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Abstract

Nowadays more and more people are looking for products online, and a massive
amount of products are being sold through e-commerce systems. It is crucial to
develop effective online product search tools to assist users to find their desired
products and to make sound purchase decisions. Currently, most existing online
product search tools are not very effective in helping users because they ignore the
fact that users only have limited knowledge and computational capacity to process
the product information. For example, a search tool may ask users to fill in a form
with too many detailed questions, and the search results may either be too mini-
mal or too vast to consider. Such system-centric designs of online product search
tools may cause some serious problems to end-users. Most of the time users are
unable to state all their preferences at one time, so the search results may not be
very accurate. In addition, users can either be impatient to view too much product
information, or feel lost when no product appears in the search results during the
interaction process.

User-centric online product search tools can be developed to solve these prob-
lems and to help users make buying decisions effectively. The search tool should
have the ability to recommend suitable products to meet the user’s various prefer-
ences. In addition, it should help the user navigate the product space and reach the
final target product without too much effort. Furthermore, according to behavior
decision theory, users are likely to construct their preferences during the decision
process, so the tool should be designed in an interactive way to elicit users’ pref-
erences gradually. Moreover, it should be decision supportive for users to make
accurate purchasing decisions even if they don’t have detail domain knowledge of
the specific products.

To develop effective user-centric online product search tools, one important task
is to evaluate their performance so that system designers can obtain prompt feed-
back. Another crucial task is to design new algorithms and new user interfaces of
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the tools so that they can help users find the desired products more efficiently.

In this thesis, we first consider the evaluation issue by developing a simula-
tion environment to analyze the performance of generic product search tools. Com-
pared to earlier evaluation methods that are mainly based on real-user studies,
this simulation environment is faster and less expensive. Then we implement the
CritiqueShop system, an online product search tool based on the well-known cri-
tiquing technique with two aspects of novelties: a user-centric compound critiquing
generation algorithm which generates search results efficiently, and a visual user
interface for enhancing user’s satisfaction degree. Both the algorithm and the user
interface are validated by large-scale comparative real-user studies. Moreover, the
collaborative filtering approach is widely used to help people find low-risk products
in domains such as movies or books. Here we further propose a recursive collab-
orative filtering approach that is able to generate search results more accurately
without requiring additional effort from the users.

Keywords: online product search, critiquing, preference, performance evalua-
tion, real-user study.
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Résumé

Aujourd’hui de plus en plus de gens recherchent des produits en-ligne et une quan-
tité importante de ceux-ci sont vendus quotidiennement à travers des systèmes de
e-commerce. Il est crucial de développer de bons outils de recherche en-ligne de pro-
duits afin d’assister les utilisateurs pour qu’ils trouvent leurs produits désirés, et
leur faciliter les décisions d’achats. Actuellement, la majorité des outils de recherche
de produits ne sont pas très efficaces pour aider les utilisateurs car ils ne pren-
nent pas en compte le fait que les utilisateurs ont des connaissances limitées sur le
sujet et une capacité d’analyse limitée pour absorber l’ensemble des informations
fournies sur les produits. Par exemple, un outil de recherche peut demander aux
utilisateurs de remplir un formulaire contenant un trop grand nombre de questions
détaillées. Dans certains cas, le système peut aussi retourner soit une liste vide, soit
une liste trop vaste de produits répondant aux critères de recherche. De tels concep-
tions d’outils de recherche, qui dépendent en premier des possibilités offertes par
le système (“centré-système”), peuvent être la source de problèmes sérieux pour les
utilisateurs finaux. La plupart du temps les utilisateurs sont incapables d’indiquer
au système toutes leurs préférences en même temps, rendant les résultats impré-
cis. De plus, les utilisateurs sont souvent impatients de voir toutes les informations
sur trop de produits, ou peuvent se sentir perdus lorsqu’il n’y a aucun résultat qui
correspond à leur recherche.

Pour résoudre ces problèmes, des systèmes orientés autour des besoins des util-
isateurs (“centré-utilisateurs”) peuvent être développés, et parviennent à aider les
utilisateurs à prendre des décisions d’achats efficaces. L’outil de recherche doit
avoir la capacité de recommander des produits adéquats qui satisfont les différentes
préférences d’un utilisateur. De plus, l’outil doit pouvoir aider l’utilisateur à nav-
iguer au travers de l’espace de produits à disposition dans le système pour finale-
ment atteindre le meilleur produit cible, et cela sans trop d’efforts. Il se trouve
également que d’après la théorie comportementale de la décision, il est fort prob-
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able que les utilisateurs construisent leur préférence en partie durant ce proces-
sus décisionnel, indiquant que les outils de recherche devraient être conçus d’une
manière interactive améliorant ainsi la découverte progressive des préférences de
l’utilisateur. Finalement, un tel outil doit faciliter la prise de décision pour perme-
ttre aux utilisateurs de prendre une bonne décision d’achat même lorsqu’ils n’ont
pas de connaissances détaillées sur le domaine des produits concernés.

Afin de développer de tels systèmes de recherche en-ligne é tant tout à la fois ef-
ficaces et orientés utilisateurs, une tâche importante est d’évaluer leur performance
afin de fournir un prompt feed-back aux développeurs. Un autre point crucial est
l’améliora-tion des algorithmes de tri et interfaces de présentation pour aider les
utilisateurs à trouver leur produits désirés.

Dans cette thèse, nous é tudions tout d’abord les methodes permettant d’analyser
un outil de recherche gé né rique. A cette fin, nous avons dé veloppé un environ-
nement de simulation. Cet environnement de simulation est plus rapide et moins
coûteux comparés aux méthodes précédentes d’évaluation qui sont principalement
basées sur des cas d’études réelles, Par la suite, nous avons implémenté un sys-
tème d’achat nommé “CritiqueShop”, un outil de recherche en-ligne basé sur les
techniques reconnues de “critiquing”, avec deux aspects innovants: un algorithme
de “compound critiques” centré-utilisateur qui génère des résultats de recherches
optimaux, et une interface de visualisation de ces critiques qui augmente le degré
de satisfaction des utilisateurs. Aussi bien l’algorithme que la nouvelle interface
sont testés et validés par des études comparatives avec de vrais utilisateurs. De
plus, l’approche par Collaborative filtering est utilisée de manière exhaustive pour
aider les utilisateurs à trouver des produits à bas-risque financier dans des do-
maines tels que les films, livres, etc. Ici, nous proposons une approche récursive de
ces algorithmes collaboratifs qui permet de générer des résultats plus précis, sans
demander d’efforts supplémentaires de la part des utilisateurs.

Mots-clefs: recherche en-ligne de produits, critiquer, préférence, évaluation de
performance, étude d’utilisateurs.
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CHAPTER 1

Introduction

1.1 Motivations

The rapid growth of web technologies has dramatically changed, and will continue
to change, our daily lives in many aspects. Currently, people are able to connect to
most online websites, at any time from anywhere (such as home, office, etc), to buy
cameras, organize trips, or plan vacations without the need of visiting some shops
or travel agencies in person. The e-commerce services provided by these online web-
sites allow people to carry out businesses without the barriers of time or distance.
Because of these advantages, e-commerce services have grown into a huge business
market and many e-commerce websites — such as Amazon.com,1 and ebay.com,2 —
have become very successful. According to the Census Bureau of the United States,
the U.S. retail e-commerce sales for the third quarter of the year 2007 was estimated
to reach $32.2 billion, with an annual increase of 18.9%.3

In traditional commerce, the activities are carried out directly between human
individuals or organizations. For example, the buyer can enter a shop to look at
the products on the shelves or ask a shop assistant for help. By comparison, in e-
commerce environment, the buyer interacts with a pre-designed computer system

1See http://www.amazon.com/
2See http:/www.ebay.com/
3Data source from: http://www.census.gov/mrts/www/data/html/07Q3.html.
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CHAPTER 1. INTRODUCTION

Figure 1.1: An example of the form-filling style of online flight search. The user is
asked to input travel information such as departure/arrival locations, flight type,
time, class, airline, etc. (screenshot from http://www.swiss.com).

to get information about the product he or she wants to buy. Normally the product
information provided by the e-commerce system is far beyond any individual’s effort
to process without any help from the system. For example, in Amazon.com, there
are 3.7 million books for sale (Anderson, 2006). There is little chance for the buyer
to navigate through all the items by hand to find a specific book in which he or she
is interested. According to Jacob Nielsen, the first usability principle of e-commerce
is that if users cannot find the product, they cannot buy it either.4 As a result,
online product search is becoming increasingly critical for helping consumers find
their most preferred items in the e-commerce environment.

One common implementation of online product search is based on the form-
filling style: the system acquires the preferences from the user by asking him or
her to fill out a form. Usually the form is in a fixed style and the user must input at

4Source from: http://www.useit.com/alertbox/20030825.html
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Lenovo ThinkPad 1.66 
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$189.16 
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Notebook
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lenovo laptop

Figure 1.2: The keyword-based online product search (screen-shot from http://
www.google.com/products).

least a certain amount of information correctly. Based on the input of the user, the
system is able to generate a list of products that satisfy the conditions specified by
the user. Figure 1.1 shows a detail example about this type of online product search.
However, in many cases users are unable to state all their preference into the form
at one time, so the search results may not be very accurate. In addition, research re-
sults have shown that individuals only have limited knowledge and computational
capacity (Simon, 1955) to process the product information. On one hand, if a system
provides too much information to the user, it is unlikely that the user can be patient
enough to view all the product information and make the right choice. On the other
hand, if the product search results contain no product, a user may feel lost during
the interaction process. According to (Viappiani, Faltings, & Pu, 2006a), only 25%
of users could find their most preferred products by this form-filling approach.

Another implementation of online product search is based on keywords that the

3
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user inputs. Each time the user inputs one or a few keyword(s), and the system
will return a list of products that match the keywords. For example, Google has
implemented such a tool since 2002.5 This system, which is similar to the Google
web search engine, can provide a simple way for users to input preferences and
returns a huge amount of products for users to choose. However, the limitation
is also obvious: it is not easy to use keywords to describe the user’s preferences
precisely. And because of that, search results are often inaccurate, resulting in
many pages of possibilities for the end-users to examine. For example, Figure 1.2
shows a user wants to buy a Lenovo laptop, and he or she inputs the keywords
“lenovo laptop” into the system. However, in this case the system returns some
products which are not laptops. In addition, this system returns too much product
information to the user without any decision assistance: the user has to spend a
long time viewing the products one by one to decide which one to buy.

The main problem for the above two online product search tools is that they are
system-centric: they implicitly assume that users have a pre-existing and stable set
of preferences. They demand users to input preferences in the format as required
by the system, without considering the nature of user’s preferences. However, this
assumption has been challenged by the studies of actual decision makers’ behav-
ior from behavioral decision theory (Payne, Bettman, & Johnson, 1993; Carenini &
Poole, 2002). Many years of studies have pointed out the adaptive and constructive
nature of human decision making. In particular, a user’s preferences are likely to
change as a result of the elicitation process itself, so that the answers given to sub-
sequent questions are often inconsistent. Additionally, they only provide the ability
for users to access all the product information that the system may have, but do not
consider the user’s actual effort to process all the information to make buying deci-
sions. Studies from economics and psychology have shown that the individual only
has bounded rationality when making decisions due to his/her limited knowledge
and computational capacity (Simon, 1955). As a result, such system-centric design
of online product search tools could only provide limited help for users to find their
desired products.

1.1.1 User-Centric Online Product Search

In this thesis we propose user-centric online product search to overcome the above
limitations. A user-centric online product search tool should be able to help users
find what they want, buy what is recommended to them, and return because of

5This product search service was called Froogle, but recently Google renamed this service as Google
Product Search. Website address: http://www.google.com/products
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the positive interaction experience. In general, it needs to have the following key
features:

1. The tool needs to let users find the desired products without too much effort.
It has been shown that the users’ preferences are constructive, so the tool is
required to support multiple interactions between the user and the system.
It should allow users to reach the desired products within a small number of
interaction cycles.

2. The tool needs to provide accurate search results to end-users. Sometimes
users may not have the whole domain knowledge of the products in mind at
the beginning of the search process. The tool needs to provide useful product
information to guide them to reach the target products gradually.

3. The tool needs to let users be confident to make purchase decisions. Most
of the time, the user’s preferences cannot be fully satisfied and some trade-
offs must be made. The search tool is required to support trade-offs among
products so that users feel confident about what they purchased.

In practice, a user-centric online product search tool plays a critical role to the
success of online e-commerce websites because they could provide better usability
to end-users. As Nielsen has estimated, with better usability, “an average site could
increase its sales by 79%”.6

Our goal is to build user-centric online product search tools to help users find
their desired products effectively. This is challenging because 1) users’ preference
models are incomplete and it is hard to elicit preferences that do not exists; 2) users’
beliefs about desirability are ephemeral, uncertain and context dependent; and 3)
users have cognitive and emotional limitations for decision making. To that end,
we need to understand the process by which humans make tradeoff decisions, how
information affects this process, and how to construct effective user interfaces to
augment performance. This is a multidisciplinary research that involves psychol-
ogy, economics, human-computer interactions, artificial intelligence, and informa-
tion retrieval.

In recent years, many types of online product search tools or systems have been
proposed by researchers from different backgrounds. When the products are in low-
risk domains such as books, DVDs, or news articles, some recommendation tech-
niques have been applied to effectively generate search results to end-users (Gold-
berg, Nichols, Oki, & Terry, 1992; Resnick, Iacovou, Suchak, Bergstorm, & Riedl,

6Source from: http://www.useit.com/alertbox/20010819.html
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1994). For example, GroupLens was developed to help users find interesting arti-
cles through increasing number of newsgroup messages based on the collaborative
filtering approach (Resnick et al., 1994). In this context product search tools can be
called recommender systems. When searching more expensive and complex products
such as laptops, cars, or apartments, some decision supportive approaches (Stolze,
2000; Pu & Faltings, 2000; Torrens, Faltings, & Pu, 2002; Shearin & Lieberman,
2001) are applied to build product search tools. For example, Linden et al. (Linden,
Jacobi, & Benson, 2001) described a product search tool called ATA (automated
travel assistant) for finding flights. This system uses a constraint solver to obtain
several optimal solutions. Each time three optimal solutions in addition to two ex-
treme ones (least expensive and shortest flying time) are shown to the user. ATA
uses a candidate critiquing agent to constantly observe the user’s modifications to
the expressed preferences and refine the preference model in order to improve solu-
tion accuracy. As we can see in this case, each product has its own features and a
price value, and users are expected to possess a reasonable amount of willingness to
interact with the system and expend a certain amount of effort to make a choice. If
users’ preferences cannot be fully satisfied, the system has to be decision supportive
so that users can make trade-offs among them. In this context an online product
search tool can also be called a decision support system (DSS) (Payne et al., 1993)
or a consumer decision support system (CDSS) (Yager & Pasi, 2002). Both recom-
mender systems and the decision support approaches will be reviewed in detail in
Chapter 2.

Two issues are important for developing effective user-centric online product
search tools. One issue is how to evaluate the performance of a given product search
tool. We need to take into account the fact that users only have limited cognitive
resources. The performance evaluation results are able to help system designers
compare different system designs and discover potential improvement opportuni-
ties. Another issue is how to design a new product search tool to help end-users find
their desired product efficiently and accurately. Below we will further elaborate the
importance of these two issues.

1.1.2 The Performance Evaluation Issue

One method that has been widely used to evaluate the performance of product
search tools is the real-user study method. For example in (Pu & Kumar, 2004), a
real-user study was conducted to evaluate the performance of example-based search
tools. Before the real-user study started, the entire platform had to be implemented.
During the real-user study, a group of users was hired to complete some specific
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search tasks. The interaction process of each subject was recorded in log files. After
the search tasks were finished, each end-user was asked to fill a post-study ques-
tionnaire to specify whether he or she was satisfied with the search tool. Finally the
performance results were obtained by analyzing the log files. This whole user-study
procedure lasted more than two months with 16 users in total, and each subject has
been paid with a certain amount of incentive.

There are several advantages of the real-user study method to evaluate perfor-
mance. We are able to closely observe the users’ actual behaviors and get their
subjective feedback on criteria such as the degree of satisfaction, the willingness
of purchase, etc. Also, if these users are representative and are unbiased in their
cultural or educational background, the evaluation results converge onto the actual
real-world performance of the system.

However, the real-user study method has some limitations as well. First of all, it
takes a long time to generate evaluation feedback to system designers. The system
designers have to complete and deploy the search tool, and hire a group of users to
try it. The evaluation results can only be obtained after these users finish the eval-
uation process. Next, it is not easy to hire enough users with different backgrounds
to participate in the user study. Additionally, a certain amount of incentive must
be proposed to attract them. Furthermore, the evaluation results are dependent
on the current real-user study conditions. If we change the scale of the underlying
product information by adding or deleting some products, the performance results
may also be changed and new real-user studies are required.

An alternative method is to evaluate the performance of a given product search
tool through simulation. We can create one or several artificial user(s) with a certain
kind of behaviors, and mimic the interaction procedure between the artificial user(s)
and the given product search tool. By analyzing the artificial interaction log files,
we are able to largely estimate the performance of the given product search tool.

The simulation method enjoys some benefits compared to the real-user study
method. It is much faster to carry out the simulation experiments to generate the
performance results; system designers don’t need to wait for real users to complete
the search tasks. Also, there is no cost for hiring real users. Additionally, it is easy
to simulate the process of the product search tool with different scales of datasets.
The drawback of the simulation method is that the performance results may not
be very convincing because of the gap between the artificial user and the real ones.
Also, it is impossible to obtain the user’s subjective feedback with the simulation
method. Table 1.1 shows a comparison of these two evaluation methods.

The simulation method has been applied in different situations in past years.

7
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Table 1.1: Comparison of the two performance evaluation methods: Simulation vs.
Real-User Study

Criteria Simulation Real-User Study
Effort to obtain evaluation results low high
Cost to obtain evaluation results low high

Scalability easy difficult
Subjective feedback no yes

Quality of the evaluation results low high

In (Payne et al., 1993), a simulation experiment is introduced to measure the perfor-
mance of various decision strategies in offline situations. Boutilier et al. (Boutilier,
Brafman, Domshlak, Hoos, & Poole, 2004) carried out experiments by simulating
a number of randomly generated synthetic problems, as well as user responses to
evaluate the performance of various query strategies for eliciting bounds of the pa-
rameters of utility functions. In (Reilly, McCarthy, McGinty, & Smyth, 2005), vari-
ous users’ queries were generated artificially from a set of offline data to analyze the
recommendation performance of the incremental critiquing approach. These works
generally suggest that simulation is a useful methodology for performance evalua-
tion. However, these simulation experiments are not generic in nature because they
are limited on the specific task. Some of them didn’t measure the decision accuracy,
which is an important criterion for calibrating the performance of product search
tools. A more general simulation environment is required to be adopted universally
for measuring the performance of any given product search tools efficiently.

Considering both the pros and cons of these two evaluation methods, we could
combine them together to evaluate the performance of a given product search tool
in sequence. Ideally we can first use the simulation method to estimate its perfor-
mance after the prototype is implemented. Then if we find that this tool is quite
efficient according to the simulation results, we can complete the implementation
of the system and launch a real-user study to verify its performance.

1.1.3 The System Design Issue

The system design issue is important for us to develop new online product search
tools to help users find the desired products efficiently. Essentially an online prod-
uct search tool is an information system with a client-server model, and the 3-tier
layer architecture is widely accepted as the system structure. The benefit of this

8
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Figure 1.3: The general architecture of an online product search tool.

architecture is that the presentation, the logic and the data storage of the tool are
independent to each other. Figure 1.3 shows the general architecture of an online
product search tool with the following three specific layers.

• The data layer. This layer is responsible for storing and accessing product
information required by the decision assistant layer. This layer is dependent
on the particular product domain.

• The decision assistant layer. This is the logic layer of the system. In each
interaction cycle, it accepts the user’s various preferences into a preference
model, and then the product search engine will determine a list of products
that best match the user’s preferences according to a certain criteria, and fi-
nally the results generation model sends the product information to the user
interface model for display. Typically this procedure can be described by a de-
cision assistant algorithm (or decision approach). This layer can also be called
algorithm layer.

• The presentation layer. This layer can also be called the user interface
layer. It is responsible for displaying the search results generated from the
decision assistant layer properly to end-users. For online product search tools,
a typical example of this layer is some web pages displayed on a web browser
such as Internet Explorer or FireFox.

Under this architecture, the algorithm layer and the user interface layer are
not directly dependent on the specific product domain, so they can be designed in a
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general way and can be applied to different product domains. In other words, we are
able to apply different algorithms and/or user interfaces to build different product
search tools on a given product domain.

In past years many different algorithms or decision approaches have been pro-
posed for developing various online product search tools. The SmartClient (Pu &
Faltings, 2000) is a tool based on the example-critiquing approach for users to make
a travel plan. It is able to refine the user’s preference model interactively by show-
ing a set of 30 possible solutions in different visualizations to the user. In (Stolze,
2000), the scoring tree method is proposed for building interactive product search
tools based on the multi-attribute utility model (MAUT) (Keeney & Raiffa, 1976). A
detailed review of these approaches is given in Chapter 2.

Particularly, the critiquing technique has been applied on many systems and
has been proven to be a successful approach for online product search because it
can help users express their preferences and feedbacks easily over one or several
aspects of the available product space (Burke, Hammond, & Young, 1997; Reilly,
McCarthy, McGinty, & Smyth, 2004a; Reilly et al., 2005; Faltings, Pu, Torrens,
& Viappiani, 2004a; Ricci & Nguyen, 2005). In Chapter 2 we also review these
critique-based tools in detail. However, these critique-based product search tools
are implemented in different ways, generally lacking direct performance compar-
ison. Some improvements can be made to help users find desired products more
effectively.

For the user interface layer, one important task is to elicit user’s preferences as
requested by the algorithm layer. For example, if the unit critiquing technique is
applied on an online product search tool, the user interface layer needs to provide
the function for users to critique on different values. In addition, it is important to
present the search results properly to enhance user’s overall satisfaction degree.

Overall, in this thesis we tackle both the design and evaluation issues for user-
centric online product search. It is worth mentioning that both the design and eval-
uation issues are tightly-coupled: on one hand, evaluation results can help system
designers discover new possibilities to refine the system design; on the other hand,
the efficiency of new design approaches are required to be validated by evaluation
results. More specifically, our main work is to design a user-centric online product
search based on the critiquing technique. This tool has two novelties: the user-
centric algorithm based on the MAUT approach to generate compound critiques,
and the visual interface for presenting compound critiques to users. We also evalu-
ate the product search tool with both simulation experiments and real-user studies.

10
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1.2 Contributions

The contributions of this thesis lie in three aspects. First, we propose a general per-
formance evaluation framework for online product search tools. We identify three
criteria from users’ point of view: cognitive effort, interaction effort and choice accu-
racy. We specify the method of evaluating the performance of given online product
search tools in a simulation environment. Second, we implement the CritiqueShop
system, an online product search tool based on the well-known critiquing technique
with two novelties: a user-centric compound critiquing generation algorithm which
generates search results efficiently and a visual user interface for enhancing user’s
satisfaction degree. Both the algorithm and the user interface are validated by
large-scale comparative real-user studies. Finally, collaborative filtering is an ap-
proach that has been widely used to recommend products based on user’s rating
profiles. Here we present a recursive collaborative filtering approach to improve the
recommendation accuracy without requiring additional effort from end-users.

1.2.1 Performance Evaluation Framework

In this part of work, our main objective is to develop a simulation environment in
which various search tools are evaluated in terms of interaction behaviors: what
users’ effort would be to use these tools and what kind of benefits they are likely
to receive from these tools. We propose an extended effort–accuracy framework for
quantitatively measuring the performance of different decision strategies in deci-
sion support environments. The method of measuring the effort of preference elic-
itation was given and a variety of decision strategies were then evaluated through
simulation experiments.

We base our work on some earlier research (Payne et al., 1993) about the design
of the simulation environment in off-line situations. However, we have added im-
portant elements to adapt such environments to online e-commerce and consumer
decision support scenarios. With this simulation environment, we are able to fore-
cast the acceptance of online product search tools in the real world and curtail the
evaluation of each tool’s performance from months of user study to rapid simula-
tion process. This allows us to evaluate new tools efficiently and, more importantly,
discover design opportunities of new search tools.

11
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1.2.2 Critique-based Product Search

Critiquing is an interactive technique allowing users to construct their preferences
through cycles of feedbacks collected based on users’ critiques on search results. It
is a popular preference elicitation mechanism that has been used in various online
product search tools. Currently several different kinds of critiquing methods have
been proposed and implemented to let users state their preferences. The simplest
form of critiquing is unit critique, which allows users to give feedback on a single
attribute or feature of the products at a time (Burke et al., 1997). For example, [CPU
Speed: faster] is a unit critique over the CPU Speed attribute of the PC products. If
a user wants to express preferences on two or more attributes, multiple interaction
cycles between the user and the system are required.

To make the critiquing process more efficient, an alternative strategy is to adopt
compound critiques, which are collections of unit critiques and allow users to in-
dicate a richer form of feedback. Reilly et al. (Reilly et al., 2004a) have developed
an approach called dynamic critiquing to generate compound critiques through the
Apriori algorithm. The Apriori algorithm is a data mining approach used in the
market-basket analysis method (Agrawal & Srikant, 1994). It treats each critique
pattern as the shopping basket for a single customer, and the compound critiques
are the popular shopping combinations that consumers often purchase together.

The Apriori algorithm is efficient in discovering compound critiques from a given
data set. However, selecting compound critiques according to their frequency in the
data set may lead to some problems. This approach can reveal “what the system
would provide”, but does not tell “what the user likes”. For example, in a PC data
domain if 90 percent of the products have a faster CPU and larger memory than the
current reference product, it is still unknown whether the current user likes a PC
with a faster CPU and larger memory. If the users find that the compound critiques
cannot help them find better products within several interaction cycles, they may
be frustrated and give up the interaction process.

In this thesis we propose a new algorithm to generate compound critiques for
online product search with a preference model based on the multi-attribute utility
theory (MAUT) (Keeney & Raiffa, 1976). In each interaction cycle our approach
first determines a list of products via the user’s preference model, and then gen-
erates compound critiques by comparing them with the current reference product.
In our approach, the user’s preference model is maintained adaptively based on
user’s critique actions during the interaction process, and the compound critiques
are determined according to the utilities they gain instead of the frequency of their
occurrences in the data set.

12
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We further extend the user interface design for critique-based product search
tools. Traditionally the user interface for compound critiques are presented in a
simple style with plain text. We propose a visual interface to represent compound
critiques with various meaningful icons.

We build an online evaluation platform called CritiqueShop so that real users
can evaluate alternative versions of algorithms/interfaces of online product search.
The results from real-user studies validate the efficiency of both the algorithm and
the new designs of user interfaces.

1.2.3 Recursive Collaborative Filtering

One of the most popular and successful techniques that has been used in generating
recommendation set for low-risk product domains is known as collaborative filtering
(Herlocker, Konstan, Borchers, & Riedl, 1999; Resnick et al., 1994). The key idea of
this approach is to infer the preference of an active user towards a given item based
on the opinions of some similar-minded users in the system (Breese, Heckerman, &
Kadie, 1998; Herlocker, Konstan, & Riedl, 2002).

The conventional prediction process of the user-based collaborative filtering ap-
proach selects neighbor users using two criteria: 1) They must have rated the given
item; 2) They must be quite close to the active user (for instance, only the top K

nearest-neighbor users are selected). However, in reality most users in recom-
mender systems are unlikely to have rated many items before starting the rec-
ommendation process, making the training data very sparse. As a result, the first
criterion may cause a large proportion of users being filtered out from the prediction
process even if they are very close to the active user. This in turn may aggravate
the data sparseness problem.

To overcome the data sparseness problem and enable more users to contribute in
the prediction process, we propose a recursive prediction algorithm which relaxes
the first criterion mentioned above. The key idea is the following: if a nearest-
neighbor user hasn’t rated the given item yet, we will first estimate the rating value
for him or her recursively based on his or her own nearest-neighbors, and then we
use the estimated rating value to join the prediction process for the final active
user. In this way we have more information to contribute to the prediction process
and it should be able to improve the prediction accuracy for collaborative filtering
recommender systems.

