(123 cases). This number includes also the situations when users tried
to point with the mouse (or pen) on interface components that were not active and
therefore such pointing was ignored by the system. The users then typically used another
modality to provide the input. We feel that such cases do not represent a true example
of simultaneous use of multiple modalities, so we can exclude them. This way, we get
only 20 (0.3%) cases of truly simultaneous multimodality use. In most of those cases,
users provided the same information in several modalities (e.g. saying ‘close’ at the same
time as clicking on close button), while only in 4 cases the users specified two different
information, each of them with different modality. However, the inputs in modalities
were always independent, in the sense that we had no case of interaction such as the users
saying “Show me questions from this person” while indicating a person on the screen
using a pointing device.

We can therefore conclude that simultaneous use of modalities is extremely rare in
Archivus. When it happens, it mainly corresponds to the situations where speech is
redundant with what is typed or pointed to. We thus believe that no complexr multimodal
fusion algorithm is necessary for the interpretation of user inputs in systems similar to
Archivus. The existing fusion algorithm consisting in simple merging semantic pair sets
from different modalities is fully sufficient.

108

6.5. Evaluation of modality use

6.5.2 Proportions of overall modality use

In this section, we compare how frequently are the individual modalities used by users.
This could suggest inutile modalities which can be removed from the system, while other
(frequently used) modalities should be optimized for robustness and speed of processing
in a fully automated system.

Since our data collection contains two different modality conditions (MVK and PVK),
we compare proportions of modality use in each condition separately. We define that a
modality is used, when corresponding user’s dialogue turn is performed with that modality.
Moreover, since each user performed a different number of dialogue turns, we calculate an
overall proportion of the modality use as an average of proportions of the modality use of
every user (thus avoiding the results to be biased by users who performed above-average
number of dialogue turns). The results are in Table 6.7.

Modality M/P Vv K

condition | avg dev | avg dev | avg dev
MVK 54% +26 | 41% +27 | 5% £7
PVK 39% +24 | 57% £27 | 4% 46

Table 6.7: Overall proportions of modality use. Calculated as averages over proportions of
modality use of every user. The deviations are standard deviations.

As it can be seen, the most dominant modalities are M/P and V, while keyboard is used
relatively seldom (4-5%) in both conditions. On the other hand, the presence of mouse
or pen has quite strong impact on use of voice — depending on whether mouse or pen is
available, an overall proportion of voice use is 41% or 57%, respectively.

The results clearly show that natural language (V+K) is very frequently used by users
(used in 61% or 46% cases compared to pen or mouse). As such, it gives an experimental
justification of the effort directed from a GUI-based towards a natural language-enabled
system. Nevertheless, one has to keep in mind that all NL inputs were processed by a
wizard and not automatically by the system. Users therefore experienced almost perfect
speech recognition and NL understanding rate, which is unlikely to be achieved with
current NL technologies. It is likely that the use of speech would decrease in a system
with ASR in favor of keyboard, or in favor of reliable pen pointing or mouse in a system
with automated NL understanding.

It is also interesting to note that functionally equivalent modalities (from the system
perspective) are not perceived as such by users [57]. Two modalities are considered to be
functionally equivalent if they can provide input that has exactly the same semantic and
functional content, and if the input is processed in exactly the same way by the system,
resulting in exactly the same system output. In our system, functionally equivalent is
pen and mouse, as well as voice and keyboard. However, we can see that voice is 8 to
14 times more frequently used than keyboard, and that mouse is 1.4 times more frequently
used than pen in the Archivus system. Obviously, from the two functionally equivalent
modalities, the users prefer the one which allows them to provide inputs faster, more
reliably and with less effort. Such an experimentally verified fact should be taken into
account by system designers when introducing new modalities into the system.

109

Chapter 6. Evaluation of dialogue strategies and the Archivus system

The calculated proportions of modality use (Table 6.7) exhibit quite high standard devia-
tions indicting large spread of modality use proportions for individual users. We therefore
inspect the underlying data in Figure 6.1.

100%

]
[

:’1'0‘ 1]
kel [+ =
<]rCa
Ll
it -
o K &
90% i 4
I K4
)
g‘ =
L]
80% il
L
:"_
% £
4| g o
70%
&)
i e
i %
- Bl
60% bt
[
IR R
: odltel™ %
50% % Bk &
%) % %
% |% &
%) |2
< mv c
40% il e
P e s
el o
o]| T e &
0 ol L] |l | e 3
30% TR] R 5
[+ oi%el 0% (o8 BIRRS
% S| [¢ ¢
o bl [el BRI
B b 7 B3 x
gl 555 . S| [efeatost™ |8
<l o5 1% el
20% p o3l [[sd ol |l [
% %] [% edtsd I
L) il |
[i [
s | [4 i | [
B [= 1 P
ool |1l | b ol | [
10% & 1R R SR
K %
5 s
0% (4 K

pvk 144

pvk 143
pvk 163
pvk 183
pvk 142
pvk 159
pvk 182
pvk 176
pvk 188
pvk 154
pvk 187
pvk 179
pvk 186
pvk 164
pvk 181
pvk 160
pvk 174
pvk 139
pvk 180
pvk 150
pvk 146
pvk 184
pvk 149
pvk 147
pvk 153
pvk 189
pvk 185
pvk 152
pvk 158
pvk 148
pvk 178
pvk 175
pvk 141
pvk 140
pvk 162
pvk 156

pvk 177
pvk 138

Figure 6.1: Proportions of modality use per individual user (users are labeled by their ID
numbers), ordered by increasing proportion of mouse/pen use. On left are users with MVK
modality, on right are users with PVK modality.

The display of individual proportions of modality use for each user clearly confirms that
the use of modalities is indeed highly user-depended. Both extreme cases of the modalities
use are in the figure, ranging from users controlling the system only through NL to users
relying only on the mouse. The proportion of NL vs. pen use is fairly evenly distributed
over all users. The PVK condition shows that although the users in general used keyboard
only little, the proportion of using the keyboard rapidly increases when the overall use
of language drops below about 35%. One could assume that these users found natural
language useful for controlling of Archivus, but they felt uncomfortable with voice and
substituted it with NL requests typed on keyboard.

From our experimental result, we can therefore conclude that natural language (voice
and keyboard) is on average very frequently used by users, therefore providing an exper-
imental justification of the efforts directed from GUI-only towards NL-enabled systems.
However, the individual use (and thus user-perceived importance) of modalities largely
varies among the users. We also observed large differences in the use of functionally equiv-
alent modalities (pen/mouse and keyboard/voice). A lower pen use can be explained by
physical difficulties of use experienced by users (when compared to mouse), while the rare
keyboard use can be attributed to the fact that using the vocal input requires less effort
and is therefore preferred (over typing) when the speech understanding performance level
of the system is high enough.

In consequence, we can thus recommend the integration of the natural language modal-
ities for multimodal interfaces. Nevertheless, the individual usefulness of various modal-

110

6.5. Evaluation of modality use

ities available in the system has to be evaluated in an integrated prototype, because of
the strong modality impact of one to others. Furthermore, only very little can be inferred
about the expected modality use from an observed use of a functionally equivalent modal-
ity. We thus recommend that for any specific system, the modality usefulness is evaluated
with a high number of users to cope with the expected large variance in the frequency of
use related to personal preferences.

6.5.3 Proportions of modality use per action

Yet another aspect that we are interested in is whether there are any correlations between
a particular modality and the action performed by users. In case if we find an action
that is nearly always performed with a specific modality, the modality processing can be
optimized (in terms of robustness and speed of processing) for that action. For instance,
a language model does not need to include commands related to actions that are always
performed by mouse, or conversely the language model must be adjusted with respect to
the actions that are nearly always performed by natural language.

We distinguish four basic categories of actions that can be performed with the sys-
tem:

e Adding constraint (C): user specifies a new search constraint. This category contains
actions like C_Keyword (user looks for meeting utterances with a given keyword), or
C_Topic (user looks for parts of meetings with a given topic).

e Navigating in interface (N): a semantic effect of such an action is the opening of a
new interaction context (mGDN) or accessing additional information (i.e. accessing
the next page in a list of values, in a book or in a document).

Examples of actions in this category are N_FocusOn (user opens another mGDN),
N_OpenMtg (user opens a specific meeting in the bookcase), N_Close (user closes the
current mGDN), N ListUpDown (user scrolls to the previous or next page of a list),
N_JumpToLetter (user accesses a list of items starting with a specific letter, using the
letter selection button feature of the mGDN with the list layout), etc.

e Performing a command (Cmd): user resets the system or erases one or more
search constraints. This category contains the following actions: Cmd Restart,
Cmd_ClearHistory, Cmd_DelHistory.

e System failure (S): this category is related to situations when the system is unable
to respond to a user’s request (S_NoInput and S _NoMatch).

In order to determine a proportion of modalities per action, the following method is used:
each of the actions is associated with semantic pairs that lead to that action. Then,
for all the semantic pairs associated with a given action, we count how many times the
semantic pairs were generated with each of the modalities. This method allows us to
identify a proportion of each modality use for each of the actions. Nevertheless, a small
modification of the method is necessary in situations where one single user’s natural
language input generates several semantic pairs (e.g. user’s utterance “Who suggested
a blue sofa?” generates ArgSegClass:suggestion, Keyword:blue and Keyword:sofa). In
such cases, the natural language would gain three ‘instances of use’, while it was in fact
used only once. Therefore, an ‘instance of use’ of an individual semantic pair is calculated

111

Chapter 6. Evaluation of dialogue strategies and the Archivus system

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

weeses ool]
0% 1k FA]

o o 0 0 © %) 0 z Z Z g Z Z Z
3 3 X — (%2} > (@] < T W (@} w (e}
S £ & 5§ 3 5 € 3% § 8 45 & g & %
=3) 2 ® @ e) 7] @
°] s 3] D S o 1 = A @ X =]
2 = 3 = o 3 2 by @ ® 5 0} 5]
= g 3 @ g) S o (@] 2 B o, <}
z 5 & € 2 > I @ > e

2 o @ 3

2 = g)

< 2

100%

90%

80%

70% -

60%

50%

40%

30%

20%

[
baoses] b
Poses] bS]
Poese] e
|
100 {555
LA P¢0¢0

%
5
[

0%

ey
o
]

o

o
G
4

o
ryd
5

7R
5
L

""H!

L

2]
0]

5]

R

Yata%i

2555
00

S

7
o
505

i

KioisiHIed pwd

asmoigyoog N

JenatordwngN
umoadnisiT N

asmoigyoog N
Jenaoldwne N
umogdmisiT N

‘(/7 I(/) IO IO IO (37 IO IZ ‘Z I g,‘ ‘Z ‘Z ‘Z IZ (3) |
8 8 3 g ¢ B z § 5 & & % 9 g g &
2 § ¥ % § » € B § g2 o & 2 & B b
c = = D 3 @ @ 4 @ A o}
= g g o) 23 o = g o 2 » S IS I
< z £ a < =S = i g 3) @
D = 7] pu o
3 e g8 o <
< 2
Figure 6.2: Proportions of modality use per individual action in the system. The

is for the MVK modality condition, the lower is for the PVK modality condition.

upper graph

as 1/N for each SP, where N denotes the number of SPs generated by a given modality

in a given dialogue turn.

Results obtained with the above defined method are presented in Figure 6.2.
are shown separately for each PVM and MVK modality condition. Only act

The results
ions having

at least 13 instances of use are shown. The shown actions have on average 170 instances

of use (with median of 90 instances of use).

The figure shows that natural language (V+K) is dominantly used for S- and C-categories

of actions.