The main contribution of this part of the work is that we relax the constraint
that all nearest-neighbor users must also have rated the given item. The recursive

13
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Figure 1.4: The thesis structure.

prediction algorithm enables more flexibility in the prediction process of finding
the useful neighbor users. This algorithm is able to improve the recommendation
accuracy without requiring any additional effort from users.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Very briefly, Chapter 2 provides a
review of the background and related work. Chapter 3 introduces a general perfor-
mance evaluation framework with simulation method. Chapter 4 – 6 are our main
work on the design and evaluation issues for a user-centric online product search
tool. In Chapter 7, we introduce an improvement of the collaborative filtering algo-
rithm. Chapter 8 is a summary of the thesis. The structure of the main work of this
thesis is shown in Figure 1.4.

Chapter 2 reviews the state of the art background research work in the field of
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online product search. We define the multi-attribute decision problem and intro-
duce the example-critiquing interaction paradigm to solve this problem. Different
approaches of generating product search results are reviewed, from the decision the-
oretic approaches to the recommendation techniques. We also review the critiquing
techniques comprehensively for online product search.

In Chapter 3 we develop a general evaluation framework for online product
search tools. We identify three criteria for assessing the quality of a given product
search tool: users’ cognitive effort, interaction effort, and decision accuracy. Based
on this framework, we propose a simulation environment which enables rapid eval-
uation of decision strategies for online product search tools.

In Chapter 4 we introduce a novel algorithm of generating compound critiques
dynamically. This algorithm is based on the MAUT approach and can generate
compound critiques that are close to the user’s preference model. Here we also
report simulation experiment results to show its efficiency.

Chapter 5 reports the online real-user studies for evaluating the performance
of the algorithm proposed in Chapter 4. We validate that the algorithm reaches a
good performance from the user’s perspective.

In Chapter 6 we develop a visual user interface to represent compound critiques
so to enhance user’s satisfaction degree during the product search process. A user
study is carried out to validate this visual design.

Chapter 7 presents our work on improving the classical collaborative filtering
recommendation algorithm. We propose the recursive collaborative filtering algo-
rithm to generate recommendation results more accurately.

Finally, we summarize the thesis and discuss future research directions in Chap-
ter 8.

15





CHAPTER 2

Background and Related Work

2.1 Introduction

Generally speaking, an online product search tool is an information system that
helps buyers find their desired products from a collection of product descriptions
that an organization wants to offer. Usually the products offered in an e-commerce
system are far more than what the individual decision maker requires. Studies
from economics and cognitive psychology have shown that an individual has only
a bounded rationality when making decisions due to limited knowledge and com-
putational capacity (Simon, 1955). Therefore, the product search results should be
highly selective, only containing products that best match users’ preferences. Ide-
ally an online product search tool should be user-centric: it should be able to help
users find their desired products accurately with little effort.

In this thesis we focus on a specific category of e-commerce systems called elec-
tronic product catalog (EPC) (Palmer, 1997; Torrens, 2002), which provides a list
of products for the buyer to select. Each product is represented by a number of
attributes. The buyer needs to choose the product that most closely satisfies his or
her preferences. In most cases these preferences cannot be fully satisfied and some
tradeoffs have to be made between different attributes (Pu & Faltings, 2004). The
user-centric online product search tools are required to be applied in this context to
assist end-users.
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In this chapter, we first give a formal definition of the decision problem that we
are aiming to solve. Then we explore the nature of users’ preferences and the pref-
erence elicitation process. Particularly, we highlight that critiquing is the style of
acquiring user’s preferences that balances the quality of generating search results
and the effort required from the user. Next, we introduce the multi-attribute de-
cision theory, which is the main theoretic approach for modeling user’s preferences
in this thesis. In section 2.5 we review the existing critique-based product search
tools. Section 2.6 introduces recommendation techniques, which are closely related
to the research topic of online product search. Finally in Section 2.7 some other
decision making approaches are also reviewed.

2.2 Multi-Attribute Decision Problem

The process of choosing the most preferred product from a given EPC can be for-
mally described as solving a Multi-Attribute Decision Problem (MADP) defined as
below.

Definition A Multi-Attribute Decision Problem (MADP) is a tuple Ψ = 〈X,D,O,P〉,
where

• X = {X1, · · · , Xn} is a finite set of attributes the product catalog has,

• D = D1 × · · · × Dn indicates the space of all possible products in the catalog
(each Di(1≤i≤n) is a set of possible domain values for attribute Xi),

• O = {O1, · · · , Om} is a finite set of available products (also called alternatives
or outcomes) that the EPC offers, and

• P = {P1, · · · , Pt} denotes a set of preferences that the decision maker may
have. Each preference Pi may be identified in any form as required by the
solution methods.

The solution of a MADP is an alternative O most satisfying the decision maker’s
preferences. Two types of problems are raised when trying to solve a MADP. One is
to find one optimal solution among the outcome set which best matches the decision
maker’s preferences. We call this problem the “optimal” problem. In this case the
search result will be the specific solution. The other one is to find a list of candidates
with ranking order, which can be called the “ranking” problem. In this case the
search result will be the candidate list.
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To illustrate the MADP, here we describe a concrete example in the apartment-
renting domain. Suppose we are designing an e-commerce system which provides
the service of apartment renting, and to simplify our discussion, we assume that the
apartments provided by this system only have 5 distinct attributes: Type, Kitchen,
Bathroom, Size, and Price, and each attribute may take a certain set (or range) of
values as listed below:

DType = {room in a house, apartment, studio}
DKitchen = {private, share, none}
DBathroom = {private, share, none}
DSize = [20, 200]m2

DPrice = [300, 4000]CHF

In this example, the set of available outcomes O is the list of the apartments
provided by the system. It is natural to notice that O is only a subset of the total
possible outcome space D. For instance, the apartment with both the biggest area
size and the lowest price is a possible outcome in D, but most likely it cannot be
offered by the e-commerce system. Table 2.1 gives some sample apartments that
the MADP may contain.

Table 2.1: Some sample apartments in the example.

ID Type Kitchen Bathroom Size(m2) Price (CHF )
O1 apartment private private 45 1000
O2 studio public private 18 600
O3 room in a house public public 20 450

There are two important requirements for solving a given MADP. One is to ob-
tain the decision maker’s preferences accurately. Some preferences can be gener-
ated by the commonsense held by most individuals, for example:“Other things being
equal, the cheaper the better”, or “if everything else be equal, I prefer the apartment
with bigger area”. But the system still needs to acquire the user’s personalized
preferences through an elicitation process.

The second requirement is to adopt a decision approach to generate the product
search results according to the preferences acquired from the user. During past
years various approaches have been proposed for this task. These approaches will
be reviewed shortly after.
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2.3 User’s Preferences

As we have pointed out earlier, currently some online product search tools has fol-
lowed an algorithm-centric approach; they often make the assumption that users
can readily articulate their preferences accurately and consistently. Therefore, ac-
curate algorithms are sufficient to help users identify their truly preferred product.
However, psychological studies have shown that most people are unable to express
preferences directly and their decision behavior are very adaptive to the environ-
ment (Payne et al., 1993).

Tversky et al. (Tversky & Simonson, 1993) reported a user study about asking
subjects to buy a microwave oven. Participants were divided into 2 groups with 60
users each. In the first group, each user was asked to choose between two products:
an Emerson priced at $100 and a Panasonic priced at $180. Both products were on
sale, taking a third off the regular price. In this case 43% users chose the Panasonic
at 180$. A second group was presented with the same two products, along with a
third product which is also Panasonic, but with price $200 at a 10% discount. In this
context, 60% of the users chose the Panasonic priced at $180. This finding suggests
that users’ preferences are context-dependent and are constructed gradually as a
user is exposed to more information regarding his or her desired product.

In online decision making environments, the way to obtain users’ preferences
during the interaction process is a fundamental issue for the system design. Most
existing systems elicit preferences through a series of questions whose answers pre-
cisely define the user’s preferences. For example, a travel planning tool such as
Travelocity1 asks each user several questions about the itinerary and time and air-
line preferences, and then returns a set of possible choices based on the resulting
preference model. Certain e-commerce sites go further and guide the user through
a fixed sequence of questions that determine the final choice. Elicitation through
questions is the method proposed in classical decision theory (Keeney & Raiffa,
1976) and research continues on improving its performance (Boutilier et al., 2004).
Such elicitation processes implicitly assume that users have a pre-existing and sta-
ble set of preferences.

However, this assumption has been challenged by the studies of actual decision
makers’ behavior from behavioral decision theory (Payne et al., 1993; Carenini &
Poole, 2002). Many years of studies have pointed out the adaptive and constructive
nature of human decision making. In particular, a user’s preferences are likely
to change as a result of the elicitation process itself, so that the answers given to

1Website: http://www.travelocity.com
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subsequent questions are often inconsistent. The product search tools should be
carefully designed to avoid conflicting with these known theories.

2.3.1 Principles of Preference Elicitation

Pu et al. (Pu, Faltings, & Torrens, 2004) pointed out the following principles of the
preference elicitation based on the study of the decision behavior theory (Payne
et al., 1993):

• Users are not aware of all preferences until they see them violated. For ex-
ample, a user does not think of stating a preference for intermediate airport
until a solution includes a change of airplane in a place that he dislikes. This
cannot be supported by the decision tool that requires preferences to be stated
in a predefined order.

• Elicitation questions that do not concern the user’s true objective can force him
to formulate means objectives corresponding to the question. For example,
in a travel planning system suppose that the user’s objective is to be at his
destination at 15:00, but that the tool asks him about the desired departure
time. The user might believe that the trip necessarily involves a plane change
and take about 5 hours, and thus forms a means objective to depart at 10:00
to answer the question. However, the best option might be a new direct flight
that leaves at 12:30 and gets there at 14:30. This solution would not be found
using the elicited preference model. This phenomenon has been studied by
Keeney (Keeney, 1992) in his work on value-focused thinking.

• Preferences are often in contradiction and require users to make tradeoffs,
which require users to add, remove or change preferences initiatively in any
order at any time.

To support these properties of human decision making, product search tools are
required to have a preference model to support incremental construction and revi-
sion of preferences by users.

2.3.2 The Interaction Paradigm

Preference construction must be supported by feedback indicating the influence of
the current model on the outcomes. A good way to implement such feedback is to
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User: inputs initial
preferences

System: shows K 
example solutions

based on the current
user’s preferences

User: picks on the
final choice and 
stop interaction

User: revises
preferences by 

critiquing examples

found the 
target choice

Figure 2.1: Example critiquing interaction diagram. The blue(dark) box is the com-
puter’s action, the other boxes show actions of the user.

structure user interaction as mixed-initiative systems (MISs). MISs are interac-
tive problem solvers where human and machine intelligence are combined for their
respective superiority (Allen, Schubert, Ferguson, Heeman, Hwang, Kato, Light,
Martin, Miller, Poesio, , & Traum, 1994; Horvitz, 1999). MISs are therefore good
candidates for such incremental decision systems.

A good way to implement a mixed-initiative decision support system is example
critiquing interaction (see Figure 2.1). It shows examples of complete solutions and
invites users to state their critiques of these examples. Example critiquing allows
users to better understand the impact of their preferences. Moreover, it provides an
easy way for the user to add or revise her preferences at any time in arbitrary order
during the decision making process. Example-critiquing as a preference elicitation
method has been proposed by a variety of researchers (Burke et al., 1997; Linden,
Hanks, & Lesh, 1997; Shearin & Lieberman, 2001; Faltings et al., 2004a), and its
performance has been evaluated in (Pu & Kumar, 2004; Pu & Faltings, 2004). In
this thesis we regard the example-critiquing paradigm as the principal interaction
style for user-centric online product search tools.
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Table 2.2: Comparing the styles of preference elicitation (Smyth & McGinty, 2003)

Style Cost Ambiguity Expertise Interface
Value Elicitation ??? ? ??? ???

Item-based ? ??? ? ?

Ratings-based ?? ??? ?? ?

Critiquing ?? ?? ?? ?

2.3.3 Preference Elicitation Styles

Users’ preferences can be elicited in various styles. For example, the system can
either ask the user to input some value to indicate his or her likeness to a given
product, or can ask users to compare a given product with another one. It is im-
portant for the system to provide flexible preference elicitation styles because most
of the time users are not fully aware of what their preferences and unable to fully
articulate them to the system.

Smyth and McGinty (Smyth & McGinty, 2003) have compared four preference
elicitation styles in four evaluation dimensions: cost, ambiguity, expertise, and in-
terface. They highlight their relative pros and cons and indicate the conditions un-
der which each is most appropriate. Table 2.2 gives a brief summary of these four
styles across these dimensions. These styles of preference elicitation are introduced
briefly as below.

Value Elicitation

Value elicitation is perhaps the most common form of preference acquirement. With
this form, users specify preferred feature values e.g. “I want a digital camera with
5M Pixels of resolution”. From an implementation perspective, this is perhaps the
easiest form of preference elicitation. The system can just provide a form-filling
style of user interface to elicit these values. The system can directly convert such
preference value into a SQL query and execute it to generate search results. How-
ever, this style of preference elicitation requires users to clearly express their re-
quirements in terms of specific feature values and conflicts with the nature of user’s
preferences. As it has been pointed out earlier, the search tool based on this style of
preference elicitation can only gain 25% accuracy (Viappiani et al., 2006a).
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Item-based

On every interaction cycle, this style of preference elicitation asks the user to select
the most preferable item among a number of candidates provided by the system.
Unlike the value elicitation style, the item-based style2 is low cost and not requires
domain expertise. It is relatively easy to produce an interface for this style of pref-
erence elicitation – it simply needs the space to display some recommended prod-
ucts and requires the user to select the preferred one. However, one drawback of
the item-based style of preference elicitation is that it is ambiguous; the preferred
products selections do not convey much preference information, leaving the system
to figure out what the user’s actual preferences are.

Ratings-based

The MovieLens system (Herlocker, Konstan, & Riedl, 2000) gathers users’ prefer-
ences with a rating-based style. The system asks users to specify a rating to each
given item, where a rating of 1 means users dislike the movie and a rating of 5
means the movie is liked. The intermediate ratings allow the user to specify the
degree of like or dislike to the movie. This form of preferences is common in collabo-
rative recommender systems where ratings are used to compute similarities in user
tastes. Ratings can be considered as a low-cost style of preference elicitation. Users
are not necessarily required to know the feature details when assigning a rating
to an item. However, the user needs to think about the correct rating to apply to
a product and to be consistent in how they rate items. Commonly, in collaborative
recommender systems, users have to rate many items before they receive suitable
recommendations.

Critiquing

The FindMe family of product search tools (Burke, Hammond, & Young, 1996;
Burke et al., 1997; Burke, 2002) introduced the form of preference elicitation called
tweaking or critiquing. More recently, the ExpertClerk system (Shimazu, Shibata,
& Nihei, 2001; Shimazu, 2001) also incorporates critiquing as a form of preferences.
Put simply, a critique allows a user to express a directional preference on a feature
value. For example, when shopping for a PC, a user might select a critique for a
faster processor – a critique on the processor speed feature.

2This style is also called preference-based user feedback in (Smyth & McGinty, 2003).
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As we can see from Table 2.2, the critiquing style provides a good balance among
these criteria. Critiquing only requires users to have minimal familiarity with the
product domain, and could provide guidance to users to reach the final target grad-
ually. The critiquing technique has been recognized as an effective approach for
building online product search tools. The critique-based product search tools are
reviewed in detail in Section 2.5.

2.4 Multi-Attribute Utility Theory

A theoretic model is required to model users’ preferences and generate search re-
sults properly. In literature the multi-attribute utility theory (MAUT) has been
applied to solving decision problems effectively (Keeney & Raiffa, 1976). In this
thesis we consider it as the main theoretic model for building our product search
tool. In this section, we review the MAUT approach in detail.

The origination of utility theory can be dated back to 1738 when Bernoulli pro-
posed his explanation to the St. Petersburg paradox by the terms of utility of mon-
etary value (Bernoulli, 1954). Very briefly, the St. Petersburg paradox is a game
of asking people how much they would pay for playing it with the following rules:
A fair coin (with two sides head and tail) will be tossed repeatedly until a tail first
appears to end the game. If a head comes out of the first toss, the player receives
two dollars and stay in the game; if a head comes out again in the second toss, the
player receives four dollars and stay in the game; and so on until the game stops
(e.g. a tail appears). In short, the player wins 2k−1 dollars if the coin is tossed k

times until the first tail appears. The expected monetary value of this game is in-

finite:
∑∞

k=1 2k−1 × 1
2k

= ∞, but most people only want to pay a small amount of
money for this game. Bernoulli argued that people estimate the gains of playing
this game by utility value, not monetary value. He suggested to use the logarithmic
function u(x) = ln(x) as the utility function, and the expected utility of this game is

finite (
∑∞

k=1 u(2k−1)× 1
2k

=
∑∞

k=1 ln(2k−1)× 1
2k

<∞).

Two centuries later in 1944 it was von Neumann and Morgenstern who revived
this method to solve problems they encountered in economics (von Neumann & Mor-
genstern, 1944). They proved that the preference relation over a finite set of states
could be written as an expected utility. Later in the early 1950s, Marschak (Mar-
shack, 1950) and Herstein and Milnor (Herstein, I. N. & Milnor, John, 1953) estab-
lished the Expected Utility Theory based on the von Neumann Morgenstern theo-
rem.
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In 1970s Keeney and Raiffa (Keeney & Raiffa, 1976) extended the utility the-
ory to the case of multi-attributes. The main idea of multi-attribute utility theory
(MAUT) is that the user’s preferences over some items or outcomes with multi-
attributes can be represented as a utility function.

Let the symbol % denote the user’s preference order, e.g. A % B means “A is
preferred or indifferent to B”. According to MAUT, for a given MADP, there exists a
utility function U : O → <, that for any two possible products O and Ō ∈ O,

O % Ō ⇐⇒ U(O) ≥ U(Ō)
�
 �	2.1

More specifically, a product O can be represented by a set of attribute values
〈X1 = x1, · · · , Xn = xn〉 (in short as 〈x1, · · · , xn〉), thus the above formula can be
rewritten as

〈x1, · · · , xn〉 % 〈x̄1, · · · , x̄n〉 ⇐⇒ U(〈x1, · · · , xn〉) ≥ U(〈x̄1, · · · , x̄n)
�
 �	2.2

Usually the utility function U is scaled from zero to one. If the utility function
is given, the likeness of each product will be calculated and the preference order of
all products can be determined according to the utility values they gain.

Finding the proper utility function U to represent users’ preferences precisely is
a challenging task. Theoretically it could be in any form such as linear, exponen-
tial, logarithmic, or their combinations, etc. In practice a special case of the utility
function is commonly used to reduce computational effort.

Before we further introduce the utility function, we give definitions of two im-
portant concepts below.

Definition Suppose Y = {Y1, · · · , Yk} is a subset of the attribute set X in a MADP,
and Z = {Zk+1, · · · ,Zn} is the complementary set of Y (e.g. X = Y ∪ Z). The set
of attributes Y is preferentially independent (PI) of its complementary set Z if
and only if for some given value set z′ = {z′k+1, · · · , z′n} and any given two value sets
y′ = {y′1, · · · , y′k} and y′′ = {y′′1 , · · · , y′′k},

〈y′, z′〉 % 〈y′′, z′〉 =⇒ 〈y′, z〉 % 〈y′′, z〉, ( for all z).
�
 �	2.3

Definition The attributesX1, · · · , Xn are mutually preferentially independent
(MPI) if every subset Y of these attributes is preferentially independent of its com-
plementary set.
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MPI is a very strong condition among the attributes; basically it says that the
preference order on the values of each attribute will not be influenced by values of
other attributes. Once the MPI is hold, it can be proven that the utility function can
be decomposed into a simplified form according to the following theorem (Keeney &
Raiffa, 1976).

Theorem 2.4.1 Given attributes X1, · · · , Xn, an additive utility function

U(〈x1, · · · , xn〉) =
n∑

i=1

wivi(xi)
�
 �	2.4

exists if and only if the attributes are mutually preferentially independent ((where vi

is a value function over Xi ranged in [0, 1], and wi is the weight value of attribute Xi

satisfying
∑n

i=1wi = 1) (Keeney & Raiffa, 1976).

In this case the utility function is able to be determined based on user’s prefer-
ences. The weight value for each attribute can be given as 1/n by default, and we
can allow the user to specify the weight values for some attributes. The value func-
tion vi for each attribute can be determined to satisfy user’s preferences related to
the attribute Xi. Usually a linear function is enough to represent user’s preference
on each attribute.

Once the utility function is determined, we are able to rank all the items based
on their overall utilities and select the top K products with the highest utility as the
search results. In practice, we assume that the attributes in the decision problem
are mutually preferentially independent, so the additive form of utility function can
always be applied.

The MAUT approach can enable users to make tradeoff among different at-
tributes of the product space and has been used in previous product search tools.
For example, Stolze has proposed the scoring tree method for building interactive
e-commerce systems based on MAUT (Stolze, 2000). In this system a users is able to
express his or her preferences by modifying the values on an existing tree, and the
system will translate user’s preferences into a MAUT additive utility function, and
then calculate the utility value of each product in the system. Finally the search
results are determined by the utility values.
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domain having a large, fixed set of choices
and whose domain is sufficiently complex
that users would probably be unable to fully
articulate their retrieval criteria. In these
domains,person-to-person interaction also
takes the form of trading examples,because
people can easily identify what they want
when they see it.

Figure 1 shows the entry point for Entree,
a restaurant guide for Chicago. Users pick
from a set of menu options to describe what
they want in a restaurant—a casual seafood
restaurant for a large group,for example—
or they can,as shown here, type in the name
of a restaurant in some other city for which
they are seeking a local counterpart.

The system retrieves restaurants in the
Chicago area that are similar to the user’s
choice of Boston’s Legal Seafood, the top
contender being Bob Chinn’s Crabhouse, as
shown in Figure 2. The user can now con-
tinue to browse the space of restaurants by
using any of the seven tweaks, or modifica-
tions,to the example. The user can ask for a
restaurant that is nicer, or less expensive, one
that is either more traditional or more cre-
ative, or one that is quieter or more lively, and
can also look for a similar restaurant but with
a different cuisine.

This example shows some of the intelli-
gent-assistance and other interface tech-
niques that FindMe systems use:

• Similarity-based retrieval. As other infor-
mation-retrieval contexts have often
shown, it is useful to allow a user to
retrieve new items that are similar to an
example currently being viewed.1,2 We
found that, in most cases,overall similar-
ity of features was a poor metric for pro-
viding examples,because users attached
different significance to features depend-
ing on their goals. For example, if your
goal is to buy a car that will pull a big
trailer, you will weigh engine size more
heavily than other features,such as pas-
senger leg room. So,in this context, the
system should regard engine size as more
significant in assessing similarity.

• Tweaking. Browsing is typically driven
by differences:if a user were totally sat-
isfied with the particular item being
examined, he or she would stop there.
But, an unsatisfactory item itself can
play a useful role in articulating the
user’s goals. For example, if you are
looking for a science fiction movie to
rent,you might look at Terminator II, but
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Figure 1. The initial screen for Entree.

Figure 2. Tweaking in Entree.

Figure 2.2: Screen-shot of the Entree system (The system entry interface).

2.5 Critique-based Search Tools

Critiquing technique provides an easy way for users to reveal their preferences over
one or several attributes of the products in a electronic product catalog. It is in-
tuitive for users to convey a sufficient amount of preference information. In this
section we review those well-known critiquing-based online product search tools.

2.5.1 The FindMe Systems

The FindMe systems were the first to employ critiquing technique for assisting
product browsing through a give electronic catalog (Burke et al., 1996, 1997; Burke,
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shown, it is useful to allow a user to
retrieve new items that are similar to an
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found that, in most cases,overall similar-
ity of features was a poor metric for pro-
viding examples,because users attached
different significance to features depend-
ing on their goals. For example, if your
goal is to buy a car that will pull a big
trailer, you will weigh engine size more
heavily than other features,such as pas-
senger leg room. So,in this context, the
system should regard engine size as more
significant in assessing similarity.

• Tweaking. Browsing is typically driven
by differences:if a user were totally sat-
isfied with the particular item being
examined, he or she would stop there.
But, an unsatisfactory item itself can
play a useful role in articulating the
user’s goals. For example, if you are
looking for a science fiction movie to
rent,you might look at Terminator II, but
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Figure 1. The initial screen for Entree.

Figure 2. Tweaking in Entree.
Figure 2.3: Tweaking in the Entree system.

2002). The user is able to navigate through some candidate products and tweak on
the different criteria until the desired product is found. In fact, FindMe represents
a series of systems that have applied critiquing technique to various domains. Car
Navigator is a system for searching automobiles. RentMe is a system for users to
find apartments. PickAFlick let users discover movies similar to the ones that they
have already seen. The Entree system allows users to search restaurants based on
factors such as cuisine, price, style, etc.

The Entree system provides service for users to find a desired restaurant in
Chicago area. It was in operation as a Web-based application in August 1996. Fig-
ure 2.2 shows the entry point of the Entree system. There are two possibilities for
users to start the navigation process. One way is to specify a particular restaurant
that may exist in the restaurant database. Alternatively, the user can select a set
of high-level features that he or she would like to have. For instance, the user can
specify his or her preference as a casual seafood restaurant for a larger group.
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Figure 2.3 shows the suggested restaurants in the Chicago area that are similar
to the user’s choice (the restaurant Legal Sea Foods). The user is able to navigate
restaurants by using any of the seven fixed tweaks listed in the interface. The
user can ask for a restaurant that is nicer, less expensive, more traditional or more
creative. He or she and can also look for a similar restaurant but with a different
cuisine. Each time the user is able to critique any of those features and the system
will show some other restaurants to the user. This interactive process continues
until the user finds the desired choice.

Critiquing technique has many advantages. From a user-interface perspective
it is relatively easy to incorporate into even the most limited of interfaces. For
example, the typical “more" and “less" critiques can be readily presented as simple
icons or links alongside an associated product feature value and can be chosen by
the user with a simple selection action. In contrast, value elicitation approaches
must accommodate text entry for a specific feature value from a potentially large set
of possibilities, via drop-down list, for example. In addition, critiquing can be used
by users who have only limited understanding of the product domain. For example,
a digital camera buyer may understand that greater resolution is preferable but
may not be able to specify a concrete target resolution.

While critiquing enjoys a number of significant usability benefits as indicated
above, it can suffer from the fact that the feedback provided by the user is rarely
sufficiently detailed to sharply focus the next recommendation cycle. For example,
by specifying that they are interested in a digital camera with a greater resolution
than the current suggestion, the user is helping the recommender narrow its search
but this may still lead to a large number of available products to chose from. Con-
trast this with the scenario where the user indicates that they are interested in
a 5 mega pixels camera, which is likely to reduce the number of product options
much more effectively. The result is that critiquing-based recommenders can suf-
fer from protracted recommendation sessions, when compared to value elicitation
approaches.

The critiques described so far are all examples of, what we refer to as, unit cri-
tiques. That is, they express preferences over a single feature; Entrée’s cheaper
critiques a price feature, and more formal critiques a style feature, for example.
This too ultimately limits the ability of the recommender to narrow its focus, be-
cause it is guided by only single-feature preferences from cycle to cycle. Moreover it
encourages the user to focus on individual features as if they were independent and
can result in the user following false-leads. For example, a price-conscious digital
camera buyer might be inclined to critique the price feature until such time as an
acceptable price has been achieved only to find that cameras in this region of the
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product space do not satisfy their other requirements (e.g., high resolution). The
user will have no choice but to roll-back some of these price critiques, and will have
wasted considerable effort.

An alternative strategy is to consider the use of what we call compound cri-
tiques (McCarthy, Reilly, McGinty, & Smyth, 2004; Reilly et al., 2004a; Reilly, Mc-
Carthy, McGinty, & Smyth, 2004b; Smyth, McGinty, Reilly, & McCarthy, 2004).
These are critiques that operate over multiple features. This idea of compound cri-
tiques is not novel. In fact the seminal work of Burke et al. (Burke et al., 1996)
refers to critiques for manipulating multiple features. For instance, in the Car Nav-
igator system, an automobile recommender, users are given the option to select a
sportier critique. By clicking on this, a user can increase the horsepower and accel-
eration features, while allowing for a greater price. Similarly we might use a high
performance compound critique in a PC recommender to simultaneously increase
processor speed, RAM, hard-disk capacity and price features.

Obviously compound critiques have the potential to improve recommendation
efficiency because they allow the recommender system to focus on multiple feature
constraints within a single cycle. However, until recently, the usefulness of com-
pound critiques has been limited by their static nature. The compound critiques
have been hard-coded by the system designer so that the user is presented with
a fixed set of compound critiques in each recommendation cycle. These compound
critiques may, or may not, be relevant depending on the products that remain at a
given point in time. For instance, in the example above the sportier critique would
continue to be presented as an option to the user despite the fact that the user may
have already seen and declined all the relevant car options.

2.5.2 Dynamic Critiquing

McCarthy et al. (McCarthy et al., 2004) proposed a method of discovering the com-
pound critiques dynamically through the Apriori algorithm (Agrawal, Imielinski,
& Swami, 1993; Agrawal & Srikant, 1994). It treats each critique pattern as the
shopping basket for a single customer, and the compound critiques are the popular
shopping combinations that the consumers would like to purchase together. Based
on this idea, Reilly et al. (Reilly et al., 2004a, 2004b; Smyth et al., 2004) have devel-
oped an approach called dynamic critiquing to generate compound critiques. As an
improved version, the incremental critiquing (Reilly et al., 2005) approach has also
been proposed to determine the new reference product based on the user’s critique
history. Figure 2.4 shows the prototype system based on this approach.
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Figure 3.4: Screen-shot of a prototype digital camera recommender with dynamically
generated compound critiques.

Algorithm 3 shows a high-level of the comparison-based recommendation algorithm
adapted to include dynamic compound critique generation. Just as in the standard cri-
tiquing approach, each recommendation session is initiated by an initial user query,
when the user has the option to specify a number of initial feature preferences. This re-
sults in the retrieval of the most similar product available as the first recommendation
at the ItemRecommend stage. This product is presented to the user along with two
sets of critiques, both fixed (i.e. unit critiques) and dynamic (i.e. compound critiques).
At the UserReview stage the user then has the opportunity to accept this product,
thereby ending the recommendation session, or to critique this product. If the prod-
uct is critiqued, the critique in question acts as a filter over the remaining products,
and the product chosen for the next cycle is that product which is compatible with
the critique and which is maximally similar to the previously recommended product.
Dynamically discovering and selecting compound critiques to present to the user is
covered by lines 25–30 of the given algorithm.

3.3.2 Interface

To critique a case the user is presented with a range of unit-critiques plus a set of
compound critiques that have been selected using the process described in the pre-
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Figure 2.4: Screen-shot of the QwikShop system that adopts the dynamic critiquing
approach. It enables users to apply both unit critiques and compound critiques.

Essentially, each compound critique describes a set of products in terms of the
feature characteristics they have in common. For example in the PC domain, a typi-
cal compound critique might be for Faster CPU and a Larger Hard-Disk. By clicking
on this the user narrows the focus of the recommender to only those products that
satisfy these feature preferences. The Apriori data-mining algorithm (Agrawal &
Srikant, 1994) is used to quickly discover these patterns and convert them into
compound critiques on each recommendation cycle.

The first step involves generating critique patterns for each of the remaining
product options in relation to the currently presented example. For example, the
critique pattern [Price <] will be used to present that the comparison laptop is
cheaper than the current recommendation. The next step involves mining com-
pound critiques by using the Apriori algorithm to identify groups of recurring unit
critiques; we might expect to find the co-occurrence of some unit critiques like
[ProcessorSpeed >] infers [Price >]. We can combine these unit critiques into a
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compound critique. The Apriori algorithm returns a list of compound critiques of
the form {[ProcessorSpeed >], [Price >]} along with their support values (i.e., the
% of critique patterns for which the compound critique holds). The final step is to
select some compound critiques from the list and to present them to the end-user.

It is not practical to present large numbers of different compound critiques as
user-feedback options in each cycle. For this reason, a filtering strategy is used
to select the k most useful critiques for presentation based on their support val-
ues. Importantly, compound critiques with low support values eliminate many
more products from consideration if chosen. More recent work in the area considers
compound critique diversity during the filtering stage, reducing compound critique
repetition and better coverage of the product space (McCarthy, Reilly, Smyth, &
McGinty, 2005).

2.5.3 SmartClient

SmartClient (Torrens, 2002; Pu & Faltings, 2000; Faltings, Torrens, & Pu, 2004b)
is an example-based critiquing system architecture for searching products from a
given product catalog with constraint-based preferences models. ISY-travel is a tool
for travel planning based on the SmartClient architecture. ISY-travel was commer-
cialized by Iconomic Systems and later by i:FAO known as reality (Pu & Faltings,
2000; Torrens et al., 2002; Pu & Faltings, 2002). In ISY-travel, the user starts by
giving dates and destinations of travel. The tool then gathers all available airline
schedules that may be relevant to the trip, and generates 30 examples of solutions
that are good according to the current preference model. The preference model is
initially preset with a number of common-sense preferences, such as short travel
time, few connections, low price, etc. Seeing the examples, the user incrementally
builds his preference model by adding preferences as shown in Figure 2.5.

Preferences can be added on any attribute or pair of attributes in any order.
Preferences on pairs of attributes arise when a user conditions a preference for
one attribute on another one. For example, one can select a different preferred
departure time for each possible departure airport. Preferences can also be removed
or given lower or higher weight by operations in the preference panel. When the
preference model has been sufficiently modified, the user can ask the system to
re-compute the 30 best solutions according to these preferences again.

When there are too many preferences, it can happen that there is no longer a
single solution that satisfies them all. In this case, the system shows solutions that
satisfy the preferences to the largest degree possible. For example, in Figure 2.6,
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Figure 2.5: ISY-travel allows users to add preferences by posting soft constraints
on any attribute or attribute combination in the display. Preferences in the current
model are shown in the preference display at the bottom, and can be given different
weights or deleted.

the user has posted constraints on the departure and arrival times that cannot
both be satisfied. Thus, the system proposes solutions that satisfy only one of the
preferences, and acknowledges the violation by showing the attribute in question
on a red background.

2.5.4 FlatFinder

Recently Viappiani developed a product search tool based on the example-critiquing
interaction paradigm, with additional examples as suggestions (Viappiani, Faltings,
Schickel-Zuber, & Pu, 2005; Viappiani, Faltings, & Pu, 2006b; Viappiani, 2007).
In this tool, suggestions are generated based on the following lookahead principle:
suggestions should not be optimal under the current preference model, but should
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Figure 2.6: When it is not possible to satisfy all preferences completely, ISY-travel
looks for solutions that satisfy as many of them as possible and acknowledges the
attributes that violate preferences in red.

provide a high likelihood of optimality when an additional preference is added. In
other words, suggestions are evaluated according to their probability of becoming
Pareto-optimal. To become Pareto-optimal, the new preference has to make the
current solution to escape the dominance with better solutions.

Based on this idea, the tool FlatFinder was implemented for finding student
accommodations. It contains around 200 items of accommodation information avail-
able from the faculty housing program. Figure 2.7 shows an example of an interac-
tion with FlatFinder. Each time the tool shows 3 options that best match the user’s
current preferences, plus 3 suggestions that could give the user some new hints so
that he or she could specific more preferences in the future. Online user study re-
sults show that such suggestions are attractive to users and can stimulate them to
express more preferences to improve the chance of identifying their most preferred
item by up to 78% (Viappiani et al., 2006b).

2.5.5 MobyRek

MobyRek is a mobile recommender system that helps users search for travel prod-
ucts with critique techniques (Ricci & Nguyen, 2005, 2006, 2007). MobyRek elicits
users’ preference by asking questions with the style of critiquing. This tool considers
both long-term and session-specific preferences. User’s long-term preferences are
those keep stable during the interaction session, such as “a non-smoking restau-
rant”. Session-specific preferences are dependent to the specific search scenario,
such as “a restaurant open on the day of the request”, or “a low-cost restaurant”.

The general recommendation process with MobyRek is as follows. The inter-
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Figure 2.7: Screen-shot of the FlatFinder tool

action begins when a mobile user asks the system for a product recommendation.
The user is able to specify his or her preferences with three options (as shown in
Figure 2.8d): (1) No, use my profile: lets the system automatically construct the
initial search query by utilizing the user’s long-term preferences; (2) Let me specify:
lets the user specify the initial preferences; or (3) Similar to: lets the user specify a
known product as the start point. At each interaction cycle, the system shows rec-
ommended products (as shown in Figure 2.8a) that the user can browse (as shown
in Figure 2.8b) and critique (as shown in Figure 2.8c). The interaction process ends
when the user selects a product or terminates the session without making a selec-
tion.

The MobyRek tool was evaluated with real users with respect to usability, rec-
ommendation quality and overall satisfaction, and the results showed that this tool
is quite effective in supporting on-the-go users in making product choice decisions.
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Given a user’s choice for preferences ini-
tialization, the system integrates user input and
long-term preferences to build a case that mod-
els the user-system interaction and contains an
initial search query. This case describes sev-
eral components:

• products selected before travel (using
NutKing),

• the user’s contextual information (that is,
the user’s position and the time of the
request),

• the user’s default preferences (for exam-
ple, a nonsmoking room),

• preferences that the user explicitly speci-
fied at the beginning of the session,

• the system’s initial representation of the
user query,

• the sequence of critiques that the user gave
in the session, and

• the user’s product selection at the end of
the mobile session.

The system exploits the first four compo-
nents to build the initial query, which is trans-
parent to the user. As we mentioned earlier,
the query contains three components: the log-
ical query, the favorite pattern, and the fea-
ture importance weights.

Initializing the logical query exploits only
the user’s session-specific preferences, not the
long-term ones. This avoids overestimating
the importance of preferences that can be only
partially true in the user’s current session. So,
the initial logical query encodes only the
space-time constraints and the must conditions
the user explicitly specified at the beginning.

Initializing the favorite pattern is a two-
phase process. First, the system exploits the
knowledge in past similar recommendation
sessions and the user’s default preferences
stored in the mobile device’s memory to build
the user’s long-term preference pattern, p�.
Second, the system integrates p� with p��, the
initial wish preferences the user explicitly
specified, to compute p. In this combination,
p��, if present, overwrites p� because explicit
preferences should always be considered more
reliable than those the system infers.

The first initialization phase (that is, the
exploitation of past cases and default prefer-
ences) has three steps:

1. Finding the past on-the-move recom-
mendation session that’s most similar to
the current session.

2. Extracting the product (restaurant) the
user selected in the most similar session.
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Figure 2. The major steps of the supported recommendation process.

Figure 3. The MobyRek user interface (a) displays recommended products that the 
user can (b) browse and (c) criticize. At start-up, the system (d) offers options 
for preferences and initializing the search.

(a) (b)

(c) (d)

Figure 2.8: Screen-shot of the MobyRek tool

2.5.6 Apt Decision

Apt Decision is a tool that employs the critiquing technique for users to search
apartments (Shearin & Lieberman, 2001). Users provide a small number of criteria
in the initial interaction, receive a display of sample apartments, and then react to
any feature of any apartment independently, in any order. Users are able to learn
which features are important to them as they discover the details of specific apart-
ments. Meanwhile the Apt Decision agent learns user preferences in the domain of
rental real estate by observing the user’s critique of apartment features. The agent
uses interactive learning techniques to build a profile of user preferences, which
can then be saved and used in further interaction process. As shown in Figure 2.9,
the user can browse through the retrieved sample apartments in the left-hand list
box, and the features of the selected apartment are shown on the right side of the
window.
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ABSTRACT 
The Apt Decision agent learns user preferences in the 
domain of rental real estate by observing the user’s critique 
of apartment features. Users provide a small number of 
criteria in the initial interaction, receive a display of sample 
apartments, and then react to any feature of any apartment 
independently, in any order. Users learn which features are 
important to them as they discover the details of specific 
apartments. The agent uses interactive learning techniques 
to build a profile of user preferences, which can then be 
saved and used in further retrievals. Because the user’s 
actions in specifying preferences are also used by the agent 
to create a profile, the result is an agent that builds a profile 
without redundant or unnecessary effort on the user’s part.  

Keywords 
Profiling, electronic profiles, personalization, infomediary, 
user preferences, real estate, interactive learning 

INTRODUCTION 
Electronic profiling is a popular topic recently, both for 
Internet startups and research efforts in the area of 
electronic commerce. In the rush to create profiles and 
make use of them, companies pay little attention to whether 
profiles are convenient for the user. Most profiles require 
considerable user effort, usually in filling out online forms 
or questionnaires. The technique of learning user 
preferences in order to build a profile has been used 
sporadically in autonomous agent development [10] to 
illustrate the learning behavior of an agent. However, it 
deserves individual attention because it is a technique that 
is quite useful for intelligently developing an electronic 
profile. Our alternative to complicated questionnaires is an 
agent like Apt Decision, which exposes the knowledge 
inherent in a domain (rental real estate), then learns the 
user’s preferences in that domain and builds a profile 
without redundant or unnecessary effort on the user’s part. 

HOW THE AGENT WORKS 
Rather than adopt a purely browsing metaphor through the 
geographic space of homes, as in Shneiderman [12], or a 
search-like metaphor, such as the Boston Globe site [1], 
Apt Decision assumes that there will be an iterative process 
of browsing and user feedback. This work is most similar to 
systems such as RENTME [4]. Apt Decision’s key feature is 
the ability for the user to react, not just to a particular 
apartment offering, but independently to every feature of 
the offering. Apt Decision exposes the profile creation 
process, and allows the user to interact directly with the 
various features of specific apartments. While we cannot 
yet give the agent the full inference power a human real 
estate agent might have, we can incorporate the principle of 
inferring preferences from the critique of concrete 
examples. 
Using an initial profile provided by the user (consisting of 
number of bedrooms, city, and price), the agent displays a 
list of sample matching apartments in the Apartment 
Information window, shown below.  
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Figure 2.9: Screen-shot of the main interface of the Apt Decision system.

The user’s preferences are represented by a weighted vector, which shows the
importance of each of the possible features. Critiquing take places by giving a new
weight to features. The user profile is represented graphically by a series of slots,
each of them assigned to a difference level of positive or negative importance. The
user can manually “move” features in one of the slots to change weights on individ-
ual features.

The application allows the user to directly compare two options and express his
preference for one of the two so that the system can autonomously infer the features
that are important to the user and update the profile (profile expansion): the items
which are unique in the chosen apartment and not present in the profile, would be
added to the right side of the profile.
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The limitation of this interface is that usually users are not good at providing
some numeric weights to those criteria, even if they are facilitated by the graphical
display of the slots.

2.5.7 Expertclerk

(a) The user interface of ExpertClerk.

(b) The system design of ExpertClerck.

Figure 2.10: Screen-shot of the ExpertClerck, an agent system that imitates a hu-
man salesclerk (Shimazu, 2001).

ExpertClerk is an agent system that imitates a human salesclerk (Figure 2.10a)
in an e-commerce setting, generating a richer conversation than a question-answering
dialogue (Shimazu, 2001). The system has two modes for interacting with users:
navigation-by-asking and navigation-by-proposing (Figure 2.10b). In the first mode,
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navigation-by-asking, the agent tries to narrow down the possibilities by asking
questions to construct a preference model. The questions are selected according to
an entropy measurement. In the second mode, navigation-by-proposing, the agent
proposes three contrasting sample products, one in the central and two in the op-
posite extreme region of the available product space, to highlight their individual
selling points. Users are then given the opportunity to critique the recommendation
features to update the preference model. If the desired product is still not found,
the user may switch back to the first mode. The dialogue terminates when the user
accepts one of the three recommendation products.

2.6 Recommendation Techniques

Recommender systems are designed for customers to overcome information over-
load problem in e-commerce environments (Schafer, Konstan, & Riedl, 2001). As
we mentioned earlier, the goal of a recommender system and a product search
tool is the same: generate one product (or a list of products) to satisfy user’s re-
quirement. A variety of different recommendation techniques have been proposed,
driven by the need for personalization in the presence of increasing amounts of in-
formation and product options. These techniques can be placed into two general
categories: collaborative filtering and content-based. Collaborative filtering recom-
menders compute recommendations by identifying users with similar tastes and
making recommendations based on their selections. For example, a collaborative
filtering recommender will make a recommendation for a user by identifying other
users who have liked the same movies and selecting one the target user has liked
but not yet seen. On the other hand, content-based recommenders compute recom-
mendations based on the content, or the descriptions of the recommendation items
and how these align with user preferences. For example, a content-based recom-
mender may make recommendations for movies by analyzing the genres of movies
the user has liked in the past and comparing them to those available. In this section
we review these two categories of recommendation techniques.

2.6.1 Collaborative Filtering Recommendation

One of the earliest collaborative filtering recommender systems was implemented
as an email filtering system called Tapestry (Goldberg et al., 1992). Later on this
technique was extended in several directions and was applied in various domains
such as music recommendation (Shardanand & Maes, 1995) and video recommen-
dation (Hill, Stead, Rosenstein, & Furnas, 1995).
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The main idea behind the collaborative filtering approach is “similar users like
similar things”. For example, if we know that user A and user B are very similar
in their preferences, and we also know that user A likes a new item O, then we
can guess that user B will also like the given item O. In this approach, users are
required to state preferences by rating a set of items, which are then stored in a
user-item rating matrix R = {ri,j}, where ri,j represents the rating value given by
user i to item j. The similarity between users are determined by their rating values.

Generally speaking, collaborative filtering algorithms can be classified into 2
categories: One is memory-based, which predicts the vote of a given item for the
active user based on the votes from some other neighbor users. Memory based
algorithms operate over the entire user voting database to make predictions on the
fly. The most frequently used approach in this category is nearest-neighbor CF: the
prediction is calculated based on the set of nearest-neighbor users for the active
user (user-based CF approach) or, nearest-neighbor items of the given item (item-
based CF approach). The second category of CF algorithms is model-based. It uses
the users’ voting database to estimate or learn a probabilistic model (such as cluster
models, or Bayesian network models, etc), and then uses the model for prediction.
The detail of these methods and their respective performance have been reported
in (Breese et al., 1998).

The user-based CF approach (Resnick et al., 1994) works as follows. The gen-
eral prediction process is to select a set of nearest-neighbor users for the active user
based on a certain similarity criterion (such as the Pearson correlation), and then
aggregate their rating information to generate the prediction for the given item.
More recently, an item-based CF approach has been proposed to improve the sys-
tem scalability (Linden et al., 2001; Sarwar, Karypis, Konstan, & Reidl, 2001). The
item-based CF approach explores the correlations or similarities between items.
Since the relationships between items are relatively static, the item-based CF ap-
proach may be able to decreases the online computational cost without reducing
the recommendation quality. The user-based and the item-base CF approaches are
broadly similar, and it is not difficult to convert an implementation of the user-based
CF approach into the item-base CF approach and vice versa.

When sufficient preferences (i.e. item ratings) from the users are available, stud-
ies have shown that the collaborative filtering approach could produce good predic-
tion accuracy. Also, the user’s preferences could be accumulated along the time so
that the system could perform better when more rating values are obtained. How-
ever, researchers have found that the collaborative filtering approach suffers from
a number of problems. One is the data sparsity problem. When there are too many
items for users to rate, the user-item rating matrix is very empty and only a small
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number of ratings can be used during the prediction process. Another one is the
problem called cold-start for new users. When a new user comes to the system with
no (or few) rating value, the system may don’t have enough preference information
about the user and can’t recommend item precisely.

Despite the above mentioned problems, collaborative filtering technique is still
regarded as an very efficient approach in recommending items and t has been ap-
plied in many systems to help people find desired product easily. One of the most
popular collaborative filtering systems is MovieLens3 that recommends movies based
on ratings scaled from 1 to 5. The item-based CF approach has been applied on the
popular website amazon.com (Linden et al., 2001).

2.6.2 Content-based Recommendation

Content-based recommendation has its origins in information retrieval research
and typically operates on textual information. Recommendations are delivered by
analyzing the descriptions of items and comparing them to a user profile. For exam-
ple, when making a recommendation, a content-based movie recommender will try
to recognize what aspects of movies a user has liked (or disliked) in the past (e.g.
genre, director, actors) and recommend movies that best match those aspects.

Generally speaking, content-based recommenders must address two challenges:
(1) how to represent items and (2) how to construct a profile that accurately repre-
sents user preferences. Depending on the domain, item descriptions can be struc-
tured, unstructured or semi-structured. Structured items are usually stored in a
database where each item is described in terms of a finite number of features (also
called attributes) and there is a known set of values that each feature may have.
Machine learning algorithms can be employed to learn a user profile from item
selections by analyzing which features and values the user prefers. To the oppo-
site, unstructured items are described by plain textual information. Typically in
this case the unstructured items are converted into structured ones before the rec-
ommendation process. For example, an item could have a list of Boolean features
indicating whether some particular keywords are included or not. Semi-structured
items are in between structured and unstructured data. For example, a mp3 mu-
sic file is a semi-structured item: it has some header fields containing the basic
information such as the title or singer, and some unstructured music data. In this
case most likely we still need to convert the unstructured date into some kinds of
structured features before recommendation process.

3MovieLens website: http://www.movielens.org.
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Content-based recommender systems have been successfully developed to rec-
ommend items in various domains such as news articles (Billsus & Pazzani, 2000),
restaurants (Burke et al., 1997) and television programs (Smyth & Cotter, 2000). It
is important to point out here that the critique-based tools that we have discussed
above belong to the category of content-based recommendation.

Both collaborative filtering and content-based systems have their respective
pros and cons, and may not be equally suitable for every domain or recommendation
scenario. Often the limitations of one recommendation technique can be offset by
another. Hybrid recommender systems attempt to leverage the power of multiple
recommendation systems in order to improve the overall accuracy and precision of
recommendations made to users. There are some other recommendation algorithms
which have attempted to address some of the deficiencies of the content and collab-
orative approaches. For example, demographic recommenders (Montaner, López, &
Rosa, 2003) attempt to avoid the problem of making recommendations to new users
by assuming a set of preferences based on demographic data.

2.7 Other Decision Making Approaches

2.7.1 Framework of Constraint Satisfaction Problems (CSPs)

Constraint satisfaction problems (CSPs) (Mackworth, 1988; Tsang, 1993) have been
widely used in AI research area for many years to solve different real-life problems
ranging from map coloring, vision, robotics, VLSI design, etc. It provides a natural
way of representing problems for the user needs only to state the constraints of the
problem to be modeled. The formal definition of a CSP is given below.

Definition A constraint satisfaction problem (CSP) is defined by a triple 〈X,D,C〉:

• a set of variables X = {X1, · · · , Xn};

• a set of domain values D = {D1, · · · , Dn}, where each Di(1 ≤ i ≤ n) is a set of
possible values for the variable xi;

• a set of constraints C = {C1, · · · , Cp}, where each Dj(1 ≤ j ≤ p) is a constraint
function on a subset of variables X to restrict the values they can take.

A solution for a CSP is a set of value assignment {X1 = x1, · · · , Xn = xn} (in short
as {x1, · · · , xn}) satisfying all constraints in C. If a CSP has a solution, we say
that it can be satisfied. Once the constraints are specified, some effective searching
algorithms can be adopted to find the optimal solution.
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If a CSP only has constraints on unary or binary variables, it is called binary
CSP. It is possible to convert a CSP with n-ary constraints to another equivalent
binary CSP (Rossi, Petrie, & Dhar, 1990). So usually the binary CSP is used without
losing generality.

Besides hard constraints (also known as feasibility constraints) that can never
be violated, a CSP may also include soft constraints. These are functions that map
any potential value assignment to a variable or combination of variables into a
numerical value that indicates the preference that this value or value-combination
carries. Solving a CSP with soft constraints also involves finding assignments that
are optimally preferred with respect to the soft constraints.

There are various soft constraint formalisms that differ in the way the prefer-
ence values of individual soft constraints are combined (combination function). For
example, in weight-CSPs (WCSPs) (Schiex, Fargier, & Verfaillie, 1995), the optimal
solution minimizes the weighted sum of preferences. WCSPs allow one to model
optimization problems where the goal is to minimize the total cost (such as time,
space, number of resources, etc.) of the proposed solution. In WCSPs, there is a
cost function for each constraint, and the total cost of a n-tuple value is defined by
summing up the costs of each constraint with the corresponding sub-tuple values.
Thus the aim is to find the n-tuples with minimal total cost as the optimal solution.
Some other soft CSPs such as Fuzzy-CSPs (Fargier, Hang, & Schiex, 1993; Rut-
tkay, 1994) and Probabilistic-CSPs (Fargier & Lang, 1993) also have been widely
used. Both classical CSPs and soft CSPs can be described under the semiring-based
CSP framework (Bistarelli, Montanari, & Rossi, 1997; Bistarelli, 2004). More detail
information about the CSP framework can be found in (Torrens, 2002).

A MADP can be looked as a CSP with a set of preferences which can be violated.
The soft CSPs are quite suitable for modeling the MADPs since the preference state-
ments in a MADP can be transformed to some soft-constraints of a soft CSP. For a
given MADP, we first need to determine which kind of soft CSP is the ideal form
for modeling the problem, depending on the features of the preferences set. For ex-
ample, if the cost of violating each preference statement is easier to obtain, then we
may use weighted-CSPs as the framework. Once the specific soft CSP framework is
determined, we need to transform the preference statements into soft-constraints as
required. Finally the optimal solution can be generated by some search algorithms.

The CSPs and Soft CSPs frameworks have been proposed for designing online
product search tools in recent years. The SmartClient (Torrens, 2002; Pu & Falt-
ings, 2000; Faltings et al., 2004b) system that we have introduced earlier is one
implementation of a travel planning tool based on soft CSPs and the critiquing
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technique. In (Zhang, Pu, & Faltings, 2006a), we analyzed the approach of mod-
eling users’ preferences with soft constraints in detail. More recently, O’Sullivan
et al. (O’Sullivan, Papadopoulos, Faltings, & Pu, 2007) proposed a new approach
to generate a representative set of explanations for solving some over-constrained
decision problems. This approach is useful to help users find relaxations of the
constraints that they have specified in interactive decision making scenarios.

2.7.2 CP-network

Boutilier et al. (Boutilier et al., 2004; Boutilier, Brafman, Geib, & Poole, 1997;
Boutilier, Brafman, Hoos, & Poole, 1999) proposed a graphical representation of
preferences that reflects conditional dependence and independence of preference
statements under a ceteris paribus (all else being equal) interpretation: CP-network.
The CP-network is based on the concept of conditional preferential independence:
Let Y, Z, and W be nonempty sets that partition X (the set of all attributes), Y and
Z are conditionally preferentially independent given an assignment w to W if and
only if, for ally1, y2, z1, z2 (here y1, y2 are two values of Y, z1, z2 are two values of Z).
we have (y1, z1, w) % (y2, z1, w)⇐⇒ (y1, z2, w) % (y2, z2, w) (denoted as CPI(Y,w, Z)).
If for all w ∈W we have CPI(Y,w, Z), then Y and Z are CPI given W (denoted as
CPI(Y,W,Z)).

To construct the CP-network of a multi-attribute decision problem, the deci-
sion maker is asked to specify a set of parent attributes Pa(x) that can affect her
preferences over the values of each attribute x. That is, given a particular value
assignment to Pa(x), the decision maker should be able to determine a preference
ordering for the values of x , all other things being equal. With this information, we
are able to create the graph of the CP-network in which each node x has Pa(x) as
its immediate predecessors. Then the decision maker is asked to explicitly specify
her preferences over the values of x for each assignment to Pa(x). This conditional
preference ranking over the values of is x captured by a conditional preference table
(CPT) which annotates the node x in the CP-network. Formally, the CP-network is
defined as below.