112

The MVK condition exhibits a clear drop of NL use for navigational ac-

6.6. User performance in Archivus

tions (N), which is obvious even in the PVK condition. Interestingly, the two Cmd-actions
(clear all constraints and delete one constraint) have low use of NL, while restarting the
system is dominantly performed by voice. This becomes much clearer, when we realize
that the users restarted (reset) the system at a moment when they have finished solving
a task and when they were busy with inserting the task-card into a paper box. In those
situations, users could not use the modalities operated by hands that easily, explaining
why they used voice. This result experimentally confirms that voice is useful in hands-
busy environments. Finally, no use of pointing (M/P) for S-actions is not surprising, since
those actions are possible only when using natural language as discussed in section 6.4.3
on page 106.

Although we have not found any system action (except S-actions) always performed with
the same modality, we draw other interesting conclusions:

e Search constraints are dominantly provided in natural language (voice or keyboard).

e Navigation within the interface is mainly performed with a pointing device (mouse
or pen).

e Navigation is rarely performed by typing (keyboard).
e An increased use of voice is observed in hands-busy situations.

Our observations might hence suggest a preferred role for language-based modalities in
multimodal interfaces: language is mainly used for providing search constraints (data) to
the system and less frequently for controlling and navigating within a graphical interface.
In consequence, it appears that existing vocal command-and-control desktop applications
may not combine GUI and speech in a manner that is optimal and natural for users.

6.6 User performance in Archivus

During the experimental sessions, users are given tasks to be performed with the system.
These tasks consist of questions about the content of the meetings and they have to be
answered by using the Archivus system. The questions are given on paper cards (in
a predefined order) and users solve them sequentially one-by-one, writing the answers
directly on the corresponding paper card (users were allowed to leave the card blank if
they were unable to find the answer). The questions themselves were chosen so as to give
as much variety as possible in the type of content that users would have to access and to
vary the amount of steps that users would need to take to find the required information.
A list of the used tasks is shown in Figure 6.4 (together with additional information).
The actual complexity of the tasks was tested during the pilot studies with the Archivus
system. Furthermore, the influence of the question order was studied by cross-validation,
and no influence was found. Further details about how the questions were selected can

be found in [57].

By reviewing the answers provided by users on given questions (tasks), we can deter-
mine how successfully the Archivus system allows users to perform their tasks. A similar
evaluation was performed by Lisowska in [57], but principally from the perspective of
available modality impact on the user performance. It was observed that MK and MV
modality conditions are slightly more effective than MVK and PVK| but a statistical sig-

113

Chapter 6. Evaluation of dialogue strategies and the Archivus system

nificance of those results is not shown. In this section, we evaluate the Archivus system
globally, without looking at particular modalities available to users. Therefore, we take
into account all the tasks performed by users during both experimental sessions (i.e. the
restricted modality and the full modality conditions).

One of the aims of this section is to give an impression about the accuracy and speed
of users when solving the tasks given to them (subsections 6.6.1 and 6.6.2). This is a
technique also used in the Browser Evaluation Test (BET [121, 88]) — a method designed
especially for evaluation of meeting browsers. Unfortunately, our results cannot be directly
compared with the results obtained in BET evaluations for other browsers (audio-based
browsers [24] and TQB [88]), mainly because we have evaluated the browser on a different
set of tasks (compared to BET) and we have six-times larger search database. The
explanation for the different experimental settings is that the BET technique was not
yet finalized at the moment when we prepared our experiments. We regard the BET-
evaluation of Archivus as a future work.

In order to give a better impression of the actual user performance, we discuss the in-
dividual differences among users and we examine the individual complexity of the tasks
(subsection 6.6.3). Finally, we identify problems preventing the users from answering
certain tasks correctly (subsection 6.6.4).

6.6.1 User accuracy (correctness of task answers)

First, we wanted to know how often the users answered the given tasks (questions) cor-
rectly.

The user answers were marked as correct, incorrect, or as not answered in case if the card
was left blank (users were instructed to leave the answer blank if they could not find an
answer within a reasonable time). This allowed us to determine a proportion of correct,
not answered and incorrect answers per user. Such proportions are then used to determine
an overall accuracy of answers given by users. Due to the fact that the user tasks were
questions of two types (true-false and short answer) with different baseline of accuracy
(50% vs. 0% respectively), we also perform that analysis for each question type.

Correct Not answered | Incorrect
Type of question | avg dev | avg dev avg dev
true-false 8% =£12 | 4% +7 9% £10
short-answer | 66% £22 | 15% £15 | 21% <14

’ all questions \ 6% +14 \ 9% +9 \ 5% 49 ‘

Table 6.8: User correctness. Calculated as averages over proportions of correctness for every
user. Deviations are the standard deviations.

Results are summarized in Table 6.8, showing that the users managed on average to cor-
rectly answer 76% of the tasks, while they provided incorrect answers in 15% of the cases
(the various error types are analyzed later in section 6.6.4). The nearly four-time lower
proportion of unanswered true-false questions when compared to short-answer questions
indicates that the users are likely to select one of the two answers randomly in situations
if they do not know the correct answer.

114

User performance in Archivus

6.6.

R
Ra—_—.—s
AEEEEEEESSSSSsSsSsSsSsSsssss

AR
S
RS

A A .
.
R
RN
SRR
AT
T Y
AT
RS
T

T—.-_"
AT

RN
A
RS

RN
.
AT
..
RN Y

t
[S]
o}
2
P
o
o

£

O

RNRRRNN
AR
AT
R
AT

A

S
T SN

T REEES
I NS SNRRY
AR

/|||

NN

100%
90%
80%
70%
60%
50%

Z

T T U
Y) Y

AT
A Y
Y
Y
Y
T
TS
AT S-S
e

/
/

Z
/
2
/
7

17

%
%
-

/
é
7
4
7
Z
_

.
.

7
Z
.
Z

Zi
é
Z

Z
é
Z

Z
é
Z

/
Z

)

7

7
é
%
Z

Not answered
115

m Correct
Proportion of correctly, incorrectly and not answered tasks per user.

task — and this task does not count within the above given figures. In consequence,
the actual total time necessary to solve all the completed tasks is lower than the

allotted time.
acted as output wizard. In consequence, the allotted time is not always exactly

20 minutes, but it varies by 1-2 minutes.

Figure 6.3

e The allotted time typically expired during the time when a user worked on a certain
e The allotted time was measured by an experimenter who sat in another room and

0%

data (Figure 6.3) that was used to compute the results already given in Table 6.8. On this
figure, one can observe that, although 10% of the Archivus users (8) answered correctly
all the given tasks, about 19% of the users (15) answered correctly less than half of the
tasks. Interestingly, the latter users also tended to have a larger proportion of unanswered
2x20 minutes), users worked on average on 20 tasks (answered or not), but this number

varies from 11 to 37 tasks depending on the user.
However, such indications cannot be directly used to estimate the individual user speed,

Our next interest was to know how long on average it took to users to solve a task and
A quick look at the data shows that within the allotted 40 minutes (actually split into
because of several reasons:

tasks (while their proportion of wrong answers is comparable with other users), indicating
whether there are remarkable differences in speed among users.

As the data exhibit a non-negligible standard deviation, we also present the underlying
that they probably had difficulties to find the answers.

6.6.2 User speed (tasks per minute)

40%
30%
20%
10%

Chapter 6. Evaluation of dialogue strategies and the Archivus system

e Because the experiments are carried out using WOz simulations, and on two ma-
chines (desktop PC and tablet PC) with different computing speed, the users have
experienced different system response times. Consequently, the actual time avail-
able to user for the interaction with system is lowered by the overall system response
time experienced by that user.

In order to accurately determine the user speed, we use the following method: for each user
and interaction session, we measure the exact time it took to solve all of the completed
tasks. Based on that, we compute the average time taken by a user to solve a task and the
average speed of a user (measured in questions per minute). In the alternative approach,
we reduce the task completion time by the duration of the experienced system responses,
as this better estimates the user’s speed in case of automated (i.e. no WOz simulation)
and optimized system implementation. Results are in Table 6.9.

Duration per task [s] | Speed [tasks per min]
System response times avg dev avg dev
Include system response times | 127s +36s 0.51 +0.14
Exclude system response times | 91s +31s 0.73 +0.24

Table 6.9: Speed of task solving. Computed as average of individual user speeds and averaged
user task durations.

It took about two minutes for the users to solve a task, but about almost one third of this
time is due to the delay generated by the system (wizards) when processing the user’s
multimodal input. The expected user speed in a system providing immediate responses
would therefore be about 0.73 tasks per minute. However, as already mentioned, the
observed speed is quite user-dependent, as it can be seen when noticing the large standard
deviation of that measure.

6.6.3 Complexity of tasks

We have shown in previous sections that there are fairly big differences among users in
their average accuracy of the task solving process. The average user accuracy is computed
over all tasks solved by a given user, regardless of his/her individual speed. In consequence,
different users have solved a different number of tasks, thus the accuracy of certain users
is possibly biased by the complexity of the individual set of tasks solved by that users.

For that reason, we decided to estimate the complexity of each task. For each task, we
identify the proportion of users who answered the task correctly, incorrectly, or did not
managed to find an answer (i.e. users inserted empty card into a box). Results are in
Figure 6.4.

The figure shows 33 tasks, each of them solved by at least 10 users, ordered by proportion
of users answering the task correctly (hereafter called the task correctness). Except the
last four tasks, the task correctness is spread nearly linearly from 61% to 99%, indicating
that the tasks are of variable complexity. Within the analyzed tasks, there is quite similar
number of the true-false questions (TF, 17) and the short-answer questions (SA, 16). Not
surprisingly, the TF tasks scored better — within the top 15 tasks (correctness >84%) are
11 of them (74%) of the TF type, while within the bottom 15 tasks (correctness <79%)
are only 3 (20%) of the TF type.

116

6.6. User performance in Archivus

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ll TOS (TF) The movie club has already shown ‘Lawrence of Arabia’ (80)
7T03 TF) Appliances were discussed in the Furniture 1 meeting. (80)
m Correct DT18 (SA) Which movie did they finally decide to show? (18)
O Not answered 7T17 TF) There was disagreement about the purpose of the room (17)

)

T23 (TF) Someone brought up the question of taking furniture outside. (66)

OIncorrect

T14 (SA) Who was leading the Design meeting? (23)
7T01 TF) The Furniture 4 meeting took place on March 10th, 2004 (80)
7T21 TF) They considered adding speech recognition in the design of the remote control (68)
7T3l TF) Carpets were discussed in one of the meetings. (22)
7T04 SA) Where was the Design meeting held? (80)
7T10 SA) Who was the marketing expert in the Design meeting? (51)
7T27 TF) Andrei is the president of the movie club. (53)
7T25 TF) The budget for the room furnishing was 1000CHF. (60)
7T11 TF) They suggested that the remote controls could be customized. (45)
7T09 TF) Denis proposed a brain-storming area. (62)
7T07 TF) One of the meetings took place in Geneva. (78)

)

T33 (TF) No one in the meeting has seen the movie ‘Usual Suspects'. (10)
7T30 SA) Which meetings did Susan not attend? (24)
7T20 SA) What things did Susan disagree about in Agnes's presentation in Furniture3? (13)
7T22 SA) What is the name of the company on the Design meeting slides? (66)

T29 (TF) Denis showed 4 possible versions of the movie club advertising poster at the meeting. (29)

T28 (SA) What material did they finally decide to make the remote control out of? (41)

T13 (TF) They decided to put a sofa in the room. (28)

T16 (SA) What was agreed to be the minimum size of the armchairs? (15)

T06 (SA) Which two participants brought Powerpoint presentations to the movie club meeting? (79)

T02 (SA) Which two movies does Agnes suggest showing? (80)

T08 (SA) Who attended all of the meetings? (69)

T12 (SA) How many pictures are there in the Google document? (33)

T15 (TF) Mirek and Andrei both suggested showing ‘American Beauty' (20)

T26 (SA) How many movies does Denis suggest to the group? (56)

T24 (SA) In which movie was the colour saturation modified? (65)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
7T19 (TF) A prototype of the remote control was presented at the meeting. (16)
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

T32 (SA) By which other movie was the movie ‘The Big Lebowski’ inspired? (16)

Figure 6.4: Tasks solved by users, sorted by proportion of correct answers. Each task is labeled
with its task id (e.g. T5), task type — true-false (TF) or short answer task (SA), task formulation
and total number of users (in last parentheses). The absolute number of users who answered the
task correctly, incorrectly or did not find the answer is shown in the corresponding part of the
bar. Only tasks solved by at least 10 users are shown (i.e. 33 tasks shown, 7 tasks not shown).