Definition A CP-network over attributes X = {x1, · · · ,xn} is a directed graph
G over x1, · · · , xn whose nodes are annotated with conditional preference tables
CPT (xi) for each xi ∈ X. Each conditional preference table CPT (xi) associates to a
total order �i

u with each instantiation u of xi’s parents Pa(xi).

The following simple example illustrates the form of a CP-network. Suppose a
MADP has only two attributes x1 and x2, where x1 is a parent of x2 and x1 has no
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parents. Attribute x1 has two values: a and ā, and attribute x2 has two values: b
and b̄. Assume the following conditional preferences exist:

a � ā; a : b � b̄; ā : b̄ � b

With the above information, this CP-network would be constructed as Figure 2.11.
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Figure 2.11: An example of the CP-network.

In this example, the conditional preferences information is suprisingly sufficient
to totally order the outcomes of the given MADP: ab � ab̄ � āb̄ � āb.

Given a CP-network structure which specifies the decision maker’s preferences
over outcome space, two kinds of useful queries can be answered. One is the out-
come comparison query – preferential comparison between a pair of outcomes. We
can construct a sequence of increasingly preferred outcomes using only valid condi-
tional independence relations represented in the CP-network by flipping values of
attributes. If we want to compare a pair of outcomes O1 and O2, we can start from
outcome O1, changing the value of a “higher priority” attribute (higher in the CP-
network) to its preferred value, even if this introduces a new preference violation
for some lower priority attribute (a descendent in the CP-network). This flipping
operation is repeated until either the outcome O2 is reached or no more attribute
in outcome O1 can be flipped. If outcome O2 is reached, we say that O2 is preferred
to O1. If an outcome O is not preferred by any other outcomes, we say that O is a
non-dominated outcome.

Another useful query is the outcome optimization query – determining the set
of non-dominated feasible outcomes. Some search algorithms can be helpful for
determining the non-dominated outcome set. One possible search method is a
straightforward, depth-first, branch-and-bound style algorithm (Lawler & Wood,
1966; Reingold, Nievergelt, & Deo, 1977). The algorithm proceeds by assigning val-
ues to attributes in a depth-first fashion, using a variable ordering that is consistent
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with the ordering constraints imposed by CP-arcs (i.e., no child can be assigned be-
fore its parents). Suppose initially x is an attribute without parent nodes in the
CP-network with the assigned value a, the set of constraints passed on to the next
search node can be reduced: the CP-arcs that emanate from x can be removed in
all subsequent search steps. This can result in disconnected fragments of the CP-
network, and each of which can be optimized independently given x = a. During
this procedure there is some pruning information that can take place in the search
tree. Suppose that the attribute x has two values a and b , and a is preferred to b,
if assignment x = b satisfies an equal or smaller set of constraints than that was
satisfied by x = a, then we do not continue to search under the branch of x = b: any
feasible outcome involving x = b is dominated by some feasible outcome involving
x = a. After the non-dominated set is determined, if it contains only one outcome,
then this outcome is the optimal solution for the multi-attribute decision problem.
Otherwise the decision maker needs to select the most preferred outcome from the
non-dominated set.

The CP-network has the advantage of representing the decision maker’s pref-
erences effectively by the conditional preference statements which is natural to be
captured. While traditional CP-network is a qualitative method which cannot rep-
resent quantitative utility information, Recently it has been further extended to
UCP-network by adding quantitative utility information to the conditional prefer-
ence table of each attribute (Boutilier, Bacchus, & Brafman, 2001).

2.7.3 Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) (Saaty, 1980) is a decision support approach
that solves complex decision problems based on a series of pair-wise comparisons
among attributes and alternatives.

Let’s suppose a given multi-attribute decision problem has n attributes and m

alternatives. The first step of the AHP approach is to determine the weight for each
attribute. For each pair of attribute Xi and Xj , the user is asked to choose one
option from the table below to decide the value of the importance relationship ti,j :

Value 2, 4, 6, or 8 will be given if the user thinks the importance is in between.
For example, if the user select “weak importance” when comparing Xi to Xj , then
ti,j = 3. At the same time the value of tj,i can also be determined automatically as
tj,i = 1/ti,j . Thus for each pair of attributes Xi and Xj the user only needs to answer
one question.

Once the matrix T = {ti,j |1 ≤ i, j ≤ n} is established, we need to weigh the
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Table 2.3: The importance relationship table for the AHP approach.

Option Value
Equal importance 1
Weak importance 3
Strong importance 5
Demonstrated importance 7
Absolute importance 9

attributes according to a vector of priority weights. These are often in practice
computed as the geometrical mean of each row, that is a reasonable approximation
of the eigenvector associated with the maximal eigenvalue of the matrix T as the
weight vector for attributes W = {w1, · · · , wn}.

The next step is to estimate the vector of all alternatives Ai = {ai,1, · · · , ai,m} for
each given attribute Xi. This procedure is quite similar to the above step. The only
difference is that the user is asked to compare different pair of alternatives under
each given attribute.

Finally, the importance value of each alternative Oi (1 ≤ i ≤ m) is determined as∑n
j=1 ai,j × wi. The solution of the given MADP will be the alternative O with the

maximal importance value.

The AHP approach is able to solve decision problems in a precise way by decom-
pose a complex decision problem into many small one. However it requires the user
to answer a high number of questions. Based on the above procedure, the complex-
ity of the total number of questions would be O(n2 + m2n). It is not practical for
designing product search tools with this approach when there are a lot of products
available.

2.7.4 Heuristic Decision Making Strategies

Behavioral decision theory provides adequate knowledge describing people’s deci-
sion behavior and presents typical approaches of solving decision problems in tradi-
tional environments where no computer aid is involved (Payne et al., 1993). Accord-
ing to this research, a variety of choice strategies could be adopted to help decision
makers find the preferred solution(s) for a given decision problem. Each choice
strategy can be thought of as a method (or a sequence of operation) for search-
ing through all available alternatives. Here we review some of the heuristic deci-
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sion making strategies, and discuss the potential of solving MADPs by using these
heuristic strategies.

The weighted additive (WADD) strategy is based on the multi-attribute utility
theory (MAUT) (Keeney & Raiffa, 1976) that we mentioned earlier. The WADD
strategy evaluates the value of each alternative by formula (2.4), and the alterna-
tive with the highest overall utility value is chosen as the optimal solution.

The equal weight (EQW) strategy. This strategy is a simplified version of the
WADD strategy which ignores information about the relative importance (weight) of
each attribute. An overall value for each alternative is obtained by simply summing
the values for all of its attributes, and the alternative with the highest overall value
is selected as the final solution.

The elimination-by-aspects (EBA) strategy. This strategy begins by determin-
ing the most important attribute. The cutoff value for that attribute is retrieved,
and all alternatives with values for that attribute below the cutoff are eliminated.
The process continues with the second most important attributes, then the third,
and so on, until only one alternative remains. This strategy was first described by
Tversky (Tversky, 1972).

The majority of confirming dimensions (MCD) strategy. Described by Russo and
Dosher (Russo & Dosher, 1983), this strategy involves processing pairs of alterna-
tives. The values for each of the two alternatives are compared on each attribute,
and the alternative with a majority of winning (better) attribute values is selected.
The retained alternative is then compared with the next one among the set of alter-
natives. This comparison process repeats until all alternatives have been evaluated
and the final winning alternative has been identified.

The satisficing (SAT) strategy. Satisficing is one of the oldest heuristics identi-
fied in decision making literature (Simon, 1955). With this strategy, alternatives
are considered one at a time, in the order they occur in the set. Each attribute of
an alternative is compared to a predefined cutoff value, which is often known as the
aspiration level. If any attribute value is below the aspiration level, then that alter-
native is rejected. The first alternative which passes the cutoffs for all attributes is
chosen. A choice can therefore be made before all alternatives have been evaluated.
In the case where no alternative passes all the cutoffs, the cutoff can be relaxed and
the process repeated, or an alternative can be randomly selected.

The lexicographic (LEX) strategy. For this strategy, the most important attribute
is determined, the values of all the alternatives on that attribute are examined, and
the alternative with the best value on that attribute is selected. If two alternatives
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have equal values, the second most important attribute is examined. This continues
until the tie is broken.

The frequency of good and bad features (FRQ) strategy. Alba and Marmorstein
suggested that decision makers may evaluate or choose alternatives based simply
upon counts of the good or bad features the alternatives possess (Alba & Mar-
morstein, 1987). To implement this strategy, the decision maker needs to develop
cutoffs for specifying good and bad features, and then to count the number of such
features. This strategy could be viewed as the application of a voting rule to multi-
attribute choice, where the attributes can be viewed as voters.

The heuristic strategies are obviously useful for individuals when they are try-
ing to find the optimal solution of the MADP. As mentioned above, the effort of
solving MADP with heuristic strategies is relative low while the accuracy is not
degraded too much. The optimal solution found by heuristic strategies has the ad-
vantage of matching with the decision maker’s mental model, which implies that
the decision maker is easier to accept the solution.

The computer system can also implement one or several of these strategies to
help users find products. For example, the popular ranked list method is an imple-
mentation of the LEX strategy.

Two problems require further study before implementing some algorithms to
solve MADP based on heuristic strategies. One is the error of the decision that
caused by heuristic strategies. Some simulation experiments have shown that none
of the heuristic strategies can get 100% accuracy (Payne et al., 1993). For a given
decision problem, we need to select the right strategy so to get minimal error, and
we also need to study what degree of error is acceptable for the decision maker.
The other problem is the adaptive nature of heuristic strategies: people change
heuristic strategies implicitly if the context changes. To solve this, we can study
this phenomenon and try to make the change of heuristic strategies be predictable,
or we can find several solutions by different strategies simultaneously, and then
select the optimal solution among them by a certain criteria.
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CHAPTER 3

Simulation Environment For Performance Evaluation

3.1 Introduction

With the rising prosperity of the World Wide Web (WWW), consumers are dealing
with an increasingly large amount of product and service information, which is far
beyond any individual’s cognitive effort to process. In early e-commerce practice, on-
line intermediaries were created. With the help of these virtual store fronts, users
were able to find product information on a single website, which gathers product
information from thousands of merchants and service suppliers. Examples include
shopping.yahoo.com, shopping.com, cars.com, pricegrabber.com, etc. Due to the in-
creasing popularity of electronic commerce, the amount of online retailers grows
rapidly. As a result, there are now easily millions of brand-name products available
on a single online intermediary website. Finding something is once again diffi-
cult even with the help of various commercially available search tools. Recently,
much attention in e-commerce research has focused on designing and developing
more advanced search and product recommender tools (Burke et al., 1997; Pu &
Faltings, 2000; Reilly et al., 2004a; Shearin & Lieberman, 2001; Shimazu, 2001;
Stolze, 1999). However, they have been not employed in large scales in practicing
e-commerce websites. Pu and Kumar (Pu & Kumar, 2004) gave some reasons as
to why this is the case and when such advanced tools are expected to be adopted.
This work was based on empirical studies of how users interact with product search
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tools, providing a good direction as to how to establish the true benefits of these ad-
vanced tools. However, insights gained from this work are limited. This is mainly
due to the lack of a large amount of real users for the needed user studies and the
high cost of user studies even if real users were found. Each of the experiments
reported in (Pu & Kumar, 2004) and (Pu & Chen, 2005) took more than 3 months of
work, including the design and preparation of the study, the pilot study, and the em-
pirical study itself. After the work was finished, it remains unclear whether a small
amount of users recruited in an academic institution can forecast the behavior of
the actual user population, which is highly diverse and complex.

In this chapter we introduce a simulation environment to evaluate the perfor-
mance of a given online product search tool. Here we also call online product search
tools as consumer decision support systems (CDSSs). Our main objective in this re-
search is to use a simulation environment to evaluate various search tools in terms
of interaction behaviors: what users’ effort would be to use these tools and what
kind of benefits they are likely to receive from these tools. We base our work on
some earlier work (Payne et al., 1993) in terms of the design of the simulation envi-
ronment. However, we have added important elements to adapt such environments
to online e-commerce and online product search scenarios. With this simulation en-
vironment, we hope to be able to forecast the acceptance of online product search
tools in the real world and curtail the evaluation of each tool’s performance from
months of user study to hours of simulation process. This should allow us to evalu-
ate more tools and, more importantly, discover design opportunities of new tools.

3.2 Related Work

In traditional environments where no computer aid is involved, behavioral deci-
sion theory provides adequate knowledge describing people’s choice behavior and
presents typical approaches of solving decision problems. For example, Payne et
al. (Payne et al., 1993) established a well known effort–accuracy framework that
describes how people adapt their decision strategies by trading off accuracy and
cognitive effort to the demands of the tasks they face. The simulation experiments
carried out in that work were able to give a good analysis of various decision strate-
gies that people employ and the decision accuracy they would expect to get in re-
turn.

In the online electronic environment where the support of computer systems is
pervasive, we are interested in analyzing users’ choice behaviors when tools are in-
tegrated into their information processing environments. That is, we are interested
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in analyzing when given a computer tool with its system logic, how much effort a
user has to expend and how much decision accuracy he or she is to obtain from that
tool. On one hand, though the decision maker’s cognitive effort is still required,
it can be significantly decreased by having computer programs carry out most of
the calculation work automatically; on the other hand, the decision makers must
expend some effort to explicitly state their preferences to the computer according
to the requirements of the underlying decision support approach employed in that
system. We would like to call this extra user effort (in addition to the cognitive
effort) preference elicitation effort. We believe that elicitation effort plays an im-
portant role in the new effort–accuracy model of users’ behavior in online choice
environments.

Many other researchers have carried out simulation experiments in evaluat-
ing the performance of their systems or approaches. Payne et al. (Payne et al.,
1993) introduced a simulation experiment to measure the performance of various
decision strategies in offline situations. Recently, Boutilier et al. (Boutilier et al.,
2004) carried out their experiments by simulating a number of randomly gener-
ated synthetic problems, as well as user responses to evaluate the performance of
various query strategies for eliciting bounds of the parameters of utility functions.
In (Reilly et al., 2005), various users’ queries were generated artificially from a set
of offline data to analyze the recommendation performance of the incremental cri-
tiquing approach. More recently, Nguyen and Ricci (Nguyen & Ricci, 2007) presents
an simulation methodology by replaying live-user interactions to compare different
user-query representation approaches. These work generally suggest that simulat-
ing the interaction between users and the system is a promising methodology for
performance evaluation. But so far it is lack of systematic approach of leading a
simulation process. In addition, these approaches can only give simulate results
about the interaction cycles, lack of criteria on the measurement of decision accu-
racy. In our work, we go further in this direction and propose the general simulation
environment which can be adopted to evaluate the performance of various CDSSs
systematically within the extended effort–accuracy framework.

3.3 Decision Strategies

In this work, we focus on the following decision strategies and study the perfor-
mance of CDSSs based on these decision strategies. They have been introduced in
Chapter 2. More detail information can also be found in (Payne et al., 1993).
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Figure 3.1: The C4 decision strategy

1. The Weighted Additive (WADD) Strategy. It is a normative approach based
on Multi-Attribute Utility Theory (MAUT) (Keeney & Raiffa, 1976). In fact,
the WADD strategy adopts the additive form of the utility function (see Equa-
tion 2.4) to calculate utility value for each product, and it selects the product
with the highest utility value. In our simulation experiment, we use it as the
baseline strategy.

2. Basic heuristic strategies. They are the equal weight (EQW) strategy, the
elimination-by-aspects (EBA) strategy, the majority of confirming dimensions
(MCD) strategy, the satisficing (SAT) strategy, the lexicographic (LEX) strat-
egy and the frequency of good and bad features (FRQ) strategy. Their detailed
definitions are introduced in Chapter 2 and can be found in (Payne et al.,
1993).

3. Hybrid decision strategies. Besides the basic heuristic strategies, people may
also use a combination of several of them to make a decision to try to get
a more precise decision result. These kinds of strategies are called hybrid
decision strategies.

As a concrete example of hybrid decision strategies, here we propose a specific
hybrid strategy called C4, which is a combination of four basic heuristic strategies:
EBA, MCD, LEX, and FRQ. The decision procedure is illustrated in Figure 3.1.
First the decision maker inputs his/her preferences to the system according to the
requirements of the four strategies. Then the decision support system executes
the four basic strategies simultaneously and produces up to 4 different alternatives
for the decision maker. Finally the decision maker spends a certain amount of
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cognitive effort to select the final alternative using the WADD strategy. As the
WADD strategy is completed by the decision maker, it requires no elicitation effort.
The elicitation effort for C4 would be counted by the total parameters that the four
heuristic strategies require. We expect that the C4 strategy could gain much higher
decision accuracy than using the underlying basic strategies individually.

In a CDSS, the user interface component is used to obtain the consumers’ prefer-
ences. However, such preferences are largely determined by the underlying decision
support approach that has been adopted in the system. For example, the popular
ranked list interface is in fact an interface implementing the lexicographical (LEX)
strategy. Also, if we adopt the Weight Additive Strategy in a consumer decision sup-
port system, the user interface will be designed in the manner of asking the user
to input corresponding weight and middle values for each attribute. In our current
work, we assume the existence of a very simple user interface. Thus, we regard the
underlying decision support approach as the main factor of the consumer decision
support system.

3.4 The Extended Effort–Accuracy Framework

The performance of the system can be evaluated by various criteria such as the
degree of a user’s satisfaction with the recommended item, the amount of time a
user spends to reach a decision, and the decision errors that the consumer may
have committed. Without real users’ participation, the satisfaction of a consumer
with a CDSS is hard to measure. However, the other two criteria can be measured.

The amount of time a user spends to reach a decision is equivalent to the amount
of time he or she uses to express preferences and process the list of recommended
items in order to reach a decision. The classical effort–accuracy framework mainly
investigated the relationship of decision accuracy and cognitive effort of processing
information by different decision strategies in the offline situation (Payne et al.,
1993). In the online decision support situation, however, the effort of eliciting pref-
erences during the interaction process must be considered as well.

Furthermore, most products carry a fair amount of financial and emotional
risks. Thus the accuracy of users’ choices is quite important. That is, there is a
posterior process where users evaluate the search tools in terms of whether the
products they have found via the search tool is really what they want and whether
they had enough decision support. This is what we mean by decision accuracy.

We therefore propose an extended effort–accuracy framework by explicitly mea-
suring three factors of a given consumer decision support system – cognitive effort,
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interaction effort (it is also called elicitation effort), and decision accuracy. In the
remainder of this section, we first recall the measurement of cognitive effort in the
classical framework, we give various definitions of decision accuracy, and then we
detail the method of measuring elicitation effort. Finally the cognitive and elicita-
tion effort of these decision strategies are analyzed in online situation.

3.4.1 Measuring Cognitive Effort

Based upon the work of Newell and Simon (Newell & Simon, 1972), a decision ap-
proach can be seen as a sequence of elementary information processes (EIPs), such
as reading the values of two alternatives on an attribute, comparing them, and so
forth. Assuming that each EIP takes equal cognitive effort , the decision maker’s
cognitive effort is then measured in terms of the total number of EIPs. Conformed
with the classical framework, a set of EIPs for the decision strategies is defined as
the following:

(1) READ: read an alternative’s value on an attribute into short-term memory
(STM),

(2) COMPARE: compare two alternatives on an attribute,

(3) ADD: add the values of two attributes in STM,

(4) DIFFERENCE: calculate the size of the difference of two alternatives for an
attribute,

(5) PRODUCT: weight one value by another,

(6) ELIMINATE: eliminate an alternative from consideration,

(7) MOVE: move to next element of the external environment, and

(8) CHOOSE: choose the preferred alternative and end the process.

3.4.2 Measuring Decision Accuracy

Accuracy and effort form an important performance measure for the evaluation of
consumer decision support systems. On one hand consumers expect to get highly
accurate decisions. On the other hand, they may not be inclined (or able) to expend
a high level of cognitive and elicitation effort to reach a decision. Three important
factors influence the decision accuracy of a consumer decision support systems: the
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underlying decision approach used; the number of interactions required from the
end user (if a longer interaction is required, a user may give up before he finds the
best option); the number of options displayed to the end user in each interaction
cycle (a single item is likely to miss the target choice compared to a list of items;
however, a longer list of items requires more cognitive effort to process information).
In our current framework, we investigate the combined result of these three factors
(i.e., decision approach as well interface design components) of a given consumer
decision support system.

In the following, we start with classical definitions of decision accuracy, ana-
lyze their features and describe their weaknesses for the online environments, and
then we propose two definitions that we have developed which are likely to be more
adequate for measuring decision accuracy in e-commerce environments. To elimi-
nate the effect of a specific set of alternatives on the decision accuracy results, in
the following definitions we assume that there is a set of N different MADPs to be
solved by a given consumer decision support system which implements a particular
decision strategy S. The accuracy will be measured as the average among all those
MADPs.

Accuracy Measured by Selection of Non-Dominated Alternatives

This definition comes from Grether et al. (Grether & Wilde, 1983). After adapting
it to decision making with the help of a computer system, this definition says that
a solution given by CDSS is correct if and only if it is non-dominated by other al-
ternatives. So the decision accuracy can be measured by the numbers of solutions
which are Pareto Optimal (i.e., not dominated by other alternatives, see also (Viap-
piani et al., 2005, 2006b)). We use Oi

S to represent the optimal solution given by the
CDSS with strategy S when solving MADPi(1 ≤ i ≤ N). The accuracy of selection
of non-dominated alternatives ACCNDA(S) is defined as the following:

ACCNDA(S) =
N −

∑N
i=1Dominated(Oi

S)
N

�
 �	3.1

where Dominated(Oi
S) equals to 1 if Oi

S is a dominated alternative in the given
MADPi, otherwise Dominated(Oi

S) equals to 0.

According to this definition, it is easy to see that a system employing the WADD
strategy has 100% accuracy because all the solutions given by WADD are Pareto
Optimal. Also, this definition of accuracy measurement is effective only when the
system contains some dominated alternatives, otherwise the accuracy of the system
is always 100%.
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This definition of accuracy can distinguish the errors caused by choosing domi-
nated alternatives of the decision problems. However, measuring decision accuracy
using this method is limited in e-commerce environments. In an efficient market, it
is unlikely that the consumer products or business deals are dominated or dominat-
ing. That is, it is unlikely an apartment would be both spacious and less expensive
compared to other available ones. We believe that although this definition is use-
ful, it is not helpful to distinguish various CDSSs in terms of how good they are for
supporting users to select the best choice (not just the non-dominated ones).

Accuracy Measured by Utility Values

This definition of measuring accuracy was used in the classical effort–accuracy
framework (Payne et al., 1993). Since no risk or uncertainty is involved in the
MADPs, the expected value of an alternative is equivalent to the utility value of
each alternative. The utility value of each alternative is assumed to be in the weight
additive form. Formally this accuracy definition can be represented as:

ACCUV (S) =

∑N
i=1

U(Oi
S)

U(Oi
target)

N

�
 �	3.2

where U is the utility function, which is assumed to be in the additive form. In this
case the target product Otarget determined by the maximal utility value is exactly
the one determined by the WADD strategy (i.e. Oi

target = Oi
WADD) for the given

MADPi. Thus a system employing the WADD strategy is 100% accurate because it
always gives out the solution with the maximal utility value.

One advantage of this measure of accuracy is that it can indicate not only that
an error has occurred but also the severity of the error of the decision making. For
instance, a system achieving 90% accuracy indicates that an average consumer is
expected to choose an item which is 10% less valuable from the best possible option.
While this definition is useful for choosing a set of courses to take for achieving
a particular career objective, it is not most suitable in e-commerce environments.
Imagine that someone has chosen and purchased a digital camera. Two months
later, she discovers that the camera that her colleague has bought was really the
one she wanted. She did not see the desired camera, not because the online store
did not have it, but because it was difficult to find and compare items on the partic-
ular e-commerce website. Even though the camera that she bought satisfied some
of her needs, she is stilly likely to feel a great sense of regret if not outright disap-
pointment. Her likelihood of returning to that website is in question. Given that
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bad choices can cause great emotional burdens (Luce, Payne, & Bettman, 1999), we
develop the following definition of decision accuracy.

Accuracy Measured by Selection of Target Choice

In the earlier work (Pu & Chen, 2005), the decision accuracy is measured by the
percentage of users who have chosen the right option using a particular decision
support system. We call that option the target choice. In empirical studies with real
users, we first asked users to choose a product with the consumer decision support
system, and then we revealed the entire database to them in order to determine the
target choice. If the product recommended by the consumer decision support system
was consistent with the target choice, we say that the user had made an accurate
decision.

In simulation environment, we take the WADD strategy as the baseline. That
is, we assume the solution given by WADD is the user’s final most preferred choice.
For another given strategy S, if the solution is the same as the one determined by
WADD, then we count it as one Hit (this definition is called the hit ratio). The
accuracy is measured statistically by the ratio of hit numbers to the total number
of decision problems:

ACCHR(S) =
∑N

i=1Hit(O
i
S)

N

�
 �	3.3

where

Hit(Oi
S) =

{
1 if Oi

S = Oi
target, for a given MADPi

0 else

�
 �	3.4

The WADD strategy is used as the baseline to determine the target solution
(i.e., Oi

target = Oi
WADD), thus it will achieves 100% accuracy. This measure of deci-

sion accuracy is ideally consistent with the consumers’ attitude towards the decision
results. However, by this definition, it is assumed that the consumer decision sup-
port system only recommends one product to the consumer each time. In reality the
system may show a list of possible products to the consumer, and the order of the
product list is also important to the consumer: the products displayed at the top of
the list are more likely to be selected by the consumer. Therefore, we have devel-
oped the following definition to take into account that a list of products is displayed,
rather than a single product.
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Accuracy Measured by Selection of Target Choice among K-best Items

Here we propose measuring the accuracy of the system according to the ranking
orders of the K-best products it displays. This is an extension of the previous defini-
tion of accuracy. For a given MADPi, instead of using strategy S to choose a single
optimal solution, we can use it to generate a list of solutions with ranking order
Li

S = {Oi
S,1, O

i
S,2, · · · , Oi

S,K}, where Oi
S,1 is the most preferred solution according to

the strategy S, and Oi
S,2 is the second preferred solution, and so on. The first K-best

solutions consist of the solution list. If the user’s target choice is in the list, we as-
sign a Rank Value to the list according to the position of Oi

target in the list. Formally,
we define this accuracy of choosing K-best items as

ACCHRinKbest(S) =
∑N

i=1RankV alue(L
i
S)

N

�
 �	3.5

where

RankV alue(Li
S) =

{
1− k−1

K if Oi
S,k = Oi

target, for a given MADPi

0 else

�
 �	3.6

The WADD strategy is used as the baseline to determine the target solution
thus it will achieves 100% accuracy. A special case of this accuracy definition is that
whenK = 1, it degenerates to the previous definition of Hit Ratio. In the simulation
experimental results that we will show shortly, we have set K to 5.

Relative Accuracy

In practice, it is required to eliminate the effect of random decision, and we ex-
pect that the strategy of random choice (selecting an alternative randomly from the
alternative set, denoted as RAND strategy) could only produce zero accuracy. By
doing so we define the relative accuracy of the consumer decision support system
with strategy S according to different definitions as

RAZ(S) =
ACCZ(S)−ACCZ(RAND)

1−ACCZ(RAND)

�
 �	3.7

where Z = NDA,UV,HR, orHR_in_Kbest.

For example, RAHR(LEX) denotes the relative accuracy of the LEX strategy
under the accuracy measure definitions of Hit Ratio.
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From the above definitions, we can see that each definition represents one as-
pect of the accuracy of the decision strategies. We think that the definitions of Hit
Ratio among K-best Items are more suitable among them to measure the accuracy
of various consumer decision support systems.

Other Accuracy Measure Metrics

Besides the metrics that we have discussed, there are some some other metrics for
measuring the accuracy of a system. Mean Absolute Error (MAE) (Sarwar et al.,
2001) can be used to evaluate the accuracy of some rating-based recommender sys-
tems. It measures the accuracy according to the mean average deviation between
the expected ratings and the true ratings. However, this metric is not suitable for
measuring the accuracy of a product search approach without having rating infor-
mation. Another set of metrics, precision and recall has been applied in some in-
formation retrieval systems to measure the accuracy (Baeza-Yates & Ribeiro-Neto,
1999). Precision measures the proportion of relevant items are in the recommen-
dation set, while recall is defined as the number of relevant items retrieved over
all relevant items in the database. In our simulation work, however, each time we
assume that there is single one target item in the dataset, so this set of metrics
is not suitable to measure accuracy in this situation. Moreover, some kind of rank
correlation coefficient, such as the Kendall tau coefficient (Kendall, 1948) or Spear-
man’s coefficient (Spearman, 1906), can be used to measure the degree of agreement
between two ranking list and assessing their significance of difference. These meth-
ods can be used as criteria to measure the accuracy of two ranking lists, but in our
simulation work these criteria are not appropriate because each time there is only
one single item determined as the target product at the end of the decision process.

3.4.3 Measuring Elicitation Effort

In computer-aided decision environments, a considerable amount of decision effort
goes into preference elicitation since people need to “tell” their preferences explic-
itly to the computer system. So far, no formal method has been given to measure
the preference elicitation effort. An elicitation process can be decomposed into a
series of basic interactions between the user and the computer, such as selecting
an option from a list, filling in a blank, answering a question, etc. We call these
basic interaction actions elementary elicitation processes (EEPs). In our analysis,
we define the set of EEPs as follows:

(1) SELECT: select an item from a menu or a dropdown list,
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(2) FILLIN: fill in a value to an edit box,

(3) ANSWER: answer a basic question,

(4) CLICK: click a button to execute an action.

It is obvious that different EEPs require different elicitation effort (for instance,
the EEP of one CLICK would be much easier than an EEP of FILLIN a weight value
for a given attribute). For the sake of simplification, we currently assume that each
EEP requires an equal amount of effort from the user. Therefore, given a specific
decision approach, elicitation effort is measured by the total amount of EEPs it may
require.

This elicitation effort is a new factor for the online environment. The main dif-
ference between cognitive effort and elicitation effort lies in the fact that cognitive
effort is a description of the mental activities in processing information, while the
elicitation effort is about the interaction effort between the decision maker and the
computer system through pre-designed user interfaces. Even though the decision
makers already have clear preferences in their mind, they must still state their pref-
erences in a way that the computer can “understand”. With the help of computer
systems, the decision maker is able to reduce the cognitive effort by compensating
with a certain degree of elicitation effort.

Let’s consider a simple decision problem with 3 attributes and 4 alternatives.
When computer support is not provided, the cognitive effort of solving this problem
by the WADD strategy will be 24 READS, 8 ADDS, 12 PRODUCTS, 3 COMPARES,
and 1 CHOOSE. The total number of EIPs is therefore 48. However, with the aid
of a computer system, the decision maker could get the same result by spending 2
units of elicitation effort (FILLIN the weight value of first 2 attributes) and 1 unit
of cognitive effort (CHOOSE the final result).

3.4.4 Analysis of Cognitive and Elicitation Effort

With the support of computer systems, the cognitive effort for WADD, as well as
the basic heuristic strategies, is quite low. The decision maker inputs his or her
preferences, and the decision support system executes that strategy and shows the
proposed product. Then the decision maker chooses this product and the decision
process is ended. Thus the cognitive effort is equal to 1 EIP: CHOOSE the final
alternative and exit the process. For the C4 strategy, the cognitive effort of solving
a MADP with n attributes and m alternatives in the online situation is equal to
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Table 3.1: Interaction effort analysis of decision strategies
Strategy Parameters required to be elicited
WADD weights, component value functions
EQW component value functions
EBA importance order, cutoff values
MCD none
SAT cutoff values
LEX importance order
FRQ cutoff values for good and bad features
C4 cutoff values, importance order

that of solving a problem with n attributes and 4 alternatives in the traditional
situation, the cognitive effort of which has been studied in (Payne et al., 1993).

According to their definitions, various decision strategies require that prefer-
ences with different parameters be elicited. For example, in the WADD strategy,
the component value function and the weight for each attribute must be obtained.
While for the EBA strategy, the importance order and cutoff value for each attribute
are required. The required parameters for each strategy are shown in table 3.1.

For each parameter in the aforementioned strategies, a certain amount of elici-
tation effort is required. This elicitation effort may vary with different implemen-
tations of the user interface. For example, to elicit the weight value of an attribute,
the user can just FILLIN the value to an edit box, or the user can ANSWER sev-
eral questions to approximate the weight value. In our analysis and the following
simulation experiments, we follow the at least rule: the elicitation effort is deter-
mined by the least number of EEP(s). In the above example, the elicitation effort
for obtaining a weight value is measured as 1 EEP.

3.5 Simulation Environment

Our simulation environment is concerned with the evaluation of how users interact
with online product search tools, how decision results are produced, and the quality
of these decision results.

The consumer first interacts with the system by inputting his or her preferences
through the user interface. With the help of decision support, the system generates
a set of recommendations to the consumer. This interactive process can be executed
in multiple times until the consumer is satisfied with the recommended results (i.e.,
a product to purchase) or gives up due to loosing patience.
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Figure 3.2: The architecture of the simulation environment for evaluating the per-
formance of a given product search tool.

As shown in Figure 3.2, for a given CDSS, we evaluate its performance in a
simulated environment by the following procedures:

1. we generate a set of MADPs randomly to simulate the presence of an electronic
catalog up to any scale and structure characteristics using;

2. we generate a set of consumer preferences randomly as well, taking into ac-
count user diversity and scale;

3. we carry out the simulation of the underlying decision approach of the CDSS
to solve these MADPs;

4. we obtain associated decision results for the given CDSS (which product has
been chosen given the consumer’s preferences);

5. we evaluate the performance of these decision results in terms of cognitive
effort, preference elicitation effort and decision accuracy under the extended
accuracy–effort framework.

The simulation environment can be used in many ways to provide different per-
formance measures of a given CDSS. For instance, if both the detail product infor-
mation of CDSS and the consumer’s preferences are unknown, we can simulate both
the alternatives and the consumer’s preferences, and the simulation results would
be the performance of the CDSS independently of users and the set of alternatives;
if the detail product information of the CDSS is provided, we then only need to sim-
ulate the consumer’s preferences, and the alternatives of the MADPs can be copied
from the CDSS instead of being randomly generated. The simulation results would
be the performance of the CDSS under the specified product set.
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As a concrete example to demonstrate the usage of such a simulation environ-
ment, we will show a procedure in evaluating the performance of various CDSSs in
terms of the scale of the MADPs, which is determined by two factors: the number of
attributes n and the number of alternatives m. Since we are trying to study the per-
formance of different CDSSs (currently built on heuristic decision strategies) in dif-
ferent scales of MADPs, we assume that users and alternatives are both unknown
and they are simulated to give results independently of the user and the system.
More specifically, we classify the decision problems into 20 categories according to
the scales of n (the number of attributes) and m (the number of alternatives): n has
five values (5, 10, 15, 20, and 25), and m has four (10, 100, 1000 and 10000). To make
the performance evaluation result more accurate, each time we randomly generate
500 different MADPs in the same scale and use their average performance as the
final result. The detail simulation result will be reported in the experimental result
section.

3.6 Simulation Results

In this section we report our experimental results of the performance of various
consumer decision support systems under the simulation environment which were
introduced earlier. To simplify the experiments, we only evaluate those CDSSs built
on the decision strategies listed in Table 3.1. Without loss of generality, we will also
use the term decision strategy to represent the CDSS built on that decision strategy.

We have developed a simulation program to generate simulation results (see
Figure 3.3). This program simulates the process of people making decisions when
they face decision problems. More specifically, it is able to simulate these deci-
sion strategies and to give the decision results in terms of decision accuracy and
required effort. The attributes of the decision problem can be customized with spe-
cific domain values. The product list can either be generated randomly, or be loaded
from an external xml file.

For each CDSS, we first simulate a large variety of MADPs, and then run the
corresponding decision strategy on the computer to generate the decision results.
Then the elicitation effort and decision accuracy are calculated according to the
extended effort–accuracy framework. For each MADP, its domain values for a given
attribute are determined randomly: the lower bound of each attribute is set to 0,
and the upper bound is determined randomly from the range of 2 to 100. Formally
speaking, for each attribute Xi, we define Di = [0, zi], where zi ∈ [2, 100].

As shown in table 3.1, each decision strategy (except MCD) requires the elic-
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Figure 3.3: Screen-shot of the decision strategy simulation program. It shows the
overall decision results of a given decision problem.

itation of some specific parameters such as attribute weights or cutoff values to
represent the user’s preferences. To simulate the component value functions that
required by the WADD strategy, we assume that the component value function for
each attribute is approximated by 3 mid-value points that are randomly generated.
Thus each component value function requires 3 units of EEPs. Other required pa-
rameters such as the weight and cutoff value (each requires 1 unit of EEP) for each
attribute are also simulated by the random generation process. The order of impor-
tance is determined by the weight order of the attributes for consistency.

In our simulation experiments, the WADD strategy is appointed as the baseline
strategy, and the relative accuracy of a strategy is calculated according to equation
(3.7). The elicitation effort is measured in terms of the total number of EEPs re-
quired by the specific strategy, and the cognitive effort is measured by the required
units of EIPs. Since the relationship between accuracy and cognitive effort has al-
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Figure 3.4: The relative accuracy of various decision strategies when solving
MADPs with different number of attributes, where m(number of alternatives) =
1, 000

ready been studied and analyzed by Payne et al. (Payne et al., 1993), in this section
we only focus on the performance of each strategy in terms of decision accuracy and
elicitation effort.

Figure 3.4 shows the changes in relative accuracy with 4 different accuracy
measure definitions for the listed decision strategies as the number of attributes
increases in the case that each MADP has 1,000 alternatives. In all cases the
WADD is the baseline strategy thus it achieves 100% accuracy. When measured
by the selection of non-dominated alternatives (RANDA), the relative accuracy of
each heuristic strategy increases as the number of alternatives increases. This is
mainly because the alternatives are more likely to be Pareto Optimal when more at-
tributes are involved. Furthermore, the RANDA of all strategies could achieve 100%
accuracy when the attributes number is 20 or 25. This shows that the RANDA is not
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able to distinguish the decision errors occurred with the heuristic strategies in the
simulated environment. When the accuracy is measured under the definitions of
RAUV , RAHR and RAHR_in_Kbest, the EQW strategy achieves the highest accuracy
besides the baseline WADD strategy, and the SAT strategy has the lowest relative
accuracy. The four basic heuristic strategies EBA, MCD, LEX and FRQ are in the
middle-level range. The LEX strategy, which has been widely adopted in many
consumer decision support systems, is the least accurate strategy among the EBA,
FRQ and MCD strategies when there are over 10 attributes. When the accuracy is
measured by RAUV , the EQW strategy could gain over 90% relative accuracy, while
it could only achieve less than 50% relative accuracy when measured by RAHR.
This comparison generally suggest that most of the decisions result given by EQW
strategy may be very close to a user’s target choice (which is determined by the
WADD strategy), but are not identical. Also, in all cases, the accuracy measured
by RAHR_in_Kbest (where K = 5 in the experiment) is always higher than that mea-
sured by RAHR (which is a special case of RAHR_in_Kbest when K = 1). This shows
that under this definition, the possibility of containing the final target choice in a
K-item list is higher when K is larger. Of particular interest is that the proposed
C4 strategy, which is a combination the above four basic strategies, could achieve
a much higher accuracy than any of them alone. For instance, when there are 10
attributes and 1000 alternatives in the MADPs, the relative accuracy of C4 strategy
could exceed the average accuracy of the four basic strategies by over 27% when the
definition of RAHR_in_Kbest is adopted.

Figure 3.5 shows the relationship between relative accuracy and the number of
alternatives (or the number of available products in a catalog) for the listed deci-
sion strategies. When the accuracy is measured by the selection of non-dominated
alternatives (RANDA), all strategies except SAT could gain nearly 100% of relative
accuracy without a significant difference. This generally shows that the RANDA

is not a good definition of accuracy measurement in the simulated environment.
When the accuracy is measured by the utility values (RAUV ), the accuracy of the
heuristic strategies remains stable as the number of alternatives increases. With
the definitions of Hit Ratio (RAHR) and Hit ratio in K-best items (RAHR_in_Kbest),
however, the heuristic strategies strongly descend into a lower range of accuracies
as the size of a catalog increases. This corresponds to the fact that consumers have
increasing difficulties finding the best product as the number of alternatives in the
catalog increases. The C4 strategy, though its accuracy decreases when the number
of alternatives increases, could still maintain a considerably higher relative accu-
racy than that of the EBA, MCD, LEX, and FRQ strategies when using the accuracy
definition of RAHR and RAHR_in_Kbest.
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Figure 3.5: The relative accuracy of various decision strategies when solving
MADPs with different number of alternatives, where n(number of attributes) = 10

The effect of the number of attributes on elicitation effort for each strategy is
shown in figure 3.6. As we can see, the elicitation effort of the heuristic strategies
increases much slower than that of the WADD strategy as the number of attributes
increases. For instance, when the number of attributes is 20, the elicitation effort
of the FRQ strategy is only about 25% of that of WADD strategy. The FRQ and SAT
strategies require the same level of elicitation effort since both of them requires the
decision maker to input a cutoff value for each attribute. Except the MCD strategy,
which requires no elicitation effort in the simulation environment, the LEX strategy
is the one that requires the least elicitation effort in all cases among the listed
strategies. The combined C4 strategy, which could share preferences among its 4
underlying basic strategies, requires only a slightly higher elicitation effort than
the EBA strategy.
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The effect of the number of attributes on elicitation effort for each strategy is shown in figure 4. 
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Figure 3.6: The elicitation effort of various decision strategies when solving MADPs
with different number of attributes, where m(number of alternatives) = 1,000

Figure 3.7 shows the relationship between elicitation effort and the number of
alternatives for each strategy. As the number of alternatives increases exponen-
tially, the level of elicitation effort for WADD, EQW, MCD, SAT, and FRQ strategies
remains unchanged. This shows that the elicitation effort of these strategies is un-
related to the number of alternatives that a decision problem may have. For the
LEX, EBA and C4 strategies, the elicitation effort increases slowly as the number
of alternatives increases. As a whole, Figure 5 shows that the elicitation effort of
the studied decision strategies is quite robust to the number of alternatives that a
decision problem has.

A combined study from figure 3.4 to figure 3.7 can lead to some interesting con-
clusions. For each category of MADPs, some decision strategies, such as WADD
and EQW, could gain relatively high decision accuracy with proportionally high
elicitation effort. Other decision strategies, especially C4, MCD, EBA, FRQ, and
LEX, could achieve a reasonable level of accuracy with much lower elicitation effort
compared to the baseline WADD strategy. Figure 3.8 illustrates the relationship
between elicitation effort and RAHR_in_Kbest for various strategies when solving dif-
ferent scales of decision problems. For the MADPs with 5 attributes and 100 al-

70



3.6. SIMULATION RESULTS

 Performance Evaluation of Consumer Decision Support Systems 30 

strategy. The FRQ and SAT strategies require the same level of elicitation effort since both of 

them requires the decision maker to input a cutoff value for each attribute.  Except the MCD 

strategy, which requires no elicitation effort in the simulation environment, the LEX strategy is 

the one that requires the least elicitation effort in all cases among the listed strategies. The 

combined C4 strategy, which could share preferences among its 4 underlying basic strategies, 

requires only a slightly higher elicitation effort than the EBA strategy. 

 

Insert Figure 5 About Here 
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 Figure 3.7: The elicitation effort of various decision strategies when solving MADPs
with different number of alternatives, where n(number of attributes) = 10

ternatives, the MCD strategy could achieve around 35% relative accuracy without
any elicitation effort. The C4 strategy in particular could achieve over 70% relative
accuracy while only requiring about 45% elicitation effort compared to the WADD
strategy.

For all the decision strategies we have studied here, we say that a decision strat-
egy S is dominated if and only if there is another strategy S′ which has higher
relative accuracy and lower cognitive and elicitation effort than S in the decision
problem. Figure 3.8 shows that when the MADPs have 10 attributes and 1,000
alternatives, the WADD, EQW, C4, and MCD are non-dominated approaches, How-
ever, for a smaller scale of MADPs (5 attributes and 100 alternatives), only the
WADD, C4 and MCD strategies have the possibility of being the optimal strategy.
This figure also shows that if the user’s goal is to make decisions as accurately as
possible, WADD is the best strategy among the listed strategies; while if the de-
cision maker’s goal is to have reasonable accuracy with a certain elicitation effort,
then the C4 strategy may be the best option.
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Figure 5 shows the relationship between elicitation effort and the number of alternatives for each 
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Figure 6: Elicitation effort/relative accuracy tradeoffs of various decision strategies 
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Figure 3.8: Elicitation effort/relative accuracy tradeoffs of various decision strate-
gies

3.7 Discussion

The simulation results suggest that the tradeoff between decision accuracy and elic-
itation effort is the most important design consideration for inventing high perfor-
mance CDSSs. That is, while advanced tools are desirable, we must not ignore the
effort that users are required to make when stating their preferences.

To show how this framework can provide insights to improve user interfaces
for the existing CDSSs, we have demonstrated the evaluation of the simplest deci-
sion strategies: WADD, EQW, LEX, EBA, FRQ, MCD and SAT (Payne et al., 1993).
The performance of these strategies was measured quantitatively in the proposed
simulation environment within the extended effort–accuracy framework. Since the
underlying decision strategy determines how a user interacts with a CDSS system
(preference elicitation and result processing), the performance data allowed us to
discover better decision strategies and eliminate sub-optimal ones. In this sense
our work provides a new design method for developing user interfaces for consumer
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decision support systems.

For example, LEX is the underlying decision strategy used in the ranked list
interface that many e-commerce websites employ (Pu & Kumar, 2004). However,
our simulation results show that LEX produces relatively low decision accuracy, es-
pecially as products become more complex. On the other hand, a hybrid decision
strategy, C4, based on the combination of LEX, EBA, MCD and FRQ, was found to
be more effective. Combining LEX and EBA together for example, we can derive an
interface which looks like SmartClient. EBA (elimination by aspect) corresponds to
eliciting constraints from users and this feature was implemented as a constraint
problem solving engine in SmartClient (Torrens et al., 2002). After users have elim-
inated the product space by preference constraints, they can use the LEX strategy
(ranked list) to further examine the remaining items. Even though this hybrid
strategy does not include any interface features to perform tradeoff navigation, the
simulation results are still consistent with our earlier empirical work on evaluating
CDSSs with real users (Pu & Chen, 2005; Pu & Kumar, 2004). That is, advanced
tools such as SmartClient can achieve a higher accuracy while requiring users to
expend slightly extra cognitive and elicitation effort than the basic strategies it con-
tains.

Finally, we do emphasize that the simulation results need to be interpreted with
some caution. First of all, the elicitation effort is measured by approximation. As
mentioned earlier, we assumed that each EEP requires an equal amount of effort
from the users. Currently, it is unknown whether this approximation would affect
the simulation results largely. In addition, when measuring the decision accuracy,
the WADD strategy is chosen as the baseline, assuming that it contains no error.
However, this is not the case in reality. Moreover, as the MADPs in the simulation
experiments are generated randomly, there is a potential gap between the simu-
lated MADPs and the product catalog in real applications.

3.8 Summary

The acceptance of an e-commerce site by consumers strongly depends on the quality
of the tools it provides to help consumers reach a decision that makes them confi-
dent enough to purchase. Evaluation of these consumer decision support tools on
real-user studies makes it difficult to compare their characteristics in a controlled
environment, thus slowing down the design process of such tools. In this chap-
ter, we described a simulation environment to evaluate the performance of product
search tools more efficiently. In this environment, we can simulate the underly-
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ing decision support approach of the system to generate decision results based on
the consumers’ preferences and the product catalog information that the system
may have. The decision results can then be evaluated quantitatively in terms of
decision accuracy, interaction effort and cognitive effort described by the extended
effort–accuracy framework. To show how this simulation environment can evalu-
ate the performances of product search tools, we carried out a set of experiments
to evaluate the performance of some simple decision strategies. Results show that
if the decision maker’s goal is to reach a reasonable level of accuracy with a mod-
erate amount of elicitation effort, some hybrid heuristic strategies (such as the C4
strategy) may be the best option among these decision strategies.
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CHAPTER 4

User-Centric Algorithm for Compound Critiquing Generation

4.1 Introduction

Critiquing techniques have proven to be a popular and successful approach in online
product search because it can help users express their preferences and feedbacks
easily over one or several aspects of the available product space (Burke et al., 1997;
Reilly et al., 2004a, 2005; Faltings et al., 2004a). The simplest form of critiquing is
unit critiquing which allows users to give feedback on a single attribute or feature
of the products at a time (Burke et al., 1997). For example, [CPU Speed: faster] is
a unit critique over the CPU Speed attribute of the PC products. If a user wants to
express preferences on two or more attributes, multiple interaction cycles between
the user and the system are required. To make the critiquing process more efficient,
a wise treatment is to generate compound critiques dynamically to enable users to
critique on several attributes in one interaction cycle (Reilly et al., 2004a, 2005).
Typically, for each interaction cycle there are a large number of compound critiques
available. However, the system is able to show only a few of them on the user
interface. Thus a critical issue for online product search tools based on compound
critiques is to dynamically generate a list of high quality compound critiques in each
interaction cycle to save the users’ interaction effort.

McCarthy et al.(McCarthy et al., 2004) have proposed a method of discover-
ing the compound critiques through the Apriori algorithm that has been used as
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a market-basket analysis method (Agrawal & Srikant, 1994). It treats each critique
pattern as the shopping basket for a single customer, and the compound critiques
are the popular shopping combinations that the consumers would like to purchase
together. Based on this idea, Reilly et al. (Reilly et al., 2004a) have developed an ap-
proach called dynamic critiquing to generate compound critiques. As an improved
version, the incremental critiquing (Reilly et al., 2005) approach has also been pro-
posed to determine the new reference product based on the user’s critique history.
A typical interaction process of both dynamic critiquing and incremental critiquing
approach is as follows. First the system shows a reference product to the user. At
the same time the system generates hundreds of compound critiques from the data
set via the Apriori algorithm, and then determines several of them according to
their support values for the user to critique. After the user’s critique is chosen, the
system then determines a new reference product and updates the list of critiques
for the user to select in the next interaction cycle. This process continues until the
target product is found.

The Apriori algorithm is efficient in discovering compound critiques from a given
data set. However, selecting compound critiques by their support values may lead to
some problems. The Apriori algorithm is a data mining approach, which generates
compound critiques purely based on the product space. The critiques determined
by the support values can only reveal “what the system would provide,” but cannot
predict “what the user likes.” For example, in a PC data domain if 90 percent of the
products have a faster CPU and larger memory than the current reference product,
it is unknown whether the current user may like a PC with a faster CPU and larger
memory. Even though the system based on the incremental critiquing approach
maintains a user preference model to determine which product to be shown in the
next interaction cycle, some good compound critiques may still be filtered out before
the user could choose because their support values do not satisfy the requirement.
If the users find that the compound critiques cannot help them find better products
within several interaction cycles, they may be frustrated and give up the interaction
process in some situations. As a result, a better approach for generating compound
critiques should allow the users to gradually approach the products they preferred
and to find the target products with less number of interaction cycles.

In this thesis we believe that determining the compound critiques based on the
user’s preference model would be more efficient in helping users find their target
products. More specifically, here we propose a new approach to generate compound
critiques for online product search tools with a preference model based on multi-
attribute utility theory(MAUT) (Keeney & Raiffa, 1976). In each interaction cycle
our approach first determines a list of products via the user’s preference model, and
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then generates compound critiques by comparing them with the current reference
product. In our approach, the user’s preference model is maintained adaptively
based on user’s critique actions during the interaction process, and the compound
critiques are determined according to the utilities they gain instead of the frequency
of their occurrences in the data set. In this chapter we also carry out a set of simu-
lation experiments to show that the compound critiques generated by our approach
can be more efficient than those generated by the Apriori algorithm.

4.2 Related Work

4.2.1 Unit Critique and Compound Critique

Critiquing was first introduced as a the interaction style for online product search
in the FindMe systems (Burke et al., 1996, 1997), and was perhaps best known for
the role it played in the Entrée restaurant recommender. During each cycle Entrée
presents users with a fixed set of critiques to accompany a suggested restaurant
case, allowing users to tweak or critique this case in a variety of directions; for ex-
ample, the user may request another restaurant that is cheaper or more formal, for
instance, by critiquing its price and style features. A similar interface approach was
later adopted by the RentMe and Car Navigator systems from the same research
group.

As a form of feedback critiquing has many advantages. From a user-interface
perspective it is relatively easy to incorporate into even the most limited of inter-
faces. For example, the typical “more" and “less" critiques can be readily presented
as simple icons or links alongside an associated product feature value and can be
chosen by the user with a simple selection action. Contrast this to value elicitation
approaches where the interface must accommodate text entry for a specific feature
value from a potentially large set of possibilities, via drop-down list, for example.
In addition, critiquing can be used by users who have only limited understanding
of the product domain. For example, a digital camera buyer may understand that
greater resolution is preferable but may not be able to specify a concrete target
resolution.

While critiquing enjoys a number of significant usability benefits, as indicated
above, it can suffer from the fact that the feedback provided by the user is rarely suf-
ficiently detailed to sharply focus the next interaction cycle. For example, by speci-
fying that they are interested in a digital camera with a greater resolution than the
current suggestion the user is helping the system to narrow its search but this may
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still lead to a large number of available products to chose from. Contrast this with
the scenario where the user indicates that they are interested in a 5 megapixel cam-
era, which is likely to reduce the number of product options much more effectively.
The result is that critiquing-based product search tools can suffer from protracted
interaction sessions, when compared to value elicitation approaches.

The critiques described so far are all examples of, what we refer to as, unit cri-
tiques. That is, they express preferences over a single feature; Entrée’s cheaper
critiques a price feature, and more formal critiques a style feature, for example.
This too ultimately limits the ability of the search tool to narrow its focus, because
it is guided by only single-feature preferences from cycle to cycle. Moreover it en-
courages the user to focus on individual features as if they were independent and
can result in the user following false-leads. For example, a price-conscious digital
camera buyer might be inclined to critique the price feature until such time as an
acceptable price has been achieved only to find that cameras in this region of the
product space do not satisfy their other requirements (e.g., high resolution). The
user will have no choice but to roll-back some of these price critiques, and will have
wasted considerable effort to little or no avail.

An alternative strategy is to consider the use of what we call compound critiques
(Reilly et al., 2004a). These are critiques that operate over multiple features. This
idea of compound critiques is not novel. In fact the seminal work of Burke et al.
(Burke et al., 1996) refers to critiques for manipulating multiple features. For in-
stance, in the Car Navigator system, an automobile search tool, users are given
the option to select a sportier critique. By clicking on this, a user can increase the
horsepower and acceleration features, while allowing for a greater price. Similarly
we might use a high performance compound critique in a PC search system to si-
multaneously increase processor speed, RAM, hard-disk capacity and price features.

Obviously compound critiques have the potential to improve search efficiency
because they allow the system to focus on multiple feature constraints within a
single cycle. However, until recently, the usefulness of compound critiques has been
limited by their static nature. The compound critiques have been hard-coded by the
system designer so that the user is presented with a fixed set of compound critiques
in each interaction cycle. These compound critiques may, or may not, be relevant
depending on the products that remain at a given point in time. For instance, in the
example above the sportier critique would continue to be presented as an option to
the user despite the fact that the user may have already seen and declined all the
relevant car options.
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4.2.2 Generating Compound Critiques based on Apriori

One strategy for dynamically generating compound critiques, called dynamic cri-
tiquing (Reilly et al., 2004a), discovers feature patterns that are common to re-
maining products on every interaction cycle. Essentially, each compound critique
describes a set of products in terms of the feature characteristics they have in com-
mon. For example in the PC domain, a typical compound critique might be for Faster
CPU and a Larger Hard-Disk. By clicking on this the user narrows the focus of the
system to only those products that satisfy these feature preferences. The Apriori
data-mining algorithm (Agrawal, Mannila, Srikant, Toivonen, & Verkamo, 1996) is
used to quickly discover these patterns and convert them into compound critiques
on each interaction cycle.