The last four tasks with lowest correctness are also having the biggest proportion of
wrong answers, while the proportion of cases when these tasks were not answered is not
exceptionally large (rather comparable with other tasks). The last three tasks are the
short-answer tasks, where one could assume that the users will answer only if they are
convinced about the correct answer. Surprisingly, many users provided the same wrong
answer. Therefore, we will identify the reasons for the incorrect user answers in the next
section.

6.6.4 Sources of task failures

Because we have found some of the tasks to be harder for the users than others (i.e. an
important proportion of users failed to answer the task correctly), we wanted to know
why the users have failed when solving such tasks (hereafter called the failing tasks). In
particular, we focus on the experienced interaction problems and reasons that have caused
them.

117

Chapter 6. Evaluation of dialogue strategies and the Archivus system

In order to do so, we decided to manually review the failing user interactions (i.e. the
interactions where the users did not solve the task correctly) and to manually classify
the reasons for a task failure. As reviewing all interactions would represent too much
work, only several tasks were selected for the manual review. We have selected the
tasks that have relatively low correctness score (indicating that the task is in principle
problematical), the tasks that have reasonably low absolute number of failing users (so
that we can review all cases for that task) and the tasks with either low or high proportion
of users who did not find the answer. The tasks selected for manual review are the
following:

T13: (TF) They decided to put a sofa in the room. (9 failing cases)
T12: (SA
T15

: (TF)

T16: (SA) What was agreed to be the minimum size of the armchairs? (5 failing cases)
: (SA) How many pictures are there in the Google document? (13 failing cases)
: (TF)

TF) Mirek and Andrei both suggested showing ‘American Beauty’ (9 failing cases)

T26: (SA) How many movies does Denis suggest to the group? (36 failing cases, 18 cases
analyzed)

T24: (SA) In which movie was the color saturation modified? (46 failing cases, 10 cases
analyzed)

Each of the analyzed failing cases was annotated (by one annotator) with the probable
reason for the task failure. In situations where several reasons were assumed to contribute
to the task failure, we have annotated the task with all of them (and we have also used
a possibility of partial-only contribution). The results are summarized in the following
list (including proportion of contribution of given reason to task failures with respect to
contribution of all reasons):

A. (52.9%) The user finds correctly the part of meeting transcript containing the task
answer, but is unable to infer (or infers incorrectly) the answer from reading the
text.

B. (11.4%) The user uses improper search criteria, i.e. criteria that do not select the
relevant parts of meeting transcript or documents.

C. (10.0%) The user finds the document containing the task answer, but is unable to
infer the answer from inspecting the document or is not inspecting it entirely.

D. (4.3%) The user does not open the relevant document, because he/she looks for the
answer only within the search hits, but the meeting documents are highlighted in
our system with the search hits.

E. (3.6%) The answer cannot be found directly in the meeting transcript (but only in
a related document) and the user is looking for the answer only in the transcript.

F. (3.6%) The user is unable to find an answer, because he/she does not use the
semantic categories (dialogue elements) in the search query.

G. (2.9%) The user is having problems with using some of the system features (e.g. un-
able to browse search hits, unable to use document links or to manipulate the set
of current search constraints).

118

6.6. User performance in Archivus

H. (1.4%) The user is unable to find an answer, even if he/she is using the semantic
categories (dialogue elements) in the search query.

I. (1.4%) Missing (or incomplete) annotation prevents the user from finding an answer.

J. (1.4%) The user has difficulties controlling a specific system feature when in the
condition with limited access to modalities (e.g. when selecting a value from a list
of topics using only mouse or pen).

K. (7.1%) Other reasons for failure

Clearly, the biggest source of a task failure is user’s misinterpretation of meeting tran-
scripts or meeting documents (A+C altogether accounts for about 63% of problems). The
second most frequent source of a task failure is that the users do not formulate their search
constraints properly (B+F, 15%). Some of these problems might be eliminated (D+E+G,
10.8%) if the implementation of the system was improved (e.g. displaying search hits also
for meeting documents, hit tabs that allow for a direct access — not only for scrolling, etc).

Concerning the problem of the recurring wrong task answers provided by users (as out-
lined in the previous section), it is caused by a misinterpretation of meeting transcripts
(and meeting documents) in situations where the meeting is not well structured or when
documents (or tasks) are partially ambiguous. We illustrate this problem on the following
two examples.

The first example of user’s common misinterpretation of meeting transcript is the task
T24: In which movie was the color saturation modified? The users usually found the
part of meeting where participants spoke about the modification of the color saturation.
Although the whole discussion is in the topical segment ‘Saving Private Ryan’, the color
saturation is directly preceded a discussion (on opposite transcript page) about the awards
received by the movie director (Steven Spielberg), and within this context, another movie
‘E.T.” is mentioned. Most of the users then simply respond with the name of that movie,
apparently without deeper reading of the movie context, and probably because that movie
name is spatially closest to the search hit. This problem can possibly be eliminated with a
permanent display of the full topical categorization of the presented transcript, or with a
‘smoothed’ transcript (e.g. with discourse fillers removed) presenting the meeting content
in a more understandable manner.

Another example of partially ambiguous document is task T26: How many movies does
Denis suggest to the group? In this case, the users also usually successfully found the
relevant participant’s PowerPoint presentation. However, the first part of the document
presents the chart with 50 top-rated movies (justifying the choice of movie) and only
second part of the document explicitly suggests one specific movie. In consequence, many
users answered that the 50 movies were suggested to the group. We expect that the
problem can be eliminated by annotating document contents similarly as the meeting
transcript — then, the document would open directly at the page with movie suggestion,
in case if the ‘suggestion’ was a search constraint.

119

Chapter 6. Evaluation of dialogue strategies and the Archivus system

6.7 Subjective user opinion about interactions in
Archivus

This section evaluates the Archivus system from the perspective of subjective user opinion
of the system and their experience with it. The data was gathered using a post-experiment
questionnaire (the full version of the questionnaire can be found in [57]). We analyze
only the first part of the questionnaire that evaluates the system in general and involves
questions related to system usability, understandability, learnability, and user satisfaction
with the system.

The subjective user opinion was collected using a series of statements. The users are
asked to indicate how much they agree with the statement using one of the predefined
responses: strongly agree, agree, neutral, disagree, strongly disagree. In order to measure
an overall opinion of all users about a given statement, the numeric quantifiers (—2, —1,
0, 1, 2) were assigned to the answers and the overall opinion is defined as an average of
the quantified answers to a given statement. The results are in Figure 6.5.

In general, the users had a positive reaction to the system and experienced interactions.

Most positive user reactions (averaged score 1.28) were to the statement Q6 Being able
to use language to interact with the system was helpful. Only 4% of the users responded
negatively. This result clearly shows a user-perceived importance of natural language for
human-machine interaction. It justifies our efforts towards language-enabled systems.

Next, the users stated (Q3, 1.15) that they have indeed understood the topic of the meet-
ings. This result enables us to assume that the chosen domain (meeting searching and
browsing) does not caused major problems to users and thus the results reported in the
previous sections are not biased by the choice of the application domain. This is further
confirmed by fact that a majority of users (81%) declared that they felt comfortable when
using the system (Q2, 0.99).

The users were also very positive (score 0.93-0.74) when answering the statements (Q1,
Q9, Q4, Q10) related to the ease of system use, learnability and appropriateness of the
library metaphor.

To some extent less positive were the Archivus users concerning their subjective feeling
about being in control of the system and using it as they wanted (Q5 and Q11, score 0.51—
0.48). About 9-13% of users disagreed with those statements and 34-38% of users stayed
neutral about such statements (nevertheless, 53-54% of users had positive opinion). A
further investigation will be necessary to discover whether some specific problems were
experienced by the users who claim they couldn’t use the system according to their needs.

Our examination of user’s agreement with the statement Q8 It was easy to go back and
change a criterion revealed that the users either agreed (48%) or disagreed (27%) with
the statement and relatively low proportion of users stayed neutral, forming two evident
groups of contradictory user answers. Such distribution of answers was found only by this
statement. We speculate that this is actually caused by the formulation of the statement.
In fact, it is not directly possible to ‘go back’ in our system as the system does not have
any ‘go back’ button (hence it is difficult to go back), but it is possible to change search
criteria and perform ‘go back’ in an indirect way (hence it is relatively easy to go back).

120

6.7. Subjective user opinion about interactions in Archivus

[Q6] Being able to use language to interact
with the system was helpful. (1.28)

[Q3] I could understand the topic of the
meetings. (1.15)

[Q2] I was comfortable working with the
system. (0.99)

80% 80% 80%
70% 70%
60%
60% 57% 60%
50% 50%
40% 40%
30%
30% 30%
21%
20% 20% 15%
10%
10% 10%
4%
0% 3% 0%
0% 0%
strong disagree neutral agree strong strong disagree neutral agree strong strong disagree neutral agree strong
disagree agree disagree agree disagree agree
[Q1] The system was easy to use. [Q9] Representing the meetings as pages in a [Q4] It was hard to learn to use the system.
(0.93) book made them easy to browse. (0.92) (0.85)
80% 75% 80% 80%
70% 70% 70%
60% 60% 60% 550
50% 50% 50%
40% 40% 40%
30% 30% 30%
20% 13% 20% 209% 1
10%
10% | % 109% 1 10% 1
0% 0% 1%
0% 0% - 0%
strong disagree neutral agree strong strong disagree neutral agree strong strong agree neutral disagree strong
disagree agree disagree agree agree disagree
[Q10] The bookshelf and books helped me [Q5] | felt in control of the system. [Q11] I could use the system how | wanted to.
understand how to use the system. (0.74) (0.51) (0.48)
80% 80% 80%
70% 70%
60% 60%
50% 45% 50% 45%
40% 40%
30%
20%
= 10% 1
0%
0% 0%
strong disagree neutral agree strong strong disagree neutral agree strong strong disagree neutral agree strong
disagree agree disagree agree disagree agree
[Q8] It was easy to go back and change a [Q7] The system reacted too slowly to my [Q19] Would you use the system again in the
criterion. (0.37) requests. (-0.85) future? (1.61)
80% 80% 80%
70% 70% 70%
60% 60% 60%
50% 50% 50%
41%
40% 40%
30% 2% 30%
20%
20%
3% o
10% { 10%
2% 0% 0%
0% 1 0%
strong disagree neutral agree strong strong agree neutral disagree strong no if improved yes
disagree agree agree disagree

Figure 6.5:

Results from the post-experiment questionnaire.

121

Questions are ordered by an
overall averaged positiveness of the answer (with respect to the system), scaled from 2 (positive)
to —2 (negative), except Q19 which uses a different scale (displayed at the end). Notice that
Q4 and Q7 are formulated in reversed sense, meaning that disagreement with the statement is
actually a positive reaction to the system. The X-axis of Q4 and Q7 are therefore reversed.

Chapter 6. Evaluation of dialogue strategies and the Archivus system

We guess that the user answer depends on their first understanding of the statement.
Consequently, we cannot consider this result to be completely valid.

The only negative result concerns the user opinion about the speed of the system. The
70% of users regarded the system reactions as slow (Q7, —0.85). We remind that the av-
erage system reaction time was 4.5 seconds, with standard deviation £5.3s, minimum 0.1s
and maximum 37s. The system reaction time is largely caused by the wizards and only
partly by the real cost of the system operations, suggesting that this problem will be elim-
inated in the automated and optimally implemented system. A more general conclusion
is that any GUI-enabled multimodal system with similar (or worse) response parameters
will be regarded as slow by users. It is therefore indeed necessary to optimize the Wizard
of Oz control interface and train the wizards.

Finally, 80% of users are willing to use the system in the future and 20% are willing to
use if the system was improved. None of users said that he/she wouldn’t use the system.
We consider it as a very positive result, especially when bearing in mind that Archivus
is still a system prototype. The result also stimulates our efforts in continuation of the
research in multimodal dialogue-enabled systems.

6.8 Summary

This chapter provides objective and subjective indicators about the observed user inter-
actions with the Archivus system, resulting from a large-scale Wizard of Oz experiment
(involving 91 users, out of which 80 were taken into account in our work). We provide
two main sets of results: the first set is related to the use and acceptance of various sys-
tem features (dialogue strategies and available modalities) by users. This set of results is
assumed to be valid for any system designed with our ISPM methodology. The second
set of results is specifically related to the Archivus system and aims at evaluating user’s
speed and accuracy on tasks carried out with Archivus, followed by indications of task
complexity and analysis of the most frequent sources of task failures. Finally, subjective
user opinions about the Archivus system are presented.

The first set of results is assumed to be valid for any multimodal dialogue-based system
with properties similar to systems designed with our ISPM. Our main findings are the
following;:

e The strategy for early automatic presentation of possible search results is frequently
executed by the system and well-accepted by the users. Our recommendation is
therefore to enable the automatic presentation of results as soon as their number
is sufficiently low to be efficiently displayed, provided that the system has enough
evidence about the expected relevance of these results. Nevertheless, automatically
presenting information should neither prevent users from having the possibility to
further browse the search space nor to enter new search constraints. In addition,
the nature of the display used for presenting the results should take into account
the specificities of the displayed data (for more details, see the analysis of the user
failures given hereafter).

e In order to deal with over-constrained situations, the system should offer to the
users at least two ways for resolving them: erasing a specific search criterion only

122

6.8. Summary

or erasing all search criteria simultaneously, because we found that both options are
used by users to a similar extent. Furthermore, the indications of the existence of
an over-constrained situation should be very explicit, as the users tend to ignore it
and then become frustrated by (what they perceive as) system non-cooperativeness.
We believe that more specific system-suggestions directly related to the search con-
straints provided by the users will be of great help for this issue.

e Mixed initiative is frequently used, but its extent of use varies significantly over the
different application contexts (mGDNSs). It is therefore recommended to perform for
each particular system a detailed mixed initiative use analysis, in order to restrict
the enabled degree of mixed initiative to the mGDN combinations where it is used
only. This reduces the complexity and increases the robustness and reliability of the
NL processing within the final fully automated system.

e The local strategies aiming at providing help to the users and at repeating the last
system prompt if needed turned out to be useless for multimodal systems equipped
with a screen.

e Although we benefited from optimal speech recognition and language understanding
conditions (both performed by human operators through Wizard of Oz simulations),
the system still turned out to be unable to process 5.7% of all user inputs provided
via natural language. This happened either because the system lacked the required
functionality or because the user’s input was incomprehensible, even to human oper-
ators. We therefore consider the observed percentage as an interesting information
on the theoretical performance limit of any interactive system integrating natural
language.

e The simultaneous use of several modalities within one dialogue turn was extremely
rare (0.3% of all dialogue turns), but all available modalities were quite frequently
used, i.e. users switched modalities between dialogue turns. This suggests that our
simple approach to modality fusion (relying on the assumption that SPs generated
independently by individual modalities can be simply merged into one set) is ade-
quate and sufficient for this type of systems.

e Natural language (voice and keyboard) was very frequently used: on average 61%
and 46% of all interactions were done in natural language in the PVK and MVK
conditions respectively). This provides an experimental justification of the efforts
dedicated to the extension of GUI-only systems towards NL-enabled systems. How-
ever, the individual use (and thus user-perceived importance) of the NL modalities
largely varied among the users, leading to a nearly uniform distribution, ranging
from users controlling the system only through NL to users relying only on the
mouse.

e Natural language was clearly preferred over pointing modalities (mouse, pen) for
providing search constraints (i.e. entering data), while navigation within the graph-
ical interface was most frequently done by pointing modalities. This suggests a
general preferred role for language in multimodal interfaces, and indicates that ex-
isting vocal command-and-control desktop applications may not combine GUI and
speech in a manner that is optimal and natural for users.

The second set of results is directly related to the Archivus system and thus constitutes
useful contribution to the domain of meetings browsers:

123

Chapter 6. Evaluation of dialogue strategies and the Archivus system

e On average, the users were able to correctly answer 76% of the given tasks (consisting
of a mixture of true-false and short-answer questions related to the meeting content),
15% of their answers were wrong, and in 9% of the cases they did not answer at
all. More precisely, the average (correct, incorrect, non answered) percentages were
(87%, 9%, 4%) for the true-false tasks and (65%, 21%, 15%) for the short-answer
questions. Nevertheless, individual user accuracy varied in great range — 10% of the
users correctly answered all the given tasks, while 19% of them answered correctly
less than half of the tasks. Interestingly, the latter users also tended to have a
larger proportion of unanswered tasks while their proportion of wrong answers is
comparable with other users, indicating that they probably had difficulties to find
the answers.

e It took users on average 127 seconds to answer a task, but nearly 30% of this time
was spent in waiting for system response (including the time necessary for wizards
to simulate some of system functions). With system response time excluded, the
users answered a task in 91 seconds on average, and they should be able to solve on
average (.73 tasks per minute in a system with immediate responses.

e The analysis of the situations where users failed to correctly answer a given task
(i.e. answered incorrectly or did not answer at all) revealed that the main rea-
son (63%) for failure was insufficient attention or misinterpretation of the meeting
transcripts provided by the system. Such a result suggests that the meeting tran-
script alone is not necessarily the optimal way for providing information about
meetings. A possible improvement might be to either present the transcript in a
‘smoothed form’ (e.g. with discourse fillers removed) or to enrich it with additional
information (e.g. make the topical classification of the displayed transcript part
always visible).

e Users’ subjective opinion of the Archivus system (and experienced interactions) in
terms of system usability, understandability, learnability, and satisfaction with the
system was in general positive or very positive. In our view, this is a very convincing
indication of the adequacy of our approach. In addition, the only identified prob-
lematic aspect (the speed of the system) is inherent to the used WOz simulations.
This indicates the importance of efficient wizard control interfaces and the need for
proper wizard’s training, but should disappear (or be significantly reduced) once
the targeted system is fully automated and optimally implemented.

124

Chapter 7

Conclusions

This thesis provides three main contributions:

e A novel, experimentally validated approach for the integration of multimodal inputs
and outputs within interactive dialogue-based systems.

e A methodology for the rapid design, prototyping and implementation of multimodal
dialogue-based information seeking systems. The proposed methodology builds
upon an iterative design process based on Wizard of Oz (WOz) simulations and
is supported by an underlying software infrastructure (the prototyping platform),
which can be easily customized for new application domains and includes ready-to-
use wizard control interfaces for the simulation of not yet implemented parts of the
targeted system.

e An operational prototype (the Archivus system) for a novel application — informa-
tion seeking and browsing in multimedia meeting data (the Smart Meeting Room
application). The uniqueness of the Archivus system lies in the application of a
multimodal dialogue-driven interface to the already fairly novel domain of interac-
tion.

Each of the three contributions is discussed in more detail in the following sections.

7.1 Multimodal dialogue-based system design

Our research first focused on the extension of dialogue-based systems with multimodal
inputs and outputs (Chapter 3). The results presented in Chapter 6 illustrate how our
approach allows for the smooth integration of natural language within a traditional GUI
paradigm extended with more novel modalities (such as a tactile screen).

For the dialogue design, we propose a two-layered dialogue model that corresponds to an
extension of the standard frame-based approach. In our work, the first dialogue layer
(modeled with generic dialogue nodes — GDNs) defines the interaction within specific
dialogue contexts and based on local dialogue strategies associated with the individual
slots of a global dialogue frame. The second layer controls the overall dialogue progress
and relies on global dialogue strategies that provide a higher-level planning of the dialogue.

125

Chapter 7. Conclusions

Through experiments with the Archivus system we have shown that our two-layered ap-
proach to dialogue modelling is easily extendable to multimodal systems. The key idea was
to extend existing GDNs to allow for a multimodal interaction with the user, thus leading
to the notion of multimodal generic dialogue node (mGDN). The modifications required
by the migration from vocal-only to multimodal dialogue management were explained in
section 3.8.

A general evaluation of the proposed global and local dialogue strategies in a multimodal
environment, presented in sections 6.3 and 6.4 for the Archivus system, has shown that
(1) mixed initiative features are frequently used by users, though not necessarily to the
same extent in all mGDNs, (2) the proposed strategy for early automatic presentation
of possible search results is well-accepted by users, (3) users hardly made use of the
help and repeat local dialogue strategies, and (4) despite optimal speech recognition and
understanding conditions (both performed by human operators through Wizard of Oz
simulations), the system is still unable to process 5.7% of all user inputs provided via
natural language, which provides interesting information on the theoretical performance
limit of any interactive system integrating natural language.

Furthermore, the analysis of the use of modalities (section 6.5) has shown (1) that the si-
multaneous use of several modalities (within one dialogue turn) is extremely rare (0.3% of
all dialogue turns), while all available modalities were quite frequently used (i.e. users
switched modalities between dialogue turns), thus suggesting that a quite simplistic ap-
proach to modality fusion, as the one used in Archivus, is in fact sufficient for most of the
cases, and (2) natural language is clearly preferred over pointing modalities (mouse, pen)
for providing search constraints (i.e. entering data), while navigation within the graphical
interface is most frequently done by pointing modalities. This suggests a general preferred
role for language in multimodal interfaces, and indicates that existing vocal command-
and-control desktop applications may not combine GUI and speech in a manner that is
optimal and natural for users.

7.2 Rapid prototyping with WOz simulations

The development of multimodal systems represents a significant amount of work. We
addressed this issue by proposing a methodology that specifically focuses on rapid de-
sign and implementation of multimodal dialogue-based information seeking systems. The
methodology is generic in the sense that new applications can easily be created thanks
to the fact that the underlying application model is conceptually modular, with mGDNs
as its main building blocks.

Furthermore, we complemented our methodology with an underlying software infrastruc-
ture and a number of reusable system modules. For the system infrastructure (the pro-
totyping platform), we proposed a variant of the plugin approach (section 3.6), where
the system modules can be either used directly, or customized to the needs of a given
application. In general, our plugin system is intended to run as a single process on one
machine, thus making debugging and development simple. However, if needed, the sys-
tem’s graphical interfaces can be easily distributed over several machines using the VNC
protocol and a standard VNC client.

126

7.3. Archivus system

The VNC-based distribution of system modules is required for Wizard of Oz simulations,
which we proposed for iterative testing and evaluation of multimodal systems under de-
velopment.

Although the idea of using WOz simulations for the design of multimodal systems is
not new, to the best of our knowledge, there is no available literature describing the
experimental environment in detail. Therefore, our contribution consists of three main
parts: (1) the detailed description and analysis of the requirements for the experimental
environment, (2) an experimentally validated integration of WOz techniques within a
generic design methodology and (3) practical recommendations for carrying out WOz
simulations. A major part of our environment is generic enough to be used for testing of
any multimodal system, not necessarily only of those designed with our methodology.

7.3 Archivus system

The main goal of the Archivus system was to serve as a central use-case for our prototyping
methodology, allowing us to draw conclusions about its effective applicability and about
the acceptability of the created systems, based on experiment with a large number of
users.

Archivus also corresponds to a very novel application: multimodal dialogue-based infor-
mation search within a multimedia database of annotated meeting recordings (the Smart
Meeting Room application). The novelty of the application made it an interesting candi-
date for research on multimodal interfaces, as it was difficult to predict how users would
use the provided interface for tasks they were not familiar with.