The first step involves generating critique patterns for each of the remaining
product options in relation to the currently presented example. Figure 4.1 shows
how a critique pattern for a sample product p differs from the current recommen-
dation for its individual feature critiques. For example, the critique pattern shown
includes a “<" critique for Price— we will refer to this as [Price <]—because the
comparison laptop is cheaper than the current recommendation.

The next step involves mining compound critiques by using the Apriori algo-
rithm (Agrawal et al., 1996) to identify groups of recurring unit critiques. The basic
idea is to generate candidate critique sets of a particular size and then scan the
database to count these to see if they are frequent. By this method it is able to find
the co-occurrence of unit critiques like [ProcessorSpeed >] infers [Price >]. Apriori
returns lists of compound critiques of the form {[ProcessorSpeed >], [Price >]} along
with their support values (i.e., the % of critique patterns for which the compound
critique holds). During this process a compound critiques can be selected only if its
support value is bigger than a certain threshold (Typically it is given as 0.25).

Figure 4.1: Generating a critique pattern.
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The final step is to grade compound critiques. It is not practical to present large
numbers of different compound critiques as user-feedback options in each cycle.
For this reason, a filtering strategy is used to select the k most useful critiques
for presentation based on their support values. Two filtering strategies are pro-
posed in (Reilly et al., 2004a): (1) LS – the top 5 critiques with the lowest support
are chosen; (2) HS – the top 5 critiques with the highest support are chosen. The
HS strategy leads to the frequent application of small compound critiques whereas
the LS strategy leads to the frequent of large critiques. The experimental results
in (Reilly et al., 2004a) indicated that the LS strategy has the ability to reduce the
average session length by 33% compared to the HS strategy.

Additionally, the above dynamic critiquing approach for compound critiquing
generation can be extend by constructing a model of user preferences from the cri-
tiques specified. It is important to notice that users are not always consistent in the
feedback they provide, so the aim of the model is to resolve any preference conflicts
that may arise as the session proceeds. Put simply, when making a recommen-
dation, the system computes a compatibility score for every product (informed by
their critiquing history), and ranks them accordingly. This incremental critiquing
approach (Reilly, McCarthy, McGinty, & Smyth, 2004c) has been shown to deliver
significant benefits in terms of recommendation quality and efficiency in prior eval-
uations. The more detail about this approach can be found in (Reilly, 2007).

4.2.3 Other Critiquing Systems

Other than the unit critiquing and compound critiquing approaches that we have
mentioned, a number of various critiquing approaches based on examples also have
been proposed in recent years. The ATA system (Linden et al., 1997) uses a con-
straint solver to obtain a set of optimal solutions and shows five of them to the
user (three optimal ones and two extreme solutions). The Apt Decision (Shearin &
Lieberman, 2001) uses learning techniques to synthesize a user’s preference model
by critiquing the example apartment features. The SmartClient approach(Pu &
Faltings, 2000) gradually refines the user’s preference model by showing a set of 30
possible solutions in different visualizations to assist the user making a travel plan.
The main advantage of these example-based critiquing approaches is that users’
preferences can be stimulated by some concrete examples and users are allowed
to reveal preferences both implicitly (choosing a preferred product from a list) and
explicitly (stating preferred values on specific attributes). In fact, these example-
based critiquing approaches can also “generate” compound critiques easily by com-
paring the critique examples with the current recommended product. But they are
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more viewed as tradeoff navigation because users have to state the attribute val-
ues that they are willing to compromise against those that they are hoping to im-
prove (Pu & Kumar, 2004). The approach of generating compound critiques that we
proposed here can be regarded as an example-based critiquing approach because
we determine the compound critiques from a list of critique examples. However,
the difference is that our approach concentrates on constructing user’s preferences
automatically through the choice of the compound critiques, and the user can save
some effort in stating the specific preferences values during the interaction process.

4.3 Generating Compound Critiques based on MAUT

MAUT(Keeney & Raiffa, 1976) is a well known and powerful method in decision
theory for ranking a list of multi-attribute products according to their utilities and
it has been introduced in Chapter 2. Here we use its simplified weighted additive
form to calculate the utility of a product O = 〈x1, x2, ..., xn〉 as follows:

U(〈x1, · · · , xn〉) =
n∑

i=1

wiVi(xi)
�
 �	4.1

where n is the number of attributes that the products may have, the weight wi(1 ≤
i ≤ n) is the importance of the attribute i, and Vi is a value function of the attribute
xi which can be given according to the domain knowledge during the design time.

The general algorithm of the interaction process with this proposed approach
(called Critique_MAUT) is illustrated by Figure 4.2 & 4.3. We use a preference
model which contains the weights and the preferred values for the product at-
tributes to represent the user’s preferences. At the beginning of the interaction
process, the initial weights are equally set to 1/n and the initial preferences are
stated by the user. In each interaction cycle, the system generates a set of critique
strings for the user to select as follows. Instead of mining the critiques directly from
the data set based on the Apriori algorithm, the Critique_MAUT approach first de-
termines top K (in practice we set K = 5) products with maximal utilities, and then
for each of the top K products, the corresponding critique string is determined by
comparing it with the current reference product. This “from case to critique pat-
tern” process of producing compound critique strings is straightforward and has
been illustrated in (McCarthy et al., 2004).

After the user has selected one of the critique strings, the corresponding critique
product is assigned as the new reference product, and the user’s preference model
is updated based on this critique selection. For each attribute, the attribute value
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PM— user’s preference model;
ref— the current reference product;
IS— item set;
CI— critique items;
CS— critique strings;
U— utility value;
β— the weight adaptive factor

//The main procedure
1. procedure Critique_MAUT ( )
2. PM = GetUserInitialPreferences ( )
3. ref = GenInitialItem (PM)
4. IS←− all available products – ref
5. while not UserAccept (ref )
6. CI = GenCritiqueItems (pm, IS)
7. CS = GenCritiqueStrings (ref, CI)
8. ShowCritiqueInterface (CS)
9. id = UserSelect (CS)

10. ref’ = CIid
11. ref ←− ref’
12. IS←− IS – CI
13. PM = UpdateModel (PM, ref )
14. end while
15. return

//user select the critique string
16. function UserSelect (CS)
17. cs = the critique string user selects
18. id = index of cs in CS
19. return id

Figure 4.2: The algorithm of critiquing based on MAUT (Part I).
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//select the critique items by utilities
20. function GenCritiqueItems (PM, IS)
21. CI = {}
22. for each item Oi in IS do
23. U(Oi) = CalcUtility(PM, Oi)
24. end for
25. IS′ = Sort_By_Utility (IS, U)
26. CI = Top_K (IS′)
27. return CI

//Update user’s preferences model
28. function UpdateModel(PM, ref )
29. for each attribute xi in ref do
30. [pvi, pwi]←− PM on xi

31. if (V (xi) ≥ pvi)
32. pw′i = pwi × β
33. else
34. pw′i = pwi/β
35. end if
36. PM ←− [V (xi), pw′i]
37. end for
38. return PM

Figure 4.3: The algorithm of critiquing based on MAUT (Part II).
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Current
Reference 
Product

Compound
CritiquesUnit

Critiques

Figure 4.4: Screen-shot of the prototype system that we designed to support both
unit and compound critiques.

of the new reference product is assigned as the preference value, and the weight
of each attribute is adaptively adjusted according to the difference between the old
preference value and the new preference value. If the new preference value is equal
or better than the old preference value, the current weight on the given attribute is
multiplied by a factor β, otherwise it is divided by β (See line 30-36 on Figure 4.3).
In practice we set the factor β = 2.0. Based on the new reference product and the
new user preference model, the system is able to generate another set of critique
strings for the user to critique until the user finds the target product or stops the
interaction process.

Figure 4.4 shows a screen-shot of a personal computer search tool that we have
developed based on the proposed approach. In this interface, the user can see the
detail of a reference product, and he or she can either conduct a unit critique or a
compound critique to reveal additional preferences. It is very similar to the user
interface proposed in (Reilly et al., 2005) except two differences. One difference is
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that here we would like to show 5 different compound critiques generated by our
approach in each interaction cycle. Another difference is on the way we present
the compound critiques. We find it is not very convenient for users to read long
sentences describing compound critiques, so here we split a compound string into
two parts: the positive part containing features that will be improved if the critique
is chosen, and the negative part containing features that will be compromised. The
positive part is highlighted because we believe that users will pay more attention
on these features.

4.4 An Illustrative Example

While both the above two approaches can generate compound critiques dynamically,
in fact they are very different in the way of deciding the set of critiques. Here we
make a simple example to illustrate how each of them could generate compound
critiques.

Suppose the system is a laptop search tool which only provides 6 products as
shown in Table 4.1. Here we also suppose that the product PC1 is currently se-
lected.

Table 4.1: The example laptop dataset
Price Brand

PC1 2000 IBM
PC2 3000 Sony
PC3 2500 Toshiba
PC4 2500 Sony
PC5 1800 Sony
PC6 1800 IBM

The Apriori Approach

For the Apriori approach, The first step is to first discover all critique patterns.
Based on the method we have introduced in Section 4.2.2, in this case the critique
patterns for products PC2 to PC6 can be generated as shown in Table 4.2.

In this situation 3 compound critiques will be considered with their support
values: (1) {[Price >], [Brand! =]} with support value 0.6; (2) {[Price <], [Brand! =]}
with support value 0.2; and (3){[Price <], [Brand =]} with support value 0.2. In this
case since the first compound critique is bigger than the threshold (0.25), so the
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Table 4.2: Critique patterns for the products.
Pattern(Price) Pattern(Brand)

PC2 > !=
PC3 > !=
PC4 > !=
PC5 < !=
PC6 < =

compound critique {[Price >], [Brand! =]} will be presented in the next interaction
cycle.

The MAUT Approach

For the MAUT approach, we first need to determine the utility function. Based on
the current selection and domain knowledge, we can determine the value function
for each attribute. For the value function of the attribute Price, suppose that the
minimal price is 1000 (assign the utility value as 1.0) and the maximal price is 3000
(assign the utility value as 0.0), As a result the value function V1 for attribute Price
could be given as below (here we also assume the value function on price is in linear
form):

V1(x) =
3000− x

2000
, 1000 ≤ x ≤ 3000

�
 �	4.2

For the attributeBrand, since the user currently selects IBM , the value function
V2 for the attribute Brand can be given as

V2(x) =

{
1 x = IBM

0 others

�
 �	4.3

The weights for the utility function will be given as 1/n by default and be ad-
justed during the interactive process. Suppose in the current situation they are
w1 = 0.8 and w2 = 0.2 respectively. Consequently, the utility value for each prod-
uct can be calculated according to the Equation 4.1 and the results are shown in
Table 4.3.

According to their utility values, we can rank these products as PC6 � PC5 �
PC4 = PC3 � PC2.

Finally the compound critiques will be generated by comparing the candidate
products with the current product. If only one compound critique is presented in
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Table 4.3: The utility values of the products in the example laptop dataset
Price Brand Utility Value

PC2 3000 Sony 0.0
PC3 2500 Toshiba 0.2
PC4 2500 Sony 0.2
PC5 1800 Sony 0.48
PC6 1800 IBM 0.68

the next interaction cyle, then it will be {[Price <], [Brand =]} (the corresponding
compound critique of product PC6).

From this simple example we can see the compound critique {[Price >], [Brand! =
]} generated by the Apriori algorithm is irrelevant to the user’s current preferences,
and might lead the user to a more expensive product. By comparison, the com-
pound critique {[Price <], [Brand =]} generated by the MAUT approach is closer to
the user’s true preference, and it is able to help the user find a cheaper product.

4.5 Experiments and Results

We carried out a set of simulation experiments to compare the performance of
the basic unit critiquing approach (denoted as Critique_Unit), the incremental cri-
tiquing approach which generates compound critiques with the Apriori algorithm
(denoted as Critique_Apriori) (Reilly et al., 2005), and our approach generating com-
pound critiques based on MAUT (denoted as Critique_MAUT).

The general procedure of the simulation experiments was based on the simu-
lation environment that we proposed in Chapter 3. The performance of each ap-
proaches was measured under the extended accuracy–effort framework. Instead
of generating product data randomly, here we utilize two existing real product
datasets. The apartment data set used in (Pu & Kumar, 2004) contains 50 apart-
ments with 6 attributes: type, price, size, bathroom, kitchen, and distance. The PC
data set (Reilly et al., 2004a) contains 120 PCs with 8 different attributes. This data
set is available at http://www.cs.ucd.ie/staff/lmcginty/PCdataset.zip.
In each session of our experiments, a product from the dataset was appointed as
the target choice, and the simulation process is to find this target product out from
the dataset. Each product was appointed to be target choice for 10 times, and the
number of interaction cycles for finding the target choice were recorded. We assume
at the beginning the user will reveal several preferences to the system. According
to our work on user’s behavior (Zhang, Pu, & Viappiani, 2006b), we observed that
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Figure 4.5: The results of the simulation experiments with the PC data set and the
apartment data set. (1)The average interaction cycles for the apartment data set;
(2)The average interaction cycles for the PC data set; (3) the accuracy of finding
the target choice within given number of interaction cycles for the apartment data
set; (4) the accuracy of finding the target choice within given number of interaction
cycles for the PC data set.

an average user states about 3 initial preferences. Thus we randomly determined
the number of the initial preferences from 1 to 5 in each session.

In each interaction cycle we assume that both the Critique_Apriori and the Cri-
tique_MAUT approaches generate 5 different compound critiques for user to choose.
The Critiue_Apriori approach adopts the lowest support (LS) strategy with a mini-
mum support threshold of 0.25 to generate compound critiques.

Figure 4.5 (1) and (2) show the average interaction cycles of different approaches.
Compared to the baseline Critique_Unit approach, the Critique_Apriori approach
can reduce the average interaction cycles by 15% (for apartment data set) and 28%
(for PC data set) respectively. This validates earlier research that the interaction
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cycles can be reduced substantially by utilizing compound critiques. Moreover, the
results show that the proposed Critique_MAUT approach can reduce the interaction
cycles over 20% compared to the Critique_Apriori approach (significant difference,
p < 0.01).

We define the accuracy as the percentage of finding the target product success-
fully within a certain number of interaction cycles. As shown in Figure 4.5 (3)
and (4), the Critique_MAUT approach has a much higher accuracy than both the
Critique_Unit and the Critique_Apriori approach when the number of interaction
cycles is small. For example, in the apartment data set, when the user is assumed
to make a maximum of 4 interaction cycles, the Critique_MAUT approach enables
the user to reach the target product successfully 85% of the time, which is 38%
higher than the Critique_Unit approach, and 18% higher than the Critique_Apriori
approach.

Compound critiques allow users to specify their preferences on two or more at-
tributes simultaneously thus they are more efficient than unit critiques. When the
compound critiques are shown to the user, it is interesting to know how often they
are applied during the interaction process. Here we also compared the application
frequency of compound critiques generated by MAUT and the Apriori algorithm in
our experiments. As shown in Figure 4.6, the application frequency of compound
critiques generated by the Critique_MAUT method are much higher than those gen-
erated by the Critique_Apriori method for both the PC data set (29% higher) and
the Apartment Data set (13% higher). We believe this result offers an explanation
of why the Critique_MAUT method can achieve fewer interaction cycles than the
Critique_Apriori method.

4.6 Discussions

The key improvement of the proposed Critique_MAUT approach is that the com-
pound critiques are determined through their utility values given by MAUT in-
stead of their support values given by the Apriori algorithm. Since a utility value
measures the product’s attractiveness according to a user’s stated preferences, our
approach has the potential to help the user find the target choice in an earlier stage.
The simulation experiment results verified this advantage of the Critique_MAUT
approach.

Modeling user’s preferences based on MAUT is not a new idea. In fact, MAUT
approach can enable users to make tradeoff among different attributes of the prod-
uct space. For example, Stolze has proposed the scoring tree method for building
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Figure 4.6: Application frequency of compound critiques generated by MAUT and
the Apriori algorithm

interactive e-commerce systems based on MAUT (Stolze, 2000). However, in our
approach we designed an automatic manner to gradually update the user’s prefer-
ence model according to the critique actions. The users are not obliged to state their
preference value or to adjust the weight value on each attribute explicitly thus the
interaction effort can be substantially reduced.

There are several limitations in our current work. The user’s preference model
is based on the weighted additive form of the MAUT approach, which might lead to
some decision errors when the attributes of the products are not mutually preferen-
tially independent (MPI). If some attributes are preferentially dependent, our ap-
proach is still able to generate the compound critiques. However, the user needs to
spend some extra effort to determine the utility function which is more complicated
than equation (4.1). Furthermore, currently the experiments are based on artificial
users with simulated interaction processes. We assume that the artificial user has
a clear and firm target in mind during the interaction process. In reality this as-
sumption is not always true because the user may change his or her mind during
the interaction process. Moreover, our approach determines the compound critiques
only based on utility values. Some researchers have pointed out that the approach
of combining similarity and diversity may provide better performance(Smyth & Mc-
Clave, 2001). So far we haven’t compared the Critique_MAUT approach with the
approach based on similarity and diversity.
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4.7 Summary

Generating high quality compound critiques is essential in designing critique-based
conversational recommender systems. The main contribution of this work is that
we propose a new approach in generating compound critiques based on the multi-
attribute utility theory. Unlike the popular method of generating compound cri-
tiques directly by the Apriori algorithm, our approach adaptively maintains the
user’s preference model based on MAUT during the interaction process, and the
compound critiques are determined according to the utility values. Our simulation
experiments show that our approach can reduce the number of interaction cycles
substantially compared to the unit critiques and the compound critiques generated
by the Apriori algorithm. Especially when the user is willing to make only a few
interactions with the system, our approach enables the user with a much higher
chance in finding the final target product. In the next chapter, we organize a set
of real-user studies to compare the performance of these critiquing approaches in
terms of the actual number of interaction cycles, decision accuracy and the degree
of users’ satisfaction.
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CHAPTER 5

Real-User Evaluations of Critiquing-based Search Tools

5.1 Introduction

In this chapter we will compare two approaches to the dynamic generation of com-
pound critiques through real-user studies. The first approach, Apriori, uses a data-
mining algorithm to discover patterns in the types of products remaining in the sys-
tem, then converts these patterns into compound critiques. The second approach,
MAUT, takes a utility-based decision theory approach to identify the most suitable
products for users and converts these into a compound critique representation. In
Chapter 4 both these two approaches have been introduced and compared in a sim-
ulated environment. The simulation results show that the MAUT approach can
reduce the number of interaction cycles substantially compared to the Apriori ap-
proach. However, this simulation process has some drawbacks in modeling some of
the different characteristics that real consumers may have. The simulation method
only simulated a very simple interaction process between the artificial user and the
system. It may be not very consistent to the interaction process in real situations.
Also, we cannot obtain users’ subjective opinions on these two approaches through
simulation method. To make the results be more convincing, it is better to evaluate
systems by real-user studies. A direct comparison of these techniques in a real-user
evaluation setting is needed to fully understand their relative pros and cons.
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To that end, two research groups1 have come together to carry out this compar-
ison for the approaches we each take. We set out to design a suitable evaluation
platform, called CritiqueShop, to comparatively evaluate these techniques in a re-
alistic product search situation. Ideally, this work would allow as to learn how to
improve and/or look at ways of marrying ideas from both approaches.

In this chapter we report two trials of real-user studies for the comparison of
these two different approaches. In the next section, we introduce the evaluation
platform that we have developed for carrying out various real-user studies. Then
we introduce the setup of these two trials of user studies. Next we report the exper-
imental results that we obtained during these user studies. Finally we summarize
our work at the end of this chapter.

5.2 The CritiqueShop Evaluation Platform

To carry out real-user studies, we must implement a product search tool so that
both approaches can be reached by end-users. We have two main concerns about
the real-user studies before we start to implement the product search tool. The
first concern is that this tool should be accessible online directly through users’
browsers, and users should be able to participate our user studies at any where and
at any time without supervision. This demands us to implement this tool as a web-
based system. And more importantly, the procedure of the user study should be
self-explanatory. The second concern is that the search tool should works like a real
online product search tool. It should be easily used and all the product information
in this tool should be the latest information from the market.

We developed the CritiqueShop system to meet the above requirement. It was
implemented as a web-based system by using the Google Web Toolkit (GWT),2 which
enables developers to build AJAX applications with Java language. CritiqueShop
provides a wizard-like procedure so that end-users can easily follow the procedure
of the user study. For each web page, the current task is highlighted at the left side
and an instruction description is given on the top side. Figures 5.11 to 5.15 show
some screen-shots of the general evaluation procedure based on the CritiqueShop
evaluation platform. The CritiqueShop platform is available online and can be ac-
cessed by the following URL: http://www.critiqueshop.com. The system that

1The two research groups are: the Human Computer Interaction group from EPFL, and the Adap-
tive Information Cluster group from University College Dublin.

2Please visit http://code.google.com/webtoolkit/ to see more introduction and download
this tool.
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5.3. REAL-USER EVALUATION TRIAL 1

Table 5.1: Design of Trial 1 (Sept. 2006)
Dataset: Laptop

Group Stage 1 Stage 2
Approach Interface Approach Interface

A MAUT Detailed Apriori Simplified(37 users)
B Apriori Simplified MAUT Detailed(46 users)

we implemented for the real-user studies in this chapter can be accessed from the
URL http://gwtui.critiqueshop.com.

5.3 Real-User Evaluation Trial 1

Accordingly, we designed a trial that asks users to compare two systems; one imple-
menting the Apriori approach, and one implementing the MAUT approach. For this
trial (referred to as Trial 1), we gathered a dataset of 400 laptop computers. A total
of 83 users separately evaluated both systems by using each system to find a laptop
that they would be willing to purchase. The order in which the different systems
were presented was randomized and at the start of the trial they were provided
with a brief description of the basic product search interface to explain the use of
unit and compound critiques and basic system operation.

However, this trial was limited in two important ways. Firstly, the interface
used to present the MAUT-generated compound critiques was different to the in-
terface used to present the Apriori-generated compound critiques; each conveyed
different types and amounts of information. These interfaces were selected as they
had been used in prior evaluations of the respective approaches and Figures 5.9
(simplified) and 5.10 (detailed) illustrate the differences between the two interfaces.
The simplified interface was used to display Apriori-generated compound critiques,
translating them into one line of descriptive text. The MAUT compound critiques
were displayed in the more informative detailed interface. Each MAUT compound
critique was separated into two parts, highlighting the attributes that will be im-
proved if the critique is chosen, as well as the compromises that will have to be
made. In addition, the user is given the opportunity to examine the product that
will be recommended on the next cycle if the compound critique is chosen. We be-
lieve that in this trial, the interface for presenting the compound critiques was
having a greater influence than the compound critiques themselves on individual
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Table 5.2: The datasets used in the online evaluation of the dynamic critiquing
product search tools.

Laptop Camera
# Products 403 103

# Ordinal Attributes 7 7
# Nominal Attributes 3 1

users. Hence it was not possible to attribute the observed performance difference
to the difference in critique-generation strategy since the relative importance of the
interface differences was unclear.

The second limitation was that it was performed on one dataset only – the lap-
top dataset. In reality, an e-commerce product search tool may be used for many
different types of products. It maybe reasonable to assume that the results from a
real-user evaluation on one dataset may not be the same on other datasets. For ex-
ample, we may find that a system employing Apriori-generated critiques performs
better on one dataset, and MAUT-generated critiques perform better on another.
Also, as some of our peers have suggested, asking users to perform the evaluation
on the same dataset twice with different product search tools might bias the re-
sults towards the second system, as users will have become more familiar with the
product domain.

5.4 Real-User Evaluation Trial 2

To address the limitations highlighted in Trial 1, we commissioned a second trial
(referred to as Trial 2). For this trial we decided to homogenize the interfaces used
by both techniques by using the detailed interface style for both the Apriori and
MAUT-generated compound critiques. In this way we can better evaluate the im-
pact of the different critique-generation strategies. In addition, we also used an-
other dataset (containing 103 digital cameras) in order to thwart a domain learning
effect. Table 5.2 lists the characteristics of the two datasets used in this trial. The
attributes used to describe the digital camera dataset can be seen in Figure 5.8, and
the attributes for the laptop dataset are shown in Figure 5.10.

For Trial 2 we used a within-subjects design. Each participant evaluated the two
critiquing-based product search tools in sequence. In order to avoid any carryover
effect, we developed four (2 × 2) experiment conditions. The manipulated factors
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Table 5.3: Design of Trial 2 (Nov. 2006)
Interface: Detailed

Group Stage 1 Stage 2
Approach Dataset Approach Dataset

C MAUT Laptop Apriori Camera(19 users)
D MAUT Camera Apriori Laptop(23 users)
E Apriori Laptop MAUT Camera(22 users)
F Apriori Camera MAUT Laptop(19 users)

Table 5.4: Demographic characteristics of participants

Characteristics Trial 1 Trial 2
(83 users) (85 users)

Country
Ireland 55 51
Switzerland 26 31
Other Countries 2 3

Age

<20 3 26
20-24 28 38
25-29 44 16
≥30 8 5

Online Never 26 31
Shopping ≤ 5 times 55 51

Experience >5 times 2 3

are the approach order (MAUT first vs. Apriori first) and product dataset order
(digital camera first vs. laptop first). Participants were evenly assigned to one of
the four experiment conditions, resulting in a sample size of roughly 20 subjects per
condition cell. Table 5.3 shows the details of the user-study design.

The real-user studies were carried out based on the CritiqueShop platform, con-
taining all instructions, interfaces and questionnaires to end-users. The wizard-like
trial procedure was easy to follow and all user actions were automatically recorded
in a log file. During the first stage, users were instructed to find a product (laptop
or camera) they would be willing to purchase if given the opportunity. After making
a product selection, they were asked to fill in a post-stage questionnaire to eval-
uate their view of the effort involved, their decision confidence, and their level of
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trust in the product search tool. Next, decision accuracy was estimated by asking
each participant to compare their chosen product to the full list of products to deter-
mine whether or not they preferred another product. The second stage of the trial
was almost identical, except that this time the users were evaluation a different
approach/dataset combination. Finally, after completing both stages, participants
were presented with a final questionnaire which asked them to compare both prod-
uct search tools. Figures 5.7 to 5.10 present some screenshots of the systems we
developed for these real-user trials.

5.5 Evaluation Results

5.5.1 Interaction Efficiency

To be successful, product search tools must be able to efficiently guide a user through
a product-space and, in general, short interaction sessions are to be preferred. For
this evaluation, we measure the length of a session in terms of interaction cycles,
i.e. the number of products viewed by users before they accepted the system’s rec-
ommendation. For each approach/dataset combination we averaged the session-
lengths across all users. It is important to remember that any sequencing bias was
eliminated by randomizing the presentation order in terms of critiquing technique
and dataset: Sometimes users evaluated the Apriori-based approach first and other
times they used the MAUT-based approach first. Similarly, sometimes users op-
erated on the camera dataset first and other times on the laptop dataset first (for
Trial 2).

In the real-user evaluation Trial 1, we only used the laptop dataset for both
systems. Figure 5.1 shows the results of the average session length on both systems.
As we can see, for new users (try the system first), the Apriori-based system can
gain shorter interaction cycles (7.7 for Apriori vs. 8.9 for the MAUT). However, for
return users (try the system second time), the MAUT-based system appears to be
more efficient (10.2 for Apriori vs. 8.7 for the MAUT).

Figure 5.2 presents the results of the evaluation on the laptop dataset showing
the average number of cycles for Apriori and MAUT based product search tools
according to whether users used the Apriori or the MAUT-based system first or
second in Trial 2. The results presented for the Laptop/MAUT combination are
consistent with the results from Trial 1. Users need 10.1 (for new users) or 9.2 (for
return users) cycles to reach their target product. The Laptop/Apriori system can
achieve an average session-length around 7, better than the performance in Trial 1.
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Figure 5.1: Average session lengths for both approaches on the laptop dataset (Trial
1).