The methodology applicability is wvalidated by the fact that the Archivus was created
by the proposed methodology and is now a working system prototype. The iterative
development process of Archivus is thoroughly described in Chapter 5.

The functionality and quality of the developed Archivus system were experimentally eval-
uated by means of WOz simulations. In this perspective, one of the main results is that
on average the users were able to solve 91% of the given tasks, which we consider as a very
positive indication about the effectivity of applications created by our ISPM (especially
when taking into account the Archivus novelty). Furthermore, the fact that 15% of the
tasks were on average answered incorrectly should not be considered as contradicting the
former assumption, because our further analysis showed that the main reason (63%) for
incorrect or no answer was the insufficient attention paid by the users to the meeting
transcript (provided to them by the system), and could also be partially explained by the
fact that the participants in our experiments were mostly non-native English speakers.
This however suggests that meeting transcripts alone are not necessarily the optimal way
of providing information about meetings.

Finally, concerning the acceptability of the Archivus system, the generally positive or
very positive subjective user’s opinion of the system (in terms of system usability, under-
standability, learnability, and satisfaction) is in our view a very convincing indication of
the adequacy of our approach. The only identified problematical aspect, the speed of the
system, should again not be considered as contradicting this assumption, as this problem
is inherent to the used WOz simulations (a considerable delays in system responses are

127

Chapter 7. Conclusions

caused by Wizards and by the fact that the system is an imperfectly implemented proto-
type) and should disappear or be significantly reduced once the targeted system is fully
automated and optimally implemented.

128

Chapter 8

Future work

The possible future directions resulting from our work can be split into two main cate-
gories: the ones concerning the developed methodology and the underlying dialogue model
design (section 8.1), and the ones related to the possible extensions of the Archivus system
(section 8.2).

8.1 Multimodal dialogue system design

8.1.1 Facilitate the dissemination of the methodology

The main purpose of the methodology described in this thesis is to facilitate the design
and development of multimodal dialogue-based systems. As already mentioned in the
conclusion chapter, we believe that the experimental results obtained during the develop-
ment and evaluation of the Archivus system represent a convincing illustration of the very
promising potential of our approach. However, the implementation of the methodology
still needs to be improved and well documented in order to become an efficient and easy to
use tool for people who did not participate to its development. Our intention is to make
it available as an opensource software in order to further contribute to the dissemination
of our work. However, the ease of development of new systems in other domains still
remains to be tested, because so far, we have only some indications about the approach
adequacy based on our experience with designing systems using earlier versions of the

ISPM.

8.1.2 Improvements in the dialogue model

The development of systems for new application domains (possibly involving new types
of modalities and interaction styles that were not yet tested in our framework), might
reveal unforeseen shortcomings of the underlying dialogue model or uncover parts of the
methodology implementation that should be made more flexible, for example:

— Interactive systems developed with our methodology might require the adjunction
of some kind of ‘undo’ (go back) feature that allows to discard the effect of the last
performed action and to backtrack to the previous state of the system. Although

129

Chapter 8. Future work

a similar effect can often be achieved by a proper manipulation of the set of search
constraints, using an ‘undo’ functionality is more straightforward and applicable in
many situations.

We are therefore convinced that an ‘undo’ functionality should be added to our
model, as several of the Archivus users have explicitly stated that they missed
an undo button. Notice that providing such a functionality is far from being a
trivial task: even if adding the possibility to backtrack to the previously visited
mGDN is relatively easy (e.g. by memorizing its ID), substantial efforts are necessary
to guarantee that that the full state of the previously visited mGDN is correctly
reconstructed.

The interactions enabled by our system model are strictly turn-based (i.e. the user’s
and the system’s turns are strictly alternating). Although this is a quite desirable
feature for WOz simulations (as there is a clear separation between the periods when
the user or the system /wizard are in charge of the interaction control), it complicates
the implementation of standard operations such as the ‘smooth scrolling’ of long
lists for which the fine-grained motion of the mouse dragging actions would require
a system reaction after every mouse move (to ensure a really smooth scrolling),
which is incompatible with the turn-based approach.

For such operations requiring real-time response to very small changes in the system
state, the underlying interaction model would need to be extended. A possible
solution would be to define a new class of semantic pairs to be processed by the
mGDNs in real-time without interrupting the turn-based higher level interpretation
of the dialogue. Such semantic pairs should not be supervised by wizards directly,
but wizards should only have the possibility to interrupt the ‘low level’ stream of
semantic pairs, for instance in situations when ‘freezing’ the user interface would be
necessary to ensure a coherent interpretation of user’s inputs.

The part of the task model defining the relations between mGDNs (see section 3.5.1)
might be made more generic. Indeed, in its current state, it was sufficient to model
the relationships between mGDNs during the constraints gathering phase of the
dialogue, but this appeared to be insufficient to describe the possible transitions
among mGDNs during the result-browsing phase. Currently, such transitions must
be manually encoded in the Java source code of the dialogue manager (see the
discussion in section 5.2.3 on page 89).

Therefore, it would be useful to define a formalism that enables to express functional
relationships between mGDNs that could be exploited within the dialogue strategies.
A possible idea would be to use a formalism similar to the concurrent task trees
(CTT [74, 73]).

Another feature that might be further enhanced are the conditional prompts
(i.e. prompts associated with a logical expression describing the situation in which
the prompt should be used). Indeed, conditional prompts have been identified as
very useful to (1) either add more context-sensitivity within mGDNs (the context
being mainly defined by the mGDNs themselves, but refined by the associated con-
ditions), or to (2) signalize some global interaction situations (e.g. the presence of
a problem, of new solutions, confirmations) that are not necessarily related to the
mGDN in focus. While the former (mGDN-related) conditional prompts can be

130

8.2. Archivus system

declaratively defined in the mGDN configuration files, the latter (dialogue situation
related) conditional prompts currently have to be directly encoded in the dialogue
manager.

An interesting extension would therefore be to define a formalism allowing the ef-
ficient, declarative definitions of all conditional prompts and the associated condi-
tions.

8.1.3 Techniques for automation of the targeted systems

The design of multimodal dialogue systems might be further improved and accelerated
by providing techniques for the automation of the wizarding tasks. For example, an
interesting research direction for the automation of the output wizard decisions would
be to use machine learning techniques to learn rules for the modifications of the default
system prompts, exploiting the logfiles resulting from WOz experiments that keep track
of all the modified prompts and corresponding dialogue states.

8.1.4 Some additional more ambitious goals

Our prototyping methodology was created for designing information seeking systems that
can rely on the type of domain model specified in section 3.2. Therefore, it would be
interesting to study whether the methodology and the associated dialogue strategies can
be adapted to systems that rely on other types of domain models (i.e. not information
seeking systems). Such a study would generalize our methodology to a broader class of
interactive systems, where the main limitation is that the interaction can be decomposed
into the mGDNs — our elementary interaction units.

Another possible generalization concerns approaches beyond the frame-based dialogue
models. In particular, frame-based systems rely on implicitly predefined relations be-
tween slots. However, certain user queries might require dynamically created relations
between the provided information. For instance, a user query like: “I would like to stay
i a cheap hotel or I can accept even more expensive hotel, but then it has to be directly
on the beach” would need the system to interpret it as: price:low OR (price:higher AND
location:beach). A system capable of processing such queries would of course be more
powerful, while special attention should be then given to the robustness of the interac-
tion, as the reformulations and alternations of the attribute-relations can easily become
cumbersome.

8.2 Archivus system

Although we have evaluated the performance of the Archivus system in terms of speed and
accuracy, the obtained results are difficult to compare with other meeting browsers, mainly
because of different experimental settings. Therefore, the Archivus browser should also
be evaluated in a comparative framework, such as, for example, the Browser Evaluation
Test (BET) using the experimental protocol described in [121, 88]. Such comparative
evaluation might (1) reveal the types of information search tasks for which Archivus is

131

Chapter 8. Future work

best suited, (2) suggest the most useful meeting presentation techniques used in Archivus,
and (3) confirm the added value brought by multimodal dialogue-based interfaces.

Another interesting research direction is the study of the usefulness for meeting data
searching and browsing of various metadata used for annotating the Archivus database.
For example, the usefulness of specific annotations for searching might be determined by
analyzing user queries, while the usefulness of annotations for browsing might be partially
evaluated by an analysis of access frequencies to meeting-book pages with different anno-
tations, possibly with the help of some eye-tracking devices, which, in addition, might also
reveal the most often viewed GUI elements within the Archivus screen (thus suggesting
their importance and a possible need for reorganization or resize).

Finally, the ultimate step is to automate the Archivus system and thus make it indepen-
dent of wizard simulations and supervisions. The automation of wizarding tasks such as
prompt modifications (mentioned in the previous section) or NL understanding are crucial
research issues to be considered in the future. The impact of the system automation on
the user and the system performance has to also be analyzed.

132

Bibliography

1]

[10]

[11]

Alicia Abella, Michael K. Brown, and Bruce Buntschuh. Development principles for
dialog-based interfaces. In ECAI’96: Workshop on Dialogue Processing in Spoken
Language Systems, pages 141-155. Springer-Verlag, 1997.

James F. Allen. Natural Language Understanding. Addison-Wesley, Reading, Mas-
sachusetts, USA, 2 edition, 1995.

Masahiro Araki. OWL-based frame descriptions for spoken dialog systems. In Pro-
ceedings of International Workshop on Semantic Web Foundations and Application
Technologies, Nara Prefecture Public Hall, Nara, Japan, March 2003.

Maria Aretoulaki and Bernd Ludwig. Automaton-descriptions and theorem-proving;:
a marriage made in heaven? In ETAI: News Journal on Intelligent User Inter-
faces, volume 10, 1999. Special Issue on Intelligent Dialogue Systems edited by Jan
Alexandersson, Lars Ahrenberg, Kristiina Jokinen and Arne Jonsson.

Harald Aust, Martin Oerder, Frank Seide, and Volker Steinbiss. The Philips auto-
matic train timetable information system. Speech Communication, 17(3-4):249-262,
1995.

Harald Aust and Olaf Schréer. An overview of the Philips dialog system. In Proceed-
ings of the DARPA Broadcast News Transcription and Understanding Workshop,
Lansdowne Conference Resort, Lansdowne, Virginia, USA, February 1998.

John L. Austin. How to Do Things with Words. Oxford University Press, 1962.

Eric Bilange. Dialogue personne-machine: modélisation et réalisation informatique.
Hermes, Paris, 1992.

Dan Bohus and Alex Rudnicky. LARRI: a language-based maintenance and repair
assistant. In Wolfgang Minker, Dirk Biihler, and Laila Dybkjeer, editors, Spoken
Multimodal Human-Computer Dialogue in Mobile Environments, volume 28 of Text,
Speech and Language Technology, pages 203—-218. Springer, 2005.

Heleen Boland, Jettie Hoonhout, Claudia van Schijndel, Jan Krebber, Mirek
Melichar, Dietmar Schuchardt, Hardy Baesekow, Rosa Pegam, Sebastian Moller,
Martin Rajman, and Paula Smeele. Turn on the lights: investigating the Inspire
voice controlled Smart Home system, October 2004.

Richard A. Bolt. “Put-that-there”: Voice and gesture at the graphics interface. In
SIGGRAPH ’80: Proceedings of the 7th annual conference on Computer graphics
and interactive techniques, pages 262270, New York, NY, USA, 1980. ACM.

133

Bibliography

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

Ivan Bretan and Jussi Karlgren. Transparent natural language interaction through
multimodality. In ERCIM Workshop on Multimodal HCI, 1993.

Trung H. Bui, Martin Rajman, and Miroslav Melichar. Rapid Dialogue Prototyping
Methodology. In Petr Sojka, Ivan Kopecek, and Karel Pala, editors, Proceedings
of the Tth International Conference on Text, Speech and Dialogue (TSD 2004),
Lecture Notes in Artificial Intelligence LNCS/LNAI 3206, pages 579-586, Brno,
Czech Republic, September 2004. Springer-Verlag.

Harry C. Bunt. Conversational principles in question-answer dialogues. In Dieter
Krallmann and Gerhard Stickel, editors, Zur Theorie der Frage, pages 119-141.
Narr Verlag, 1981.

Harry C. Bunt. Information dialogues as communicative action in relation to partner
modelling and information processing. In M.M. Taylor, F. Neel, and D.G. Bouwhuis,
editors, The Structure of Multimodal Dialogue, pages 47-73. North-Holland, Ams-
terdam, 1989.

Pedro Cardoso, Luis Flores, Thibault Langlois, and Jodo Neto. Meteo: A telephone-
based portuguese conversation system in weather domain. In Proceedings of the
Third International Conference on Advances in Natural Language Processing, pages

175-178, Faro, Portugal, June 2002. Springer-Verlag.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike Flynn, Mael Guillemot,
Thomas Hain, Jaroslav Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa Kronen-
thal, Guillaume lathoud, Mike Lincoln, Agnes Lisowska, Iain McCowan, Wilfried
Post, Dennis Reidsma, and Pierre Wellner. The AMI meeting corpus: A pre-
announcement. In Machine Learning for Multimodal Interaction, volume 3869/2006
of Lecture Notes in Computer Science, pages 28-39, Edinburgh, UK, February 2006.
Springer Berlin / Heidelberg,.

Pavel Cenek, Miroslav Melichar, and Martin Rajman. A Framework for Rapid
Multimodal Application Design. In Véclav Matousek, Pavel Mautner, and Tom4&s
Pavelka, editors, Proceedings of the 8th International Conference on Text, Speech
and Dialogue (TSD 2005), volume 3658 of Lecture Notes in Computer Science, pages
393-403, Karlovy Vary, Czech Republic, September 12-15 2005. Springer.

Corey D. Chandler, Gloria Lo, and Anoop K. Sinha. Multimodal theater: extending
low fidelity paper prototyping to multimodal applications. In CHI 02 extended

abstracts on Human factors in computing systems, pages 874-875, New York, NY,
USA, 2002. ACM.

Hua Cheng, Harry Bratt, Rohit Mishra, Elizabeth Shriberg, Sandra Upson, Joyce
Chen, Fuliang Weng, Stanley Peters, Lawrence Cavedon, and John Niekrasz. A
Wizard of Oz Framework for Collecting Spoken Human-Computer Dialogs. In Pro-
ceedings of INTERSPEECH 2004 - ICSLP, The 8th International Conference on
Spoken Language Processing, pages 2269-2272, Jeju Island, Korea, 2004.

Phil Cohen. Dialogue modeling. In Ronald A. Cole, Joseph Mariani, Hans Uszkoreit,
Annie Zaenen, and Victor Zue, editors, Survey of the State of the Art in Human
Language Technology. Cambridge University Press, Cambridge, 1997.

134

Bibliography

22]

23]

[24]

[25]

Ronald A. Cole, Joseph Mariani, Hans Uszkoreit, Annie Zaenen, and Victor Zue,
editors. Survey of the state of the art in human language technology, chapter Chapter
13. Evaluation. Cambridge University Press, New York, NY, USA, 1997.

Don Colton, Ron Cole, David G. Novick, and Stephen Sutton. A laboratory course
for designing and testing spoken dialogue systems. In International Conference on
Acoustics, Speech and Signal Processing, pages 1129-1132, May 1996.

Anita Cremers, Wilfried Post, Erwin Elling, Betsy van Dijk, Bram van der Wal,
Jean Carletta, Mike Flynn, Pierre Wellner, and Simon Tucker. Meeting browser
evaluation report. Technical report, AMI Project Deliverable D6.4, December 2006.

Nils Dahlbéack, Annika Flycht-Eriksson, Arne Jonsson, and Pernilla Qvarfordt. An
architecture for multi-modal natural dialogue systems. In ESCA Tutorial and Re-
search Workshop (ETRW) on Interactive Dialogue in Multi-Modal Systems, 1999.

Nils Dahlbéack and Arne Jonsson. An empirically based computationally tractable
dialogue model. In Proceedings of the 14th Annual Conference of the Cognitive
Science Society (COG SCI-92), Bloomington, Indiana, 1992.

Nils Dahlbéack, Arne Jonsson, and Lars Ahrenberg. Wizard of Oz Studies — Why and
How. In Wayne D. Gray, William Hefley, and Dianne Murray, editors, International
Workshop on Intelligent User Interfaces 1993, pages 193-200. ACM Press, 1993.

Jody J. Daniels and Susan McGrath. A spoken language interface for tasking agents.
In Proceedings of the Grace Hopper Celebration of Women in Computing Confer-
ence, Hyannis, Massachusetts, USA, September 2000.

Dan Diaper. The wizard’s apprentice: a program to help analyse natural language
dialogues. In Proceedings of the fifth conference of the British Computer Society,
Human-Computer Interaction Specialist Group on People and computers V, pages
231-243, New York, NY, USA, 1989. Cambridge University Press.

Alan Dix, Janet Finley, Gregory Abowd, and Russell Beale. Human-computer in-
teraction (2nd ed.). Prentice-Hall, Inc., 1998.

Mary Ellen Foster. State of the art review: Multimodal fission. Deliverable 6.1 of
the COMIC project, September 2002.

Norman Fraser and Nigel Gilbert. Simulating speech systems. Computer Speech
and Language, 5:81-99, 1991.

Jeanne C. Fromer. Learning optimal discourse strategies in a spoken dialogue
system. Master’s thesis, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, USA, September 1998.

Petra Geutner, Frank Steffens, and Dietrich Manstetten. Design of the VICO Spo-
ken Dialogue System: Evaluation of User Expectations by Wizard-of-Oz Experi-
ments. In Proceeedings of the 3rd International Conference on Language Resources
and Evaluation (LREC 2002), 2002.

135

Bibliography

[35]

[37]

[38]

[39]

[40]

[41]

[43]

[44]

[45]

[46]

David Goddeau, Helen Meng, Joe Polifroni, Stephanie Seneff, and Senis
Busayapongchai. A form-based dialogue manager for spoken language applications.

In Proceedings of the International Conference on Spoken Language Processing (I1C-
SLP’96), volume 2, pages 701-704, Philadelphia, Pennsylvania, USA, 1996.

Hilda Hardy, Tomek Strzalkowski, Min Wu, Cristian Ursu, Nick Webb, Alan Bier-
mann, Bryce Inouye, and Ashley McKenzie. Data-driven strategies for an automated
dialogue system. In Proceedings of the 42nd Meeting of the Association for Compu-
tational Linguistics (ACL’04), Main Volume, pages 71-78, Barcelona, Spain, July
2004.

Alexander Hauptmann. Speech and gestures for graphic image manipulation. In
Proc. ACM CHI’89 Conference on Human Factors in Computing Systems, pages
241-245, 1989.

Julia Hirschberg, Diane Litman, and Marc Swerts. Prosodic cues to recognition er-
rors. In Proceedings of the Automatic Speech Recognition and Understanding Work-

shop (ASRU’99), 1999.

Judith Hochberg, Nanda Kambhatla, and Salim Roukos. A flexible framework
for developing mixed-initiative dialog systems. In Proceedings of the 3rd SIGdial
Workshop on Discourse and Dialogue, pages 60-63, Philadelphia, Pennsylvania,
USA, July 2002. Association for Computational Linguistics.

Kristiina Jokinen and Antti Raike. Multimodality - technology, visions and demands
for the future. In 1st Nordic Symposium on Multimodal Interfaces, 2003.

Arne Jonsson and Nils Dahlbéck. Talking to a computer is not like talking to your
best friend. In Scandinivian Conference on Artificial Intelligence (SCAI), pages
53—68, March 1988.

Daniel Jurafsky, Chuck Wooters, Gary Tajchman, Jonathan Segal, Andreas Stolcke,
Eric Fosler, and Nelson Morgan. The Berkeley Restaurant Project. In ICSLP’94,
pages 2139-2142, Yokohama, Japan, 1994.

Demetrios Karis and Kathryn M. Dobroth. Automating services with speech recog-
nition over the public switched telephone network: Human factors considerations.
IEEE Journal on Selected Areas in Communications, 9(4):574-585, 1991.

Andreas Kellner, Bernhard Rueber, Frank Seide, and Bach-Hiep Tran. Padis — an
automatic telephone switchboard and directory information system. Speech Com-
munication, 23(1-2):95-111, 1997.

Alexandra Klein, Ingrid Schwank, Michel Généreux, and Harald Trost. Evaluating
multi-modal input modes in a Wizard-of-Oz study for the domain of web search. In
Proceedings of the HCI01 Conference on People and Computers XV, pages 475-484.
Springer, 2001.

Ivan Kopecek. Modeling of the information retrieval dialogue systems. In Vaclav
Matousek, Pavel Mautner, Jana Ocelikova, and Petr Sojka, editors, Proceedings
of Text, Speech and Dialogue: Second International Workshop, Lecture Notes in
Artificial Intelligence LNCS/LNAI 1692, pages 302-307, Plzeni, Czech Republic,
September 1999. Springer-Verlag.

136

Bibliography

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[59]

[60]

Emiel Krahmer. The science and art of voice interfaces. Research report, Philips
Research, Eindhoven, Netherlands, 2001.

Emiel Krahmer, Marc Swerts, Mariét Theune, and Mieke Weegels. Error detection

in spoken human-machine interaction. International journal of speech technology,
4(1):19-30, 2001.

Jan Krebber, Sebastian Moller, Rosa Pegam, Ute Jekosch, Miroslav Melichar, and
Martin Rajman. Wizard-of-Oz tests for a dialog system in Smart Homes. In Pro-
ceedings of the joint congress CFA/DAGA, Strasbourg, France, 2004.

L. Lamel, S. Rosset, J.L.. Gauvain, S. Bennacef, M. Garnier-Rizet, and B. Prouts.
The LIMSI ARISE system. Speech Communication, 31(4):339-354, August 2000.

Pat Langley, Cynthia A. Thompson, Renee Elio, and Afsaneh Haddadi. An adaptive
conversational interface for destination advice. In Cooperative Information Agents,
pages 347-364, 1999.

James Alan Larson. Interactive Software: Tools for Building Interactive User In-
terface. Prentice-Hall, Inc., 1991.

Esther Levin, Roberto Pieraccini, and Wieland Eckert. A stochastic model of
computer-human interaction for learning dialogue strategies. In IEEE Automatic
Speech Recognition and Understanding Workshop, Santa Barbara, USA, 1997.

Esther Levin, Roberto Pieraccini, Wieland Eckert, Pino Di Fabbrizio, and Shrikanth
Narayanan. Spoken language dialogue: From theory to practice. In IEEE Auto-
matic Speech Recognition and Understanding Workshop, Keystone, Colorado, USA,
December 12 -15 1999.

Hank Liao. Multimodal fusion. Master’s thesis, University of Cambridge, 2002.

Agnes Lisowska. Multimodal interface design for the multimodal meeting domain:
Preliminary indications from a query analysis study. Project report IM2.MDM-11,
University of Geneva, Geneva, Switzerland, November 2003.

Agnes Lisowska. Multimodal Interface Design for Multimedia Meeting Content Re-
trieval. PhD thesis, University of Geneva, Switzerland, September 2007.

Agnes Lisowska, Susan Armstrong, Mireille Betrancourt, and Martin Rajman. Min-
imizing modality bias when exploring input preferences for multimodal systems in
new domains: the Archivus case study. In CHI ’07 extended abstracts on Human
factors in computing systems, pages 1805-1810, New York, NY, USA, 2007. ACM.

Agnes Lisowska, Andrei Popescu-Belis, and Susan Armstrong. User query analysis
for the specification and evaluation of a dialogue processing and retrieval system.
In Procedings of the LREC 2004 international conference, pages 993-996, Lisbon,
Portugal, May 26-28 2004.