The only different of the Apriori-based system in two Trials is the user interfaces. In
Trial 1, the Apriori-based system adopts a simplified interface; in Trial 2, it adopts
the detailed interface.

We also measured the average session length on the digital camera dataset for
both two systems in Trial2. The results for this dataset are presented in Figure 5.3,
and show a benefit for the MAUT-based approach to critique generation, which en-
joyed an average session length of 4.1 cycles, compared to 8.5 cycles for the Apriori-
based approach (significantly different, p = 0.016).

Dataset complexity is likely to be a factor when it comes to explaining this dif-
ference in performance. For example, the increased complexity of the laptop dataset
(403 products or 10 attributes) compared to camera dataset (103 products of 8 at-
tributes) suggests that the Apriori approach may offer improvements over MAUT in
more complex product spaces. Overall, both product search tools are quite efficient.
From a database of over 100 digital cameras, both are able to recommend cam-
eras that users are willing to purchase in 10 cycles or less, on average. The results
indicate that both tools are also very scalable. For instance, the laptop database
contains over 400 laptop computers and yet users still find suitable laptops in just
over 10 cycles. Although the product catalogue size has increased four-fold, session-
lengths have increased by just 30% on average.
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Laptop: Average Session Length
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Figure 5.2: Average session lengths for both approaches on the laptop dataset (Trial
2).

5.5.2 Recommendation Accuracy

Session-length is just one performance metric for an interactive product search tool.
The search tools should also be measured by the quality of the search made to users
over the course of a session (McSherry, 2003). One way to estimate search quality is
to ask users to review their final selection with reference to the full set of products
(see (Pu & Chen, 2005)). Accordingly the quality or accuracy of the search tool can
be evaluated in terms of percentage of times that the user chooses to stick with their
selected product. If users consistently select a different product the search tool is
judged to be not very accurate. If they usually stick with their selected product then
the search tool is considered to be accurate.

The real-world datasets in our real-user studies are relatively large compared
to datasets used in other real-user trials and the amount of products contained in
these datasets presented us with some interface problems. For example, the laptop
dataset contains over 400 products. Revealing all of these products to the users at
once would lead user confusion. Also, presenting large numbers of products makes
it very difficult for users to locate the actual product they desire. To deal with this,
we designed the interface to show 20 products at a time while also providing the
users with the facility to sort the products by attribute. Such an interface is called
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Figure 5.3: Average session lengths for both approaches on the camera dataset
(Trial 2).

ranked− list and had been used as baseline in earlier research (Pu & Kumar, 2004).
The bottom half of the interface showed the product they originally accepted and
allowed them to select that if they so wished.

Figure 5.4 presents the average accuracy results for both approaches on both
datasets in Trial 2. Interestingly it appears that the MAUT approach produces
more accurate search results. For example, it achieves 68.4% accuracy on the laptop
dataset and 82.5% on the camera dataset. This means that, on average, 4 out of 5
users didn’t find a better camera when the entire dataset of cameras was revealed
to them. The Apriori approach performed reasonably well, achieving an accuracy
of 57.9% and 64.6% on the camera and laptop datasets respectively. The difference
in accuracy between the two approaches on camera dataset is significant (82.5%
vs 57.9%, p = 0.015). However, the difference in accuracy on laptop dataset is no
significant(68.4% vs. 64.6%, p = 0.70).

Thus, despite the fact that users seemed to enjoy shorter sessions using the
Apriori-based approach on the laptop dataset, they turned out to be selecting less
optimal products as a result of these sessions. Users were significantly more likely
to stick with their chosen laptop when using the MAUT-based product search tool.
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Figure 5.4: Average search accuracy of both approaches on both datasets (Trial 2).

5.5.3 User Experience

In addition to the above performance-based evaluation we were also interested in
understanding the quality of the user experience afforded by the different critique
generation strategies. To test this we designed two questionnaires to evaluate the
response of users to the product search tools. The first (post-stage questionnaire)
was presented to the users twice: once after they evaluated the first system and
again after they evaluated the second system. This questionnaire asked users
about their experience using the system. After the users had completed both stages
and both questionnaires, they were presented with a final questionnaire that asked
them to compare both systems directly to indicate which they preferred.

Post-Stage Questionnaires

Following the evaluation we presented users with a post-study questionnaire in or-
der to gauge their level of satisfaction with the system. For each of 11 statements
(see Table 5.5). The agreement level ranked from -2 to 2, where -2 is strongly dis-
agree, and 2 is strongly agree. We were careful to provide a balanced coverage of
both positive and negative statements so that the answers are not biased by the
user’s expression style. A summary of the responses is shown in Figure 5.5.
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Table 5.5: Evaluation Questionnaire
ID Statement
S1 I found the compound critiques easy to understand.
S2 I didn’t like this system, and I would never use it again.
S3 I did not find the compound critiques informative.
S4 I found the unit-critiques better at searching for laptops (or digi-

tal cameras).
S5 Overall, it required too much effort to find my desired laptop (or

digital camera).
S6 The compound critiques were relevant to my preferences.
S7 I am not satisfied with the laptop (or digital camera) I settled on.
S8 I would buy the selected laptop (or digital camera), given the

opportunity.
S9 I found it easy to find my desired laptop (or digital camera).
S10 I would use this system in the future to buy other products.
S11 I did not find the compound critiques useful when searching for

laptops (or digital cameras).

From the results, both systems received positive feedback from users in terms of
their ease of understanding, usability and interfacing characteristics. Users were
generally satisfied with the search results retrieved by both approaches (see S2 and
S7) and found the compound critiques efficient (see S5). The results generally show
that compound critiquing is a promising approach for providing product search in-
formation to users, and most indicated that they would be willing to use the system
to buy products (see S2 and S10).

Some interesting results can be found if we compare the average ranking level of
both systems. In the first trial of the user study, participants indicated on average
a higher level of understanding in MAUT approach (see S1, 1.18 vs. 0.86, p = 0.006),
which shows that compound critiques provided by the MAUT approach are easier to
understand. Also, on average users ranked the MAUT approach more informative
(see S3, −0.59 vs. −0.18, p = 0.009). Moreover, users are more likely to agree
with the statement that the unit-critiques are better at searching for laptops with
Apriori approach than the MAUT approach (see S4, 0.82 vs. 0.41, p = 0.01). In
Trial 2 however, these differences were no longer significant. As we can see, the
MAUT approach acquires similar scores in both trials but now the Apriori approach
scores much better in the second trial when using the same interface as the MAUT
approach. This would seem to support our hypothesis that the compound critique
presentation mechanism has a significant role in influencing users’ opinions on the
compound critiques approaches.

103



CHAPTER 5. REAL-USER EVALUATIONS OF CRITIQUING-BASED SEARCH TOOLS

Final Questionnaires

The final questionnaire simply asked each user to vote on which system (Apriori
or MAUT) performed better in terms of various criteria such as overall preference,
informativeness, interface etc. The results are presented in Figure 5.6, showing
the original feedback obtained during the earlier Trial 1 evaluation (Reilly, Zhang,
McGinty, Pu, & Smyth, 2007) (which used different interface styles for the Apriori
and MAUT approaches) in comparison to the feedback obtained for the current Trial
2 (in which such interface differences were removed). As previously reported (Reilly
et al., 2007), users were strongly in favour of the MAUT-based approach. However,
the results shown for Trial 2 are consistent with the hypothesis that this preference
was largely due to the more informative interface styles used during Trial 1 by the
MAUT-based product search tool. In Trial 2, for example, we see a much more
balanced response by users that gives more or less equal preference to the MAUT
and Apriori-based approaches and validate the benefit of the new more informative
interface.

5.6 Summary

In this chapter carried out a series of comprehensive user studies to evaluate two
product search tools that differ the way they generate compound critiques. We
developed an online evaluation platform to evaluate both systems using a mix-
ture of objective criteria (such as the interaction efficiency, recommendation qual-
ity/accuracy) and subjective criteria (such as a user’s perceived satisfaction). Two
trials of real-user studies were carried out to deeply compare the performance of
both systems. Our findings show that both critique generation approaches are very
effective for helping users navigate to suitable products. Both lead to efficient prod-
uct search sessions. In some situations, the MAUT-based approach appears to lead
to higher quality of search results. Overall, users responded positively to both sys-
tems in terms of the recommendation performance, accuracy and the interface style.
Importantly, we discovered that the presentation mechanism is crucial to the users
understanding and acceptance.
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Trial1: Post-Questionnaire Results
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Trial2: Post-Questionnaire Results
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Figure 5.5: A comparison of the post-stage questionnaires from Trial 1 and Trial 2.
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Results From User’s Final Questionnaires 
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Figure 5.6: The final questionnaire results.
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Figure 5.7: Sample screen-shot of the evaluation platform (with detailed interface).
Left: the unit critiquing panel; right bottom: the compound critiquing panel; center:
the current recommended product panel.
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Figure 5.8: Screen-shot of the initial preferences (digital cameras).

Figure 5.9: Screen-shot of the simplified compound critiquing interface (laptop).

Figure 5.10: Screen-shot of the detailed compound critiquing interface (laptop).
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Figure 5.11: Screen-shot of the CritiqueShop evaluation platform: the first welcome
web page at the beginning.

Figure 5.12: Screen-shot of the CritiqueShop evaluation platform: the web page of
asking user’s personal information.
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Figure 5.13: Screen-shot of the CritiqueShop evaluation platform: the question-
naire web page of asking users to evaluate the system that they have just tried
(post-questionnaire).

Figure 5.14: Screen-shot of the CritiqueShop evaluation platform: the question-
naire web page of asking users to compare two systems that they have tried (final-
questionnaire).
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Figure 5.15: Screen-shot of the CritiqueShop evaluation platform: the web page of
asking user to find out the product that he or she really wants from a list of all
products in the dataset.
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CHAPTER 6

Visual Interface for Compound Critiquing

6.1 Introduction

In critiquing-based product search tools, it is important to encourage users to apply
compound critiques frequently. In Chapter 5, it has been found that users often
prefer the more detailed critiquing interface, rather than a simplified one. This
result shows that the design of the user interface is an important factor for the
overall performance of the search tool. However, to date there has been a lack of
comprehensive investigation on the impact of interface design issues for critiquing-
based product search tools.

In this chapter we are seeking ways to improve the performance of critiquing-
based product search tools from the interface design level. Traditionally, compound
critiques are represented textually with sentences (Reilly et al., 2004a, 2005). In our
previous work (see Chapter 4 & 5) our online product search tool is also design in
such a way, keeping displaying compound critiques with plain texts. If the product
domain is complex and has many features, it often requires too much effort for users
to read the whole sentence of each compound critique. We believe that such textual
interfaces hamper the users’ experience during the recommendation process. Aim-
ing to solve this, here we propose a new visual design of the user interfaces, which
represents compound critiques via a selection of value-augmented icons. Based on
the CritiqueShop system developed in our earlier work, here we further develop
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an online shopping prototype system in both laptop and digital camera domains
with visualized compound critiques, and carry out a real-user study to compare the
performance of this design with the old one.

The rest of this chapter is organized as follows. We first provide a brief review
of the related work about critiquing techniques. Then the two interface designs for
critiquing-based product search tools are introduced. Next we describe the setup
of the real-user study and report the evaluation results. Finally we present the
discussion and summary of this work.

6.2 Related Work

Critiquing was first introduced as a form of feedback for product search interfaces as
part of the FindMe systems (Burke et al., 1996, 1997), and is perhaps best known for
the role it played in the Entrée restaurant recommender. During each cycle Entrée
presents users with a fixed set of critiques to accompany a suggested restaurant
case, allowing users to tweak or critique this case in a variety of directions; for
example, the user may request another restaurant that is cheaper or more formal,
for instance, by critiquing its price and style features.

The simplest form of critiquing is a unit critique which allows users to give feed-
back (eg. increase or decrease) on a single attribute or feature of the products at a
time(Burke et al., 1997). It is a mechanism that gives direct control to each indi-
vidual dimension. The unit critique can be readily presented as a button alongside
the associated product feature value and it can be easily selected by the user. In ad-
dition, it can be used by users who have only limited understanding of the product
domain. However, unit critiques are not very efficient: if a user wants to express
preferences on two or more attributes, multiple interaction cycles between the user
and the system are required and big jumps in the data space are not possible in one
operation.

To make the critiquing process more efficient, an alternative strategy is to con-
sider the use of what we call compound critiques (Burke et al., 1996; Reilly et al.,
2004a). Compound critiques are collections of individual feature critiques and allow
the user to indicate a richer form of feedback, but limited to the presented selection.
For example, the user might indicate that they are interested in a digital camera
with a higher resolution and a lower price than the current recommendation by
selecting a lower price, higher resolution compound critique.

Obviously compound critiques have the potential to improve recommendation
efficiency because they allow users to focus on multiple feature constraints within
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a single cycle. Recently, several dynamic compound critique generation algorithms
have been proposed. For example, the Apriori approach uses a data-mining algo-
rithm to discover patterns in the types of products remaining, then converts these
patterns into compound critiques (Reilly et al., 2004a). This is a system-centric ap-
proach, and may generate biased results when the underlying database is not well
provided. In Chapter 4 we have introduced an alternative method called the MAUT
approach to generate compound critiques. This approach takes the multi-attribute
utility theory (MAUT) (Keeney & Raiffa, 1976) to model users’ preferences, and then
it identifies the most suitable products for users and converts them into compound
critiques. The performance of this approach has been evaluated in Chapter 5.

Information visualization tools have been developed in past years to help users
formulate their queries and understand the relationships between collection of in-
formation. In (Ahlberg & Shneiderman, 1994), the Starfield approach together with
the dynamic query method allow users to explore information and data relation-
ships in a large data collection. Users can manipulate attribute values using slid-
ers, and once the values are changed, the display zooms in on a subspace, allowing
information seeking at the detailed level. In (Cutting, Karger, Pedersen, & Tukey,
1992), a Scatter/Gather approach automatically clusters retrieved documents into
categories and labels them with descriptive summaries. Kohonen maps cluster doc-
uments into regions of a 2-D map (Lin, Soergel, & Marchionini, 1991). Recently
in (Pu & Janecek, 2003), a visual interface was implemented using semantic fish-
eye views to expand search context and to allow users more opportunities to refine
initial queries.

In this work we apply visualization technique on the critiquing-based product
search tools. More specifically, we present the compound critiques with various
meaningful icons, instead of descriptions of plain text. We believe that the visual
interface can attract users to apply the compound critiques more frequently and re-
duce the users’ interaction efforts substantially compared to the traditional textual
interface.

6.3 Interface Design

One of the main focusses of this study is on the interface design for critiquing-
based product search tools. In Chapter 5 we have implemented an online shopping
system on the product domains of both digital cameras and laptops. It is designed in
a way that allows users to concentrate on the utilization of both unit critiques and
compound critiques as the feedback mechanism. The interface layout is composed
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Figure 6.1: An illustrative example of the textual interface (above) and the visual
interface (below).

of three main elements: a product panel, a unit critique panel and a compound
critique panel. The product panel shows the current recommended product which
best matches the user’s preferences. In the unit critique panel, each feature is
surrounded by two small buttons, which allow users to increase or decrease a value
in the case of numeric features, and to change a value in categorical features such
as the brand or processor type. In the compound critique panel, a list of compound
critiques is shown (as textual sentences). Users can perform a compound critique by
clicking the button “I like this” on its right-hand side. These three elements make
up the main shopping interface and are always visible to end-users.

We are interested in getting a better perception of the role of the interface’s
design in the whole interaction process. We are in particular motivated by the
frequent observation that people find the compound critiques too complex and admit
to not actually reading all the information provided. In this context, we decide to
create a visual representation of the compound critiques and to compare it with the
traditional textual format through a real-user study. In the rest of this section, the
design of the two interfaces are introduced in detail.

6.3.1 Textual Interface

The textual interface is the standard way to represent compound critiques and was
used in our previous work (see Chapter 4 & 5). As an example, a typical compound
critique will say that this product has “more memory, more disk space, but less
battery” than the current best match item. A direct mapping is applied from the
computed numerical values of the critique, to decide if there is more or less of each
feature. Here we adopt the detailed interface where users are capable of seeing
the product detail behind each compound critique. In addition, for each compound
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critique, the positive critiques are listed in bold on the first line, while the negative
ones follow on the second line in a normal font-weight. The Figure 5.10 shows an
example of the textual interface for compound critiques.

6.3.2 Visual Interface

The visual interface used in this study was developed in several phases. The ini-
tial idea was to propose a graphical addition in order to complement the textual
critiques, but this rapidly evolved into a complete alternative to a textual represen-
tation of the critiques. Three main solutions were considered: using icons, provid-
ing a graph of the different attributes or using text-effects such as tag-clouds. The
first two solutions were kept and selected to build paper prototypes. The first test
revealed that the icons were perceived as being closer in meaning to the textual
representation, and they were hence chosen for this study.

Icons pose the known challenge that whilst being small they must be readable
and sufficiently self-explanatory for users to be able to benefit from them. One
difficult task was to create a set of clear icons for both datasets. We refined them
twice after small pilot-studies to make them uniform and understandable. They
were then augmented such as to represent the critiques: the icon size was chosen
as a mechanism to represent the change of value of the considered parameter. For
each parameter of a compound critique, we know if the raw value is bigger, equal
or smaller. We used this to adapt the size of the iconized object thus creating an
immediate visual impression of what were the features increasing or decreasing.

Whilst designing these icons we were concerned about two major issues. First of
all, it rapidly appeared that changing the size of icons would be insufficiently clear
or even confusing at times. This is due to a well known issue with icon design. Indi-
cating an increase in value is not always a positive action: an increase in weight is
a negative fact (for both cameras and laptops). Secondly we were convinced that all
the icons would have to be displayed for each compound critique. The textual cri-
tiques only indicate the parameters that change, but doing so with the icons would
have resulted in lines of different lengths, creating an alignment problem. These
two potential issues lead us to further extend the icons with additional labelling.

Consequently we decided to add a token to the corner of each icon: an up arrow,
a down arrow or an equal sign, to further indicate if the critique was respectively
increasing, decreasing or equal to the current best match. At the same time we gave
colors to the border and token of each icon such as to indicate if the change in value
was positive, negative or equal. Green was chosen for positive, red for negative and
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grey for the status quo. For those features without value change, the corresponding
icons were shown in light gray. Thus all compound critiques had an equal number
of icons and the potential alignment problem was avoid. More importantly, these
lines of aligned icons form a comparison matrix and they are decision supportive: a
user can quickly decide which compound critique to apply by counting the number
of positive or negative icons.

During our pilot user study we found that the visual interface required from
users a learning effort. Two measures were taken to tune down this effect. Firstly,
a miniature legend of the icons was included at the top of the compound critique
panel. Secondly, in our user study we provided an instructions page to users with
explanations of the meaning of icons and some icon examples.

In summary, our visual interface for compound critiques is designed as follows.
We first choose meaningful icons to represent the product features in the datasets.
These icons are listed in Figure 6.2. Each icon is then tagged with a color to describe
the feature improvement:

• Green border: positive improvement;

• Red border: negative improvement;

• Gray icon : no difference

In addition, we also add some tokens at the right-bottom corner of each icon to
represent the value increase or decrease:

• Up arrow ( ↑ ): value increase;

• Down arrow ( ↓ ): value decrease;

• Equal sign( = ): no difference

For example, if the weight of a digital camera is smaller than the current prod-
uct, then the corresponding icon will have an down arrow with green color, since
lighter is a positive improvement for a digital camera. Figure 6.1 provides a quick
comparison of the textual compound critiques and our visual design (including leg-
end).
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Figure 6.2: The icons that we designed for different features of the two datasets:
laptops (left) and digital cameras (right).

6.4 Real-User Evaluation Trial 3

We conduct a new real-user evaluation (Trial 3) to compare the performance of the
two interfaces in September 2007. In this section we first present the performance
evaluation criteria, then we outline the setup of the evaluation and introduce the
datasets and participants.

6.4.1 Evaluation Criteria

There are two types of criteria for measuring the performance of a critiquing-based
recommender system: the objective criteria from the interaction logs and the sub-
jective criteria from users’ opinions. In this real-user evaluation we mainly concen-
trate on the following objective criteria: the average interaction length, the appli-
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cation frequency of compound critiques, and the recommendation accuracy. Partici-
pants’ subjective opinions include understandability, usability, confidence to choose,
intention to purchase, etc. They are obtained through several questionnaires, which
will be introduced later in this section.

6.4.2 Evaluation Setup

We extended the CritiqueShop evaluation platform so that it supports user stud-
ies for comparing various interface designs. The system that we used for this user
study is available online through the URL http://visual.critiqueshop.com.
In addition, the MAUT approach was applied to generate compound critiques dy-
namically in all situations. We adopted a within-subjects design of the real-user
evaluation where each participant is asked to evaluate the two different interfaces
in sequence and finally compare them directly. The interface order was randomly
assigned so as to equilibrate any potential bias. To eliminate the learning effect that
may occur when evaluating the second interface, we adopted two different datasets
(laptops and digital cameras) so that the user was facing different domains each
time. As a result, we had four (2 × 2) conditions in the experiment, depending on
the factor of interface order (visual first vs. textual first) and product dataset order
(digital camera first vs. laptop first). For each user, the second stage of evaluation is
always the opposite of the first so that he or she may not take the same evaluation
twice.

We implemented a wizard-like online web application containing all instruc-
tions, interfaces and questionnaires so that subjects could remotely participate in
the evaluation. The general online evaluation procedure consists of the following
steps.

Step 1. The participant is asked to input his/her background information.

Step 2. A brief explanation of the critiquing interface and how the system works
is shown to the user.

Step 3. The user participates the first stage of the evaluation. The user is in-
structed to find a product (either laptop or camera, randomly determined) he/she
would be willing to purchase if given the opportunity. The user is able to input
his/her initial preferences to start the recommendation (see figure 6.8), and then
he/she can play with both unit critiques and compound critiques to find a desired
product to select. Figure 6.10 illustrates the online shopping system with the con-
dition of visual interface and laptop dataset.
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Table 6.1: Post-Stage Assessment Questionnaire
ID Statement
S1 I found the compound critiques easy to understand.
S2 I didn’t like this recommender, and I would never use it again.
S3 I did not find the compound critiques informative.
S4 I am confident that I have found the laptop (or digital camera) that I

like.
S5 Overall, it required too much effort to find my desired laptop (or digital

camera).
S6 The compound critiques were relevant to my preferences.
S7 I am not satisfied with the laptop (or digital camera) I found using this

system.
S8 I would buy the selected laptop (or digital camera), given the opportu-

nity.
S9 I found it easy to find my desired laptop (or digital camera).
S10 I would use this recommender in the future to buy other products.
S11 I did not find the compound critiques useful when searching for laptops

(or digital cameras).
S12 Overall, this system made me feel happy during the online shopping

process.

Step 4. The user is asked to fill in a post-stage assessment questionnaire to eval-
uate the system he/she has just tested. He/she can indicate the level of agreement
for each statement on a five-point Likert scale, ranging from −2 to +2, where −2
means “strongly disagree” and +2 is “strongly agree”. We are careful to provide a
balanced coverage of both positive and negative statements so that the answers are
not biased by the user’s expression style. The post-stage questionnaire is composed
of twelve statements as listed in table 6.1.

Step 5. Recommendation accuracy is estimated by asking the participant to
compare his/her chosen product to the full list of products to determine whether
or not he/she prefers another product. In our practice, the datasets are relatively
large, and revealing all of these products to the user at once during the accuracy
test would lead the user to confusion. To deal with this, we designed the accuracy
test interface to show 20 products at a time while also providing the user with the
facility to sort the products by attribute. Such interfaces are called Rankedlists and
have been used as baseline in earlier research (Pu & Kumar, 2004).

Step 6 – 8. These are steps for the second stage of evaluation which are almost
identical to the steps 3 – 5, except that this time the user is facing the system with
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Table 6.2: Final Preference Questionnaire
ID Questions
Q1 Which system did you prefer?
Q2 Which system did you find more informative?
Q3 Which system did you find more useful?
Q4 Which system had the better interface?
Q5 Which system was better at recommendaing products (laptops or cam-

eras) you liked?
S13 I understand the meaning of the different icons in the visual interface.

a different interface/dataset combination.

Step 9. After completing both stages of evaluation, a final preference question-
naire is presented to the user to compare both systems he/she has evaluated. The
user needs to indicate which interface (textual or visual) is preferred in terms of
various criteria such as overall preference, informativeness, interface etc. The ques-
tions are listed in table 6.2. This final preference questionnaire also contains an
extra statement (S13) to evaluate if the icons that we have designed are easy to
understand.

6.4.3 Datasets and Participants

We noticed that the laptop and digital camera datasets used in Trial 1 & 2 are the
products on the market one year ago and some information has already been out of
date. This factor may influence the results of the real-user study. So we didn’t use
the old datasets in this experiment directly. Instead, we updated these two datasets
one week before the beginning of the experiment, resulting in them containing the
most recent products currently available on the market. The laptop dataset con-
tains 610 different items. Each laptop product has 9 features: brand, processor type,
processor speed, screen size, memory, hard drive, weight, battery life, and price. The
second one is the digital camera dataset consisting of 96 cases. Each camera is rep-
resented by 7 features: brand, price, resolution, optical zoom, screen size, thickness
and weight. Besides, each product has a picture and a detail description.

To attract users to participate in our user study, we set an incentive of 100 EURO
and users were informed that one of those who had completed the user study will
have a chance to win it. The user study was carried out over two weeks. Finally we
obtained 83 users in total who completed the whole evaluation process. Their demo-
graphic information is shown in table 6.3. The participants were evenly assigned
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Table 6.3: Demographic characteristics of participants (Trial 3)
Characteristics Users (83 in total)

Nationality

Switzerland 36
China 13
France 12
Ireland 6

Italy 4
Other Countries 12

Age

<20 6
20-24 30
25-29 40
≥30 7

Gender female 15
male 68

Online Never 2
Shopping ≤ 5 times 38

Experience >5 times 43

to one of the four experiment conditions, resulting in a sample size of roughly 20
subjects per condition cell. Table 6.4 shows the details of the user study design.

6.5 Evaluation Results

6.5.1 Recommendation Efficiency

To be successful, a recommender system must be able to efficiently guide a user
through a product-space and, in general, short recommendation sessions are to be
preferred. For this evaluation, we measure the length of a session in terms of recom-
mendation cycles, i.e. the number of products viewed by users before they accepted
the system’s recommendation. For each recommendation interface and dataset com-
bination we averaged the session lengths across all users. It is important to remem-
ber that any sequencing bias was eliminated by randomizing the presentation order
in terms of interface type and dataset.

Figure 6.3 presents the results of the average session lengths with different in-
terfaces. The visual interface appears to be more efficient than the baseline textual
interface. For the laptop dataset, the visual interface can reduce the interaction
cycles substantially from 11.7 to 5.5, a reduction of 53%. The difference between
these two results is significant (p = 0.03, with ANOVA test in this chapter). For the
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Table 6.4: Design of the real-user evaluation for Trial 3

Group First stage Second stage
Interface Dataset Interface Dataset

I Textual Camera Visual Laptop(20 users)
II Textual Laptop Visual Camera(20 users)
III Visual Camera Textual Laptop(23 users)
VI Textual Laptop Textual Camera(20 users)

camera dataset, the visual interface can reduce the average interaction cycle from
9.7 to 7.3, a reduction of 25% (not significant, p = 0.31).

We also look into the detail of each interaction session to see how often the
compound critiques had actually been applied. Previous studies have shown that
frequent usage of compound critiques is correlated with shorter sessions. Higher
application frequencies would indicate that users find the compound critiques more
useful. Figure 6.4 shows application frequency of compound critiques for both sys-
tems. For the system with textual interface, the average application frequencies
are respectively 7.0% (for laptops) and 9.0% (for cameras). For the system with vi-
sual interface, the average application frequency is nearly doubled to 13.6% for the
laptop dataset (significant different, p = 0.01). For the camera dataset the applica-
tion frequency is 9.9%, a 9.5% increase compared to the baseline textual interface
(not significant, p = 0.70). Since for both systems we are using exactly the same
algorithm to generate the compound critiques, the results shows that the visual
interface can attract more users to choose the compound critiques during their de-
cision process. Also, compared to the two systems with different datasets, it seems
to show that the visual interface can be more effective when the domain is more
complex.