Agnes Lisowska, Martin Rajman, and Trung H. Bui. ARCHIVUS: A System for
Accessing the Content of Recorded Multimodal Meetings. In In Procedings of
the JOINT AMI/PASCAL/IM2/M4 Workshop on Multimodal Interaction and Re-
lated Machine Learning Algorithms, Bourlard H. & Bengio S., eds. (2004), LNCS,
Springer-Verlag, Berlin., Martigny, Switzerland, June 2004.

137

Bibliography

[61]

[62]

[70]

[71]

Diane J. Litman and James F. Allen. A plan recognition model for subdialogues in
conversations. Cognitive Science, 11(2):163-200, 1987.

Kent Lyons, Christopher Skeels, and Thad Starner. Providing Support for Mobile
Calendaring Conversations: A Wizard of Oz Evaluation of Dual-Purpose Speech.
In MobileHCI ’05: Proceedings of the 7th International Conference on Human Com-
puter Interaction with Mobile Devices € Services, pages 243-246, New York, NY,
USA, 2005. ACM Press.

David L. Martin, Adam Cheyer, and Douglas B. Moran. The Open Agent Archi-
tecture: A framework for building distributed software systems. Applied Artificial
Intelligence, 13(1-2):91-128, 1999.

Michael F. McTear. Spoken dialogue technology: Enabling the conversational user
interface. ACM Computing Surveys, 34(1):90-169, 2002.

Michael F. McTear, Susan Allen, Laura Clatworthy, Noelle Ellison, Colin Lavelle,
and Helen McCaffery. Integrating flexibility into a structured dialogue model: Some
design considerations. In Proceedings of the 6th International Conference on Spoken
Language Processing, pages 110-113, Beijing, China, November 2000.

Miroslav Melichar. A tool for rapid dialogue prototyping (in Czech). Master’s thesis,
Masaryk University Brno, Czech Republic, 2003.

Miroslav Melichar, Pavel Cenek, Marita Ailomaa, Agnes Lisowska, and Martin Raj-
man. From vocal to multimodal dialogue management. In Fighth International Con-
ference on Multimodal Interfaces (ICMI’06), pages 5967, Banff, Alberta, Canada,
November 2-4 2006.

Miroslav Melichar, Agnes Lisowska, Susan Armstrong, and Martin Rajman. Rapid
multimodal dialogue design: Application in a multimodal meeting retrieval and
browsing system. In Poster presentation at MLMI’05, Edinburgh, UK, July 11-13
2005.

Helen Meng, Senis Busayapongchai, James Glass, Dave Goddeau, Lee Hethering-
ton, Ed Hurley, Christine Pao, Joe Polifroni, Stephanie Seneff, and Victor Zue.
WHEELS: A conversational system in the automobile classifieds domain. In Proceed-
ings of the International Conference on Spoken Language Processing (ICSLP’96),
volume 1, pages 542-545, Philadelphia, Pennsylvania, USA, 1996.

Marvin Minsky. Frame system theory. In Proceedings of the 1975 workshop on
Theoretical issues in natural language processing, pages 104-116. Association for
Computational Linguistics, 1975.

Sebastian Moller, Jan Krebber, Alexander Raake, Paula Smeele, Martin Rajman,
Mirek Melichar, Vincenzo Pallotta, Gianna Tsakou, Basilis Kladis, Anestis Vovos,
Jettie Hoonhout, Dietmar Schuchardt, Nikos Fakotakis, Todor Ganchev, and Ilyas
Potamitis. INSPIRE: Evaluation of a Smart-Home System for Infotainment Man-
agement and Device Control. In International Conference on Language Resources
and Evaluation (LREC), volume 5, pages 1603-1606, Lisbon, Portugal, 2004.

138

Bibliography

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[30]

[81]

[82]

[83]

[84]

Darren Moore. The IDIAP Smart Meeting Room. In IDIAP-Com 02-07, page 13,
2002.

Giulio Mori, Fabio Paterno, and Carmen Santoro. CTTE: support for developing
and analyzing task models for interactive system design. IEEFE Trans. Softw. Eng.,
28(8):797-813, 2002.

Giulio Mori, Fabio Paterno, and Carmen Santoro. Design and development of
multidevice user interfaces through multiple logical descriptions. IEEFE Trans. Softw.
Eng., 30(8):507-520, 2004.

Mikio Nakano, Yasuhiro Minami, Stephanie Seneff, Timothy J. Hazen, Scott
Cyphers, James Glass, Joseph Polifroni, and Victor Zue. Mokusei: A telephone-
based japanese conversational system in the weather domain. In Proceedings
of the Tth European Conference on Speech Communication and Technology (EU-
ROSPEECH), pages 1331-1334, Aalborg, Denmark, September 2001.

Laurence Nigay and Joélle Coutaz. A generic platform for addressing the multimodal
challenge. In CHI'95: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 98-105. ACM Press/Addison-Wesley Publishing Co.,
1995.

Scott P. Overmyer. Revolutionary vs. evolutionary rapid prototyping: Balancing
software productivity and HCI design concerns. In Proceedings of the Fourth In-

ternational Conference on Human-Computer Interaction, pages 303-307. Elsevier
Science, 1991.

Sharon Oviatt. Multimodal interactive maps: Designing for human performance.
Human-Computer Interaction, 12:93-129, 1997.

Sylvain Paillard. Extensions of rapid dialogue prototyping methodology. Semester
project report, EPFL, February 2005.

Sylvain Paillard. Venus — a dialogue-based virtual receptionist. Master’s thesis,
Swiss Federal Institute of Technology in Lausanne (EPFL), March 2006.

Vincenzo Pallotta. Computational dialogue models. MDM research project deliv-
erable, Faculty of Computer and Communication Sciences, Swiss Federal Institute
of Technology, EPFL IC-ISIM LITH, IN-F Ecublens, 1015 Lausanne (CH), March
2003.

Bryan Pellom, Wayne Ward, John Hansen, Kadri Hacioglu, Jianping Zhang, Xi-
uyang Yu, and Sameer Pradhan. University of Colorado dialog systems for travel

and navigation. In Proceedings of the Human Language Technology Conference
(HLT-2001), San Diego, California, USA, March 2001.

Bryan Pellom, Wayne Ward, and Sameer Pradhan. The CU communicator: An
architecture for dialogue systems. In Proceedings of the International Conference
on Spoken Language Processing, Beijing, China, November 2000.

Norbert Pfleger. Context based multimodal fusion. In ICMT ’04: Proceedings of the
6th international conference on Multimodal interfaces, pages 265-272, New York,

NY, USA, 2004. ACM Press.

139

Bibliography

[85]

[86]

[87]

[88]

[92]

93]

[95]

[96]

Philips Dialogue Systems, Aachen, Germany. SpeechMania 2.0: HDDL Reference
Manual, 1997.

Roberto Pieraccini, Esther Levin, and Wieland Eckert. AMICA: The AT&T mixed
initiative conversational architecture. In Furospeech’97, pages 1875-1878, Rhodes,
Greece, 1997.

Olivier Pietquin and Thierry Dutoit. Aided design of finite-state dialogue manage-
ment systems. In Proceedings of the IEEE International Conference on Multimedia
¢ Expo (ICME 2003), Baltimore, Maryland, USA, July 2003.

Andrei Popescu-Belis, Philippe Baudrion, Mike Flynn, and Pierre Wellner. Towards
an objective test for meeting browsers: The BET4TQB pilot experiment. In Ma-
chine Learning for Multimodal Interaction, volume 4892/2008 of Lecture Notes in
Computer Science, pages 108-119, Brno, Czech Republic, February 2008. Springer
Berlin / Heidelberg.

David Portabella. Improving user confidence in decision support systems for elec-
tronic catalogs. PhD thesis, EPFL, Switzerland, December 2007.

Alexandros Potamianos, Egbert Ammicht, and Hong-Kwang Kuo. Dialogue man-
agement in the Bell Labs communicator system. In Proceedings of the International
Conference on Spoken Language Processing, Beijing, China, October 2000.

Silvia Quarteroni, Martin Rajman, and Miroslav Melichar. Introducing reset pat-
terns: An extension to a rapid dialogue prototyping methodology. In The IEE
International Workshop on Intelligent Environments, University of Essex, Colch-
ester, UK, June 28-29 2005.

Martin Rajman, Marita Ailomaa, Agnes Lisowska, Miroslav Melichar, and Susan
Armstrong. Extending the Wizard of Oz methodology for language-enabled multi-
modal systems. In Proc. of the 5th International Conference on Language Resources
and Evaluation (LREC), Genoa, Italy, May 2006.

Martin Rajman, Trung H. Bui, Andréa Rajman, Florian Seydoux, Alex Trutnev,
and Silvia Quarteroni. Assessing the usability of a dialogue management system
designed in the framework of a rapid dialogue prototyping methodology. ACTA
ACUSTICA united with ACUSTICA, the Journal of the European Acoustics Asso-
ciation (EAA): International Journal on Acoustics. Vol. 90, no. 6 pp. 1096-1111
(Nov./Dec. 2004) - ISSN 1610-1928 S. Hirzel Verlag - Stuttgart, 2004.

Martin Rajman, Andréa Rajman, Florian Seydoux, and Alex Trutnev. Assessing
the usability of a dialogue management system designed in the framework of a rapid
dialogue prototyping methodology. In First ISCA Tutorial € Research Workshop
on Auditory Quality of Systems, Akademie Mont-Cenis, April 23-25 2003.

Martin Rajman, Andréa Rajman, Florian Seydoux, and Alex Trutnev. Prototypage
rapide et évaluation de modeles de dialogue finalisés. In Traitement Automatique
des Langues Naturelles (TALN), Batz-sur-Mer, June 11-14 2003.

Manny Rayner. Abductive Equivalential Translation and its Application to Nat-
ural Language Database Interfacing. PhD dissertation, University of Stockholm,
September 1993.

140

Bibliography

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

107]

[108]

Leah M. Reeves, Jennifer Lai, James A. Larson, Sharon Oviatt, T.S. Balaji,
Stéphanie Buisine, Penny Collings, Phil Cohen, Ben Kraal, Jean-Claude Martin,
Michael McTear, TV Raman, Kay M. Stanney, Hui Su, and Qian Ying Wang.
Guidelines for multimodal user interface design. Communications of the ACM,
47(1):57-59, 2004.

Mary Beth Rosson and John M. Carroll. Scenario-based design. In The human-
computer interaction handbook: fundamentals, evolving technologies and emerging
applications, pages 1032-1050. Lawrence Erlbaum Associates, Inc., Mahwah, NJ,
USA, 2003.

Alexander 1. Rudnicky. Multimodal dialogue systems. In Wolfgang Minker, Dirk
Biihler, and Laila Dybkjeer, editors, Spoken Multimodal Human-Computer Dialogue
in Mobile Environments, volume 28 of Text, Speech and Language Technology, pages
3—11. Springer, 2005.

Michael Ruflin. Contributions to the Wizard of Oz experiments (Application editor).
Semester project report, EPFL, June 2005.

Daniel Salber and Joélle Coutaz. Applying the Wizard of Oz technique to the study
of multimodal systems. In EWHCT ’93: Selected papers from the Third International
Conference on Human-Computer Interaction, pages 219-230, London, UK, 1993.
Springer-Verlag.

Daniel Salber and Joélle Coutaz. A Wizard of Oz platform for the study of multi-
modal systems. In CHI ’93: INTERACT 93 and CHI ’93 conference companion

on Human factors in computing systems, pages 95-96, New York, NY, USA, 1993.
ACM.

John R. Searle. Speech Acts. Cambridge University Press, 1969.

Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao, Philipp Schmid, and
Victor Zue. Galaxy-II: A reference architecture for conversational system develop-
ment. In Proc. ICSLP’98, volume 3, pages 931-934, 1998.

Stephanie Seneff and Joseph Polifroni. A new restaurant guide conversational sys-
tem: Issues in rapid prototyping for specialized domains. In Proceedings of the
International Conference on Spoken Language Processing (ICSLP’96), volume 2,
pages 665—668, Philadelphia, Pennsylvania, USA, 1996.

Stephanie Seneff and Joseph Polifroni. Dialogue management in the Mercury flight
reservation system. In Proceedings of ANLP-NAACL Workshop on Conversational
Systems, pages 1-6, Seattle, Washington, USA, April 2000.

Nicole Shechtman and Leonard M. Horowitz. Media inequality in conversation:
How people behave differently when interacting with computers and people. In CHI
'03: Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 281-288, New York, NY, USA, 2003. ACM.

Ben Shneiderman. Natural vs. precise concise languages for human operation of
computers: Research issues and experimental approaches. In Proceedings of the
18th annual meeting on Association for Computational Linguistics, pages 139-141,
Morristown, NJ, USA, 1980. Association for Computational Linguistics.

141

Bibliography

[109]

[110]

[111]

[112]

[113]

114]

[115]

[116]

[117)

[118]

[119]

[120]

Bernd Souvignier, Andreas Kellner, Bernhard Rueber, Hauke Schramm, and Frank
Seide. The thoughtful elephant: Strategies for spoken dialog systems. I[FEE Trans-
actions on Speech and Audio Processing, pages 51-62, 2000.

Helmer Strik, Albert Russel, Henk van den Heuvel, Catia Cucchiarini, and Lou
Boves. A spoken dialogue system for public transport information. In H. Strik,
N. Oostdijk, C. Cucchiarini, and P.A. Coppen, editors, Proceedings of the Depart-
ment of Language and Speech, volume 19, pages 129-142, Nijmegen, The Nether-
lands, June 1996.

Stephen Sutton, Ronald Cole, Jacques de Villiers, Johan Schalkwyk, Pieter Ver-
meulen, Mike Macon, Yonghong Yan, Ed Kaiser, Brian Rundle, Khaldoun Shobaki,
Paul Hosom, Alex Kain, Johan Wouters, Dominic Massaro, and Michael Cohen.
Universal speech tools: the CSLU Toolkit. In Proceedings of the International Con-
ference on Spoken Language Processing (ICSLP), pages 3221-3224, Sydney, Aus-
tralia, November 1998.

Ronnie Taib and Natalie Ruiz. Wizard of Oz for multimodal interfaces design:
Deployment considerations. In Human-Computer Interaction. Interaction Design
and Usability, pages 232-241. Springer, 2007.

Damien Touraine, Patrick Bourdot, Yacine Bellik, and Laurence Bolot. A framework
to manage multimodal fusion of events for advanced interactions within virtual
environments. In EGVE ’02: Proceedings of the workshop on Virtual environments
2002, pages 159-168, Aire-la-Ville, Switzerland, 2002. Eurographics Association.

Robert van Kommer, Martin Rajman, and Herve Bourlard. Heading towards
virtual-commerce portals. In ComTec Journal, pages 9-12, September 2000.

Jan van Kuppevelt, Laila Dybkjeer, and Niels Ole Bernsen. Advances in Natural
Multimodal Dialogue Systems. Springer, 2005.

Gert Veldhuijzen van Zanten. Adaptive mixed-initiative dialogue management.
In Proceedings of 4th IEEE International Workshop on Interactive Voice Technol-
ogy for Telecommunications Applications (IVTTA-98), pages 65-70, Turin, Italy,
September 1998.

Ming Vo. A Framework and Toolkit for the Construction of Multimodal Learning
Interfaces. PhD thesis, Carnegie Mellon University, Pittsburgh, USA, 1998.

Wolfgang Wahlster and Alfred Kobsa. Dialogue-based user models. In Proceedings
of the IEEE, volume 74, pages 948-960, 1986.

Marilyn Walker, Candace Kamm, and Julie Boland. Developing and testing gen-
eral models of spoken dialogue system performance. In Language Resources and
Evaluation Conference, 2000.

Wayne Ward and Bryan Pellom. The CU Communicator system. In Workshop on
Automatic Speech Recognition and Understanding, Keystone, Colorado, December
1999.

142

Bibliography

[121]

[122]

[123]

[124]

[125]

Pierre Wellner, Mike Flynn, Simon Tucker, and Steve Whittaker. A meeting browser
evaluation test. In CHI'05 extended abstracts on Human factors in computing sys-
tems, pages 2021-2024, New York, NY, USA, 2005. ACM.

Jerry Wright, Allen Gorin, and Alicia Abella. Spoken language understanding
within dialogs using a graphical model of task structure. In Proceedings of the 5th
International Conference on Spoken Language Processing (ICSLP’98), volume 5,
Sydney, Australia, 1998.

Xiao-Jun Wu, Fang Zheng, and Wen-Hu Wu. A hybrid dialogue management ap-
proach for a flight spoken dialogue system. In Proceedings of the First International
Conference on Machine Learning and Cybernetics, volume 2, pages 824-829, Bei-
jing, China, November 2002.

Xiao-Jun Wu, Fang Zheng, and Mingxing Xu. Topic forest: a plan-based dialog
management structure. In Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2001, volume 1, pages 617-620, Salt Lake
City, Utah, USA, May 2001.

Victor Zue, Stephanie Seneff, James R. Glass, Joseph Polifroni, Christine Pao, Tim-
othy J. Hazen, and Lee Hetherington. Jupiter: A telephone-based conversational
interface for weather information. IEEFE Transactions on Speech and Audio Pro-
cessing, 8(1):85-95, January 2000.

143

Bibliography

144

Curriculum Vitae

Miroslav Melichar

Born on April 5, 1979 in Brno, Czech Republic
Languages spoken: English (fluent), French and German (basic), Czech (native)

Main interests: I am interested in human-machine communication. My main focus is on
(multimodal) dialogue management, but I am also interested in related natural language
processing fields, such as natural language understanding, speech recognition and speech
generation.

Education and qualifications

2004 — 2008 PhD Candidate at the Artificial Intelligence Laboratory (LIA), School
of Computer and Communication Sciences (IC), Swiss Federal Institute
of Technology in Lausanne (EPFL)

2003 — 2004 Doctoral School at IC, EPFL

2003 European Masters in Language and Speech certificate (Eu-
romasters) from the International Speech Communication Associa-
tion (ISCA) and the European Chapter of the Association for Com-
putational Linguistics (EACL)

2002 Postgraduate specialization in Language and Speech Engineer-
ing certificate from the EPFL

2002 Six-month stay related to Master’s thesis at LIA, EPFL
e InfoVox project — Interactive Voice Servers for Advanced Computer
Telephony Applications, Swiss CTI grant 4247.1

1997 — 2003 Master’s degree in Computer Science, Faculty of Informatics,
Masaryk University, Brno
e Specialization: Natural language processing
e Master thesis: A tool for rapid dialogue prototyping
e Member of Laboratory of Speech and Dialogue (LSD)

145

Curriculum Vitae

Work experience

2003 — 2008 Research Assistant / Teaching Assistant at LIA, EPFL
e IM2 project — Interactive Multimodal Information Management,
http://www.im2.ch, funded by the Swiss National Science Founda-
tion
e INSPIRE project — INfotainment management with SPeech Inter-
action via REmote microphones and telephone interfaces, European
grant IST-2001-32746

2000 — 2003 Software engineer at Photon Systems Instruments (PSI)
e Software and algorithms for image and signal processing data in
biology and medicine
e Embedded system programming (low-level software for scientific in-
struments)
e GUI development

1997 — 2001 Software developer in several projects
e Ticket reservation system (used by number of Czech hockey clubs)
e Game engines (action game ‘Katapult’” and Online virtual casino)

Computer skills

e Expert knowledge of Java, Java Server Pages (environments: JBuilder, NetBeans)

e Expert knowledge of C/C++ (environments: Borland C++ Builder, Microsoft Vi-
sual C++)

e Expert knowledge of Delphi, Pascal (environment: Borland Delphi)
e Expert knowledge of dialog systems (VoiceXML)

e Databases (PostgreSQL, InterBase)

e PHP, JavaScript

e Matlab

e Digital image processing

e Embedded systems programming (ARM, C51, ISP1581-USB2.0)

e Platforms: Win32, Win CE

146

Curriculum Vitae

Publications

Book chapters

1.

Pavel Cenek, Miroslav Melichar, and Martin Rajman. A Framework for Rapid
Multimodal Application Design. In Vaclav Matousek, Pavel Mautner, and Tomas
Pavelka, editors, Proceedings of the Sth International Conference on Text, Speech
and Dialogue (TSD 2005), volume 3658 of Lecture Notes in Computer Science,
pages 393-403, Karlovy Vary, Czech Republic, September 12-15 2005. Springer.

. Trung H. Bui, Martin Rajman, and Miroslav Melichar. Rapid Dialogue Prototyping

Methodology. In Petr Sojka, Ivan Kopecek, and Karel Pala, editors, Proceedings
of the 7Tth International Conference on Text, Speech and Dialogue—TSD 200/, Lec-
ture Notes in Artificial Intelligence LNCS/LNAI 3206, pages 579-586, Brno, Czech
Republic, September 2004. Springer-Verlag.

Peer-reviewed papers

1.

Miroslav Melichar, Pavel Cenek, Marita Ailomaa, Agnes Lisowska, and Martin
Rajman. From vocal to multimodal dialogue management. In FEighth Interna-
tional Conference on Multimodal Interfaces (ICMI’06), pages 59-67, Banff, Alberta,
Canada, November 2-4 2006.

. Martin Rajman, Marita Ailomaa, Agnes Lisowska, Miroslav Melichar, and Susan

Armstrong. Extending the Wizard of Oz methodology for language-enabled multi-
modal systems. In Proc. of the 5th International Conference on Language Resources
and Evaluation (LREC), Genoa, Italy, May 2006.

. Marita Ailomaa, Agnes Lisowska, Miroslav Melichar, Susan Armstrong, and Martin

Rajman. Archivus: A multimodal system for multimedia meeting browsing and
retrieval. Interactive presentation at ACL/Coling, Sydney, Australia, July 17-21
2006.

. Miroslav Melichar, Agnes Lisowska, Susan Armstrong, and Martin Rajman. Rapid

multimodal dialogue design: Application in a multimodal meeting retrieval and
browsing system. In MLMI’05, Edinburgh, UK, July 11-13 2005.

Silvia Quarteroni, Martin Rajman, and Miroslav Melichar. Introducing reset pat-
terns: An extension to a rapid dialogue prototyping methodology. In The IEE
International Workshop on Intelligent Environments, University of Essex, Colch-
ester, UK, June 28-29 2005.

Sebastian Moller, Jan Krebber, Alexander Raake, Paula Smeele, Martin Rajman,
Mirek Melichar, Vincenzo Pallotta, Gianna Tsakou, Basilis Kladis, Anestis Vovos,
Jettie Hoonhout, Dietmar Schuchardt, Nikos Fakotakis, Todor Ganchev, and Ilyas
Potamitis. INSPIRE: Evaluation of a Smart-Home System for Infotainment Man-
agement and Device Control. In International Conference on Language Resources
and FEvaluation (LREC), volume 5, pages 1603-1606, Lisbon, Portugal, 2004.

147

Curriculum Vitae

7. Jan Krebber, Sebastian Moller, Rosa Pegam, Ute Jekosch, Miroslav Melichar, and
Martin Rajman. Wizard-of-Oz tests for a dialog system in Smart Homes. In
Proceedings of the joint congress CFA/DAGA, Strasbourg, France, 2004.

8. Heleen Boland, Jettie Hoonhout, Claudia van Schijndel, Jan Krebber, Mirek
Melichar, Dietmar Schuchardt, Hardy Baesekow, Rosa Pegam, Sebastian Moller,
Martin Rajman, and Paula Smeele. Turn on the lights: investigating the Inspire
voice controlled smart home system. Human Factors and Ergonomics Society Fu-
rope Chapter, Delft, October 2004.

148