6.5.2 Recommendation Accuracy

Recommenders should also be measured by the quality of the recommendations over
the course of a session (McSherry, 2003). One factor for estimating recommendation
quality is the recommendation accuracy, which can be measured by letting users to
review their final selection with reference to the full set of products (see (Pu & Ku-
mar, 2004)). Formally, here we define recommendation accuracy as the percentage
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Figure 6.3: Average session lengths for both user interfaces

of times that users choose to stick with their selected product. If users consistently
select a different product the recommender is judged to be not very accurate. The
more people stick with their selected best-match product then the more accurate
the recommender is considered to be.

Figure 6.5 presents the average accuracy results for both interfaces on both
datasets. The system with textual interface performs reasonably well, achieving
an accuracy of 74.4% and 65.0% on the laptop and camera datasets respectively. By
comparison, the system with visual interface achieves 82.5% accuracy on the laptop
dataset and 70.0% on the camera dataset. which have been increased 10% and 7%
respectively. It appears that the visual interface produces more accurate recom-
mendations. However, these improvements are not significant (p = 0.378 for laptop
dataset, and p = 0.648 for camera dataset).

6.5.3 User Experience

In addition to the above objective evaluation results we were also interested in
understanding the quality of the user experience afforded by the two interfaces. As

125



CHAPTER 6. VISUAL INTERFACE FOR COMPOUND CRITIQUING

Average Application Frequency
of Compound Critiques

0%

5%

10%

15%

20%

25%

30%

Laptop Camera

F
re

q
u

e
n

cy

Textual
Visual

Figure 6.4: Average application frequency of the compound critiques for both user
interfaces.

we have mentioned earlier, a post-stage assessment questionnaire was given when
each system had been evaluated. The twelve statements are listed in table 6.1. A
summary of the average responses from all users is shown in figure 6.6.

From the results we can see that both systems with different interfaces received
positive feedback from users in terms of their ease of understanding, usability and
interfacing characteristics. Users were generally satisfied with both systems (see
S2 and S7) and found them quite efficient (see S5). We also noticed that overall
the visual interface has received higher absolute values than the baseline textual
interface on all these statements. It is especially worthy to point out there are 3
statements that the visual interface has significant improvements: S4 (p = 0.001),
S5 (p < 0.01) and S9 (p = 0.014). These results show that the visual interface is
significantly better than the textual interface in the criteria of efficiency, easy of
usage and leading to a more confident shopping experience.

The final preference questionnaire asked each user to vote on which interface
(textual or visual) had performed better. The detail of the final preference question-
naire is shown in table 6.2, and the results are shown in figure 6.7. The results show
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Figure 6.5: Average recommendation accuracy for both user interfaces

that overall users feel the visual interface is better than the textual interface in all
given criteria. For instance, 51% of the whole users may prefer the visual interface
compared to 25% of whom prefer the textual interface (see Q1). Also, more than
55% of users think the visual interface is better (see Q4). Furthermore, although
the two systems have exactly the same algorithm to generate compound critiques,
the visual interface can enhance users’ perception on the recommendation quality
(see Q5).

In the final questionnaire we provided one extra statement (S13) for users to
evaluate if the icons in the visual interface are understandable. Again users were
asked to score this statement from -2 (strongly disagree) to 2 (strongly agree). The
overall average score is 1.23, which shows that the icons are quite understandable
and have been well designed.

6.6 Discussion

It is interesting to notice that in the user study results, while the visual interface
performed better than the textual interface with both laptop and camera datasets,
the visual interface has achieved higher performance improvements in the situa-
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Post-Questionnaire Results
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Figure 6.6: Results from the post-stage assessment questionnaire.

tion of laptop dataset than in the situation of camera dataset. The main difference
between the two datasets is that the laptop assortment is more complex. It con-
tains more products and each product has more features than the camera dataset.
When the product domain is complex, the textual interface will generate very long
strings of text to describe the compound critiques, which are not easy for users to
read. By comparison, the visual interface could provide an intuitive and effective
way for users to make decision by simply counting the number of positive and neg-
ative icons. As a result, we believe that the visual interface brings a tremendous
advantage in complex domain situations.

While a large proportion of users prefer the visual interface for the critiquing-
based recommender system, we also noticed that there is still a small number of
users who insist on the textual interface. One reason for this phenomena is possi-
bly that they aren’t familiar with the visual interface. After all, it requires some
additional learning effort to understand the meaning of various icons at the begin-
ning. A few methods we could apply to satisfy this part of users in future include
adding some detailed instructions and illustrative examples to educate new users,
or in our system we could provide both textual and visual interfaces and let the
users choose the preferred interfaces adaptively by themselves.
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Final-Questionnairs Results
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Figure 6.7: Results from the final preference questionnaire.

During the user study several users commented on the fact that our current
system lacked some additional functions that currently exist in other normal web-
sites. For example some uses wanted to have a flexible search function by specifying
preference values on multiple features during the interaction process. We do be-
lieve that by integrating such additional functions in the critiquing-based system,
a higher overall satisfaction level can be reached. For example, it has been shown
that a hybrid system is able to achieve higher overall performance (Chen & Pu,
2007). However, in this user study, the main purpose was to learn the performance
of the critiquing techniques automatically generated by the system. Our current
system was deliberately designed to exclude those functions in order to make sure
the users would focus on the function of unit critiquing and compound critiquing
that had been automatically recommended by the system. It will be our future
work to find proper ways to integrate more functions into the current critiquing-
based product search tools.
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6.7 Summary

User interface design is an important issue for critiquing-based product search
tools. Traditionally the interface is textual, which shows compound critiques as
sentences in plain text. In this chapter we propose a new visual interface which
represents various critiques by a set of meaningful icons. We developed an online
web application to evaluate this new interface using a mixture of objective crite-
ria and subjective criteria. Our real-user study showed that the visual interface
is more effective than the textual interface. It can reduce user’s interaction effort
(up to 53% of reduction) and attract users to apply the compound critiques more
frequently (10% of increase). Also, the system with visual interface is significantly
more appreciated by users and could make users feel more confident in finding their
desired products.
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Figure 6.8: Screenshot of the interface for initial preferences (with digital camera
dataset). Icons are added on the left side of features so that users could get familiar
with the icon meanings.

Figure 6.9: Screenshot of the interface for visual compound critiquing (with laptop
dataset).
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Figure 6.10: Screenshot of the visual interface for the online shopping system (with
laptop dataset).
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CHAPTER 7

Recursive Collaborative Filtering

7.1 Introduction

The collaborative filtering approach has been widely used to help people find low-
risk products such as movies, books, etc (Resnick et al., 1994; Breese et al., 1998;
Herlocker et al., 1999, 2002). The key idea of this approach is to infer the preference
of an active user towards a given item based on the opinions of some similar-minded
users in the system. Many popular e-commerce web sites – Amazon.com for exam-
ple – have adopted this technique in making their online shopping system more
efficient.

One of the most prevalent algorithms in collaborative filtering (CF) approach is
based on the nearest-neighbor users (called user-based CF approach). To predict the
rating value of a given item for an active user, a subset of neighbor users are chosen
based on their similarity to the active user – called nearest-neighbor users – and
their ratings of the given item are aggregated to generate the prediction value for
it.

The conventional prediction process of the user-based CF approach selects neigh-
bor users using two criteria: 1)they must have rated the given item; 2)they must be
quite close to the active user (for instance, only the top K nearest-neighbor users
are selected). However, in reality most users in recommender systems are unlikely
to have rated many items before starting the recommendation process, making the
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training data very sparse. As a result, the first criterion may cause a large pro-
portion of users being filtered out from the prediction process even if they are very
close to the active user. This in turn may aggravate the data sparseness problem.

To overcome the data sparseness problem and enable more users to contribute in
the prediction process, here we propose a recursive prediction algorithm which re-
laxes the first criterion mentioned above. The key idea is the following: if a nearest-
neighbor user hasn’t rated the given item yet, we will first estimate the rating value
for him or her recursively based on his or her own nearest-neighbors, and then we
use the estimated rating value to join the prediction process for the final active
user. In this way we have more information to contribute to the prediction process
and it should be able to improve the prediction accuracy for collaborative filtering
recommender systems. The main contribution of this work is that we relax the
constraint that neighbor users must also have rated the given item. The proposed
recursive prediction algorithm enables more flexibility in the prediction process of
finding the useful neighbor users. One important issue is exactly how to select
those effective nearest-neighbor users for the prediction process. In this work we
will present the recursive prediction algorithm with various ways of determining
the nearest-neighbor users and report their performances.

The rest of this chapter is organized as follows. The next section provides a brief
review of the related work about collaborative filtering recommender systems. Sec-
tion 3 recalls the general prediction process of the nearest-neighbor based collabora-
tive filtering approach. In Section 4 we describe the recursive prediction algorithm
in detail. Section 5 provides experimental results of evaluating the performance of
the proposed approach. Finally we give discussions and summary in Section 6 and
Section 7 respectively.

7.2 Related Work

The collaborative filtering approach has been developed in a long time ago. One
of the earliest collaborative filtering recommender systems was implemented as an
email filtering system called Tapestry (Goldberg et al., 1992). Later this technique
was extended in several directions and was applied in various domains such as mu-
sic recommendation (Shardanand & Maes, 1995) and video recommendation (Hill
et al., 1995).

Generally speaking, collaborative filtering algorithms can be classified into 2
categories. One is memory-based CF algorithms, which predict the vote of a given
item for the active user based on the votes from some other neighbor users. Memory-
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based algorithms operate over the entire user voting database to make predictions
on the fly. The most frequently used approach in this category is nearest-neighbor
CF: the prediction is calculated based on the set of nearest-neighbor users for the
active user (user-based CF approach) or, nearest-neighbor items of the given item
(item-based CF approach). The second category of CF algorithms is model-based.
It uses the user voting database to estimate or learn a probabilistic model (such
as cluster models, or Bayesian network models, etc), and then uses the model for
prediction. The detail of these methods and their respective performance have been
reported in (Breese et al., 1998).

In this work we focus on the user-based CF approach (Resnick et al., 1994). The
general prediction process is to select a set of nearest-neighbor users for the active
user based on a certain criterion, and then aggregate their rating information to
generate the prediction for the given item. More recently, an item-based CF ap-
proach has been proposed to improve the system scalability (Linden et al., 2001;
Sarwar et al., 2001). The item-based CF approach explores the correlations or sim-
ilarities between items. Since the relationships between items are relatively static,
the item-based CF approach may be able to decreases the online computational cost
without reducing the recommendation quality. The user-based and the item-base
CF approaches are broadly similar, and it is not difficult to convert an implementa-
tion of the user-based CF approach into the item-base CF approach and vice versa.

The method of selecting nearest-neighbors is an important issue for the nearest-
neighbor CF approach. In (Breese et al., 1998) it is found that highly correlated
neighbors can be exceptionally more valuable to each other in the prediction pro-
cess than low correlated neighbors. Herlocker et al. (Herlocker et al., 2002) have
systematically studied various design issues for the nearest-neighbor CF approach.
They have studied the correlation-thresholding technique in the neighbor selec-
tion process and found it does not give more accurate predictions than the plain
non-thresholding method. Also, they have found that selecting a reasonable size
of nearest-neighbors (usually range from 20 to 50) produced the lowest prediction
error.

The above studies focused on selecting nearest-neighbor users from those who
had also rated the given item. The prediction algorithm used in their work is direct
and intuitive. However, this algorithm ignores the possibility that some users may
be able to make a valuable contribution to the prediction process, despite not having
explicitly rated the given item. By comparison, the recursive prediction algorithm
proposed in this work relaxes such condition and could allow the nearest-neighbor
users to be selected from a larger range of candidate users. Based on the recursive
prediction algorithm, we propose new techniques for selecting nearest-neighbors to
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improve the prediction accuracy.

7.3 Nearest-Neighbor based Collaborative Filtering

Herlocker et al. (Herlocker et al., 2002) have summarized the procedure of applying
the nearest-neighbor based CF approach as the following three steps: 1) Measure all
users with respect to the similarity with the active user; 2) Select a subset of users
to use as a set of predictors for the given item; 3) Compute a prediction value for
the given user based on the ratings from the selected neighbors. In this section we
recall some of the most relevant prior work on each step and gives formal definition
of the key techniques.

7.3.1 User Similarity

GroupLens (Resnick et al., 1994) introduced the Pearson correlations to measure
similarity between users. Let I denotes the set of items which had been rated by
both user x and y, the Pearson correlation similarity between user x and y is given
by

sim(x, y) =
∑

i∈I (Rx,i − R̄x)(Ry,i − R̄y)√∑
i∈I (Rx,i − R̄x)2

√∑
i∈I (Ry,i − R̄y)2

�
 �	7.1

Where Rx,i represents user x’s rating of item i, and R̄x is the average rating
value of user x.

In this work we choose the Pearson correlation as the metric for user similarity.
There are several other ways of calculating the similarity among users such as the
cosine based similarity. The comparison of the similarity metrics is out of the scope
of this work. For more detailed information about this part of research please refer
to (Breese et al., 1998).

7.3.2 Selecting Neighbors

Often CF recommenders can have a large number of users and it is infeasible to
maintain real-time performance if the system adopts rating information from all
users in the prediction process. One popular strategy is to choose the K nearest-
neighbors of the active user as the subset predictors (Resnick et al., 1994). Another
strategy is to set an absolute similarity threshold, where all neighbor users with
absolute similarities greater than a given threshold are selected (Shardanand &
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Maes, 1995). In this work we choose the K nearest-neighbor strategy as the baseline
strategy of selecting neighbors.

7.3.3 Prediction Computation

Once the user similarity and the subset of neighbor users are determined, we need
to aggregate their rating information to generate the prediction value. Resnick et
al. (Resnick et al., 1994) have proposed a widely-used method for computing pre-
dicted ratings. Formally, for the active user x to the given item i, the predicted
rating R̂x,i can be calculated as following:

R̂x,i = R̄x +

∑
y∈Ux

(Ry,i − R̄y)sim(x, y)∑
y∈Ux

|sim(x, y)|
�
 �	7.2

where Ux represents the subset of neighbor users selected in step 2 for the active
user x. The similarity value sim(x, y) can be calculated according to Equation 7.1
and it acts as a weight value on the normalized rating value Ry,i − R̄y. In the
conventional CF approach, only those neighbor users who have rated the given item
explicitly are selected, so the value Ry,i can be fetched directly from the training
dataset.

7.4 The Recursive Prediction Algorithm

In this section we illustrate the prediction problem further, using an example based
on the popular MovieLens dataset. After that, we introduce the new neighbor se-
lecting strategies and the recursive prediction algorithm.

7.4.1 An Illustrative Example

The MovieLens dataset was collected by the GroupLens research project at the Uni-
versity of Minnesota (project website: http://movielens.umn.edu). It consists
of 100, 000 ratings from 943 users on 1682 movies. This dataset has been cleaned up
so that users who had less than 20 ratings or did not have complete demographic
information were removed from this dataset. The sparsity level of the dataset is
0.9369 (Sarwar et al., 2001), which is quite high.

We partitioned the dataset into 2 parts: 80% of the ratings were used in the
training set, and the remaining 20% was used as the testing set. Here we inves-
tigate one prediction task in the conventional CF approach: predicting the rating
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Rank Neighbor User Similarity Rating
(y) (sim(x, y)) (Ry,i)

1 39 1.000 n.a.
2 571 1.000 n.a.
3 166 1.000 n.a.
4 384 1.000 n.a.
5 511 1.000 n.a.
6 531 1.000 n.a.
7 810 1.000 n.a.
8 812 1.000 n.a.
9 816 1.000 n.a.

10 861 0.968 n.a.

11 572 0.963 n.a.
12 520 0.919 n.a.
13 107 0.917 n.a.
14 599 0.905 n.a.
15 34 0.891 n.a.
16 691 0.890 n.a.
17 800 0.887 n.a.
18 803 0.883 n.a.
19 105 0.882 n.a.
20 923 0.872 4
21 900 0.868 n.a.
22 414 0.868 n.a.
23 702 0.866 n.a.
24 808 0.866 n.a.
25 485 0.866 n.a.

Table 7.1: The nearest-neighbor users for the active user x = 1 to predict the rating
value of the item i = 3.

value of a given movie i = 3 for an active user x = 1. Table 7.1 lists the top 25
nearest-neighbors for the active user x = 1. It shows that most of those nearest-
neighbors do not provide rating values for the given item i = 3. The only neigh-
bor user who provides rating value for the item i = 3 in the list is the user with
id = 923, which has a similarity value of 0.872 with the active user. Table 7.2 shows
those nearest-neighbors that might be selected in the conventional CF approach.
We can see that although the active user (x = 1) has many close neighbor users,
most of them are filtered out from the prediction process because they haven’t rated
the given item (i = 3) yet. Among all the nearest-neighbor users listed in Table
7.1, only the user with id = 923 can be selected to join the conventional prediction

138



7.4. THE RECURSIVE PREDICTION ALGORITHM

Rank Neighbor User Similarity Rating
(y) (sim(x, y)) (Ry,i)

20 923 0.872 4
98 104 0.593 3

120 157 0.569 3
125 714 0.559 5
142 453 0.522 4
146 569 0.510 1
149 276 0.505 3
150 582 0.504 3
190 463 0.457 2
201 246 0.438 2
202 303 0.437 3
208 429 0.431 2
218 267 0.425 4
231 487 0.415 5
237 472 0.412 5
241 268 0.409 1
244 756 0.407 1
249 660 0.403 1
266 500 0.384 4
271 244 0.380 5

Table 7.2: The top 20 nearest-neighbors that will be selected in the conventional
user-based CF approach for the active user x = 1 to predict the rating value of the
item i = 3.

process and others are filtered out.

We believe that the MovieLens dataset is quite representative to most datasets
used in collaborative filtering recommender systems. In another words, we believe
sparsity is a common issue for collaborative filtering recommenders and the above
illustrated problem exists commonly in the conventional prediction process.

7.4.2 The Strategies for Selecting Neighbors

The above example shows that the conventional CF approach excludes a large pro-
portion of similar users from the set of nearest-neighbors just because they have
not rated the given item. Here we propose a recursive prediction algorithm to relax
this constraint. In addition, we also have observed that some neighbors might have
only a few common ratings with the active user, but they could get very high sim-
ilarity value with the active user by chance. This is because the calculation of the
correlation value among users does not take into account the degree of overlaps be-
tween users. If two users have only few overlaps, it is unlikely that they are indeed
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close-mined neighbors.

In summary, we propose the following five strategies for selecting the active
user’s nearest-neighbors:

1. Baseline strategy(BS): selects the top K nearest-neighbors who have rated
the given item. This is the conventional strategy for selecting neighbors as
illustrated in (Resnick et al., 1994);

2. Baseline strategy with overlap threshold(BS+): selects the top K nearest-
neighbors who have rated the given item and have rated at least ϕ items that
have also been rated by the active user(overlapped with the active user);

3. Similarity strategy(SS): selects the top K ′ nearest-neighbors purely according
to their similarity with the active user;

4. Combination strategy(CS): combines top K nearest-neighbors selected by the
baseline strategy(BS) and top K ′ nearest-neighbors selected by the similarity
strategy(SS);

5. Combination strategy with overlap threshold (CS+): combines the top K nearest-
neighbors selected by baseline Strategy(BS) and top K ′ nearest-neighbors se-
lected by the similarity strategy (SS). Also, each user must have rated at least
ϕ items overlapped with the active user.

Please keep in mind that for the BS and BS+ strategy, since all those selected
neighbors have provided rating values explicitly to the given item, the prediction
value can be calculated straightforward without iteration. However, for the other
three strategies(SS, CS and CS+), the recursive prediction algorithm must be ap-
plied to estimate the intermediate prediction values.

The BS strategy is an extreme case of selecting nearest-neighbor users. It only
chooses users among those who have already explicitly rated the given item. The
SS strategy is another extreme case, where only those top nearest-neighbors are
considered to be useful for the prediction, no matter if they had rated the given
item or not. The CS strategy is a compromise of the above two cases. BS+ and
CS+ are the improved version of BS and CS respectively.

7.4.3 The Recursive Prediction Algorithm

The goal of the recursive prediction algorithm is to include nearest-neighbors who
haven’t rated the given item in the prediction process. When the process requires a
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Configuration Values:
ζ — the threshold of recursive level;
λ — the combination weight threshold;

Function Parameters:
x — the active user;
i — the given item to be predicted;
level — the current recursive level;

return: the predicted rating value;
1. function RecursivePrediction (x, i, level)
2. if level > ζ then
3. return BaselinePrediction(x, i);
5. endif
6. U ←− SelectNeighbors(x, i);
7. α = 0.0;
8. β = 0.0;
9. for each y in U do

10. if Ry,i is given then
11. α += (Ry,i − R̄y)sim(x, y);
12. β += |sim(x, y)|;
13. else
14. R̂y,i=RecursivePrediction(y, i, level + 1);
15. α += λ(R̂y,i − R̄y)sim(x, y);
16. β += λ|sim(x, y)|;
17. endif
18. endfor
19. return R̄x + α/β;

Figure 7.1: The recursive prediction algorithm.

rating value that doesn’t exists in the dataset, we can estimate it recursively on the
fly, and then use it in the prediction process. The estimated rating values may not
be as accurate as those ratings explicitly given by the users. In our algorithm we
specify a weight value to distinguish the different contribution of these two types of
ratings.

Formally, our recursive prediction algorithm can be represented as the following:

R̂x,i = R̄x +

∑
y∈Ux

wy,i(Ry,i − R̄y)sim(x, y)∑
y∈Ux

wy,i|sim(x, y)|
�
 �	7.3

where Ux is the set of neighbor users for the active user x determined by the
respective strategy we have mentioned earlier. If Ry,i is not given explicitly from
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the training dataset, we will apply the recursively predicted value R̂y,i instead.
Also, we apply a weight value wy,i to the recursively predicted value. The wy,i is
determined as the following:

wy,i =

{
1 Ry,i is given

λ Ry,i is not given

�
 �	7.4

Here the weight threshold λ is a value between [0, 1].

A detailed implementation of the recursive prediction algorithm is shown in Fig-
ure 7.1. The function “SelectNeighbors (x, i)” is the implementation of one of the 5
different selection strategies. Note that if the recursive algorithm has reached the
pre-defined maximal recursive level, it will stop the recursive procedure and call
the “BaselinePrediction” function instead. The BaselinePrediction function can be
implemented by various strategies. But to make it simple, here we use the con-
ventional baseline strategy(BS). Each of the five neighbor selection strategies can
be applied with the recursive prediction algorithm to form a CF approach. In the
rest of the chapter, we also use the neighbor selection strategy to represent the cor-
responding CF approach. For instance, the token CS will also represent the CF
approach implemented with the recursive prediction algorithm together with the
combination strategy for selecting neighbors.

The recursive prediction algorithm is an extension of the conventional nearest-
neighbor based prediction algorithm in the CF approach. It is worth pointing out
that the recursive prediction algorithm is equivalent to the conventional prediction
algorithm if it is applied with the BS strategy. Therefore BS represents the conven-
tional CF approach, which is the baseline CF approach in this work.

There are a number of important parameters to be decided before a real fea-
sible CF system can be implemented based on the proposed recursive algorithm.
One important parameter of the recursive algorithm is the recursive level. As the
recursive level increases, so too does the computational cost. For the final level of
the algorithm, we use the BS strategy to select nearest-neighbors so that the recur-
sive algorithm could be terminated within a limited computation time. In addition,
the neighbor size is an important factor for these strategies and can have a large
impact on overall system performance. Furthermore, we must also set the combina-
tion weight threshold for the CS and CS+ strategies. Finally, we need to determine
the overlap size for the nearest-neighbor users for both the BS+ and CS+ strategy.

142



7.5. EVALUATION

7.5 Evaluation

7.5.1 Setup

Our experiments adopt the MoiveLens dataset that we have mentioned earlier (see
Section 7.4.1). The full dataset is divided into a training set and a test set. In
our experiments 80% of the data was used as training data and the other 20% for
testing data.

Our experiments are executed on a ThinkPad Notebook (model T41P), which
has 1GB memory and one CPU of 1.7GHZ under the Linux operating system. We
implement both the baseline algorithm and our recursive prediction algorithm in
Java based on the Taste collaborative filtering open source project.1

7.5.2 Evaluation Metrics

Mean Absolute Error (MAE) is a widely used metric for measuring the prediction
accuracy between ratings and predictions for collaborative filtering systems. For
each rating–prediction pair < Rt, R̂t >, the absolute error between them can be
calculated as |Rt − R̂t|. The MAE is the average value of these absolute errors
|Rt − R̂t| for all items in the test dataset. Formally it is calculated as the following:

MAE =
∑N

t=1 |Ri − R̂t|
N

�
 �	7.5

Where N is the size of the test dataset. The lower the MAE, the more accurate
the recommendation system predicts the ratings. Compared to other metrics, MAE
is easier to measure, and empirical experiments have shown that mean absolute
error has high correlations with many other proposed metrics for collaborative fil-
tering. Mean absolute error is the most frequently used metric among collaborative
filtering researchers.

Here we adopt MAE as the metric to measure the prediction accuracy. Also, we
use the task time to measure the computation cost of the each algorithm.

1Taste is an open source collaborative filtering package in Java. The source code can be downloaded
from http://taste.sourceforge.net/
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Figure 7.2: Performance results with various neighbor sizes.

7.5.3 Experimental Results

There are a number of parameters which can affect the performance of the recursive
prediction algorithm. Here we outline these parameters:

1. the neighbor size (the values of K and K ′)

2. the recursive level (the value of ζ)

3. the combination weight threshold (the value of λ)

4. the overlap size threshold (the value of ϕ)

In this work, we first carry out experiments to determine the value of each pa-
rameter, and then we compare the overall performance of the CF approach that
adopts the recursive prediction algorithm with the baseline CF approach.
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Neighbor Size for the Similarity Strategy(SS)

Compared to the baseline strategy(BS) for selecting neighbors, the similarity strat-
egy(SS) is able to adopt those highly correlated neighbor users who haven’t rated
the given item. Here we compare the prediction accuracy and the task time of com-
pleting all predictions in the testing dataset between the two strategies(BS vs SS).
The results are shown in Figure 7.2. For this experiment the recursive level is set
to 2.

From the results we can see that the accuracy for both strategies improves as
the neighborhood size increases, from 3 to 20. One interesting result is that al-
though the SS strategy includes users who may only have estimated rating values,
it can obtain higher prediction accuracy than the BS strategy when the neighbor
size is relatively small. For example, if both strategies take only 5 neighbors, the
SS strategy reduces the MAE value by 5.2%.

We can also see that the SS strategy requires more computation resources, es-
pecially when the neighbor size is large. This is because the SS method needs to
estimate the intermediate value recursively. This is a drawback of the SS strategy
and it tell us that if we want to improve the prediction accuracy, it is infeasible to
use the SS strategy alone. A better approach would be to combine the SS strategy
with other neighbor selection techniques.

We noticed that when the neighbor size is 10, the SS strategy can produce low-
error predictions, while not being very computationally expensive. In the following
experiments we set the neighbor size for the SS strategy as 10.

Recursive Level

Recursive level is an important parameter for the recursive prediction algorithm.
In this experiment we choose the SS strategy with a neighborhood size of 10. We ex-
plore the prediction performance and the algorithm complexity with various recur-
sive levels. Please keep in mind that when the recursive level is zero, the Similarity
strategy (SS) is equivalent to the baseline strategy (BS).

From the results shown in Figure 7.3 we can see that the prediction performance
has an improvement of 1.4% from the non-recursive prediction process to the one
with 1 level of recursion. We can also see that when the recursive level is larger than
2, the prediction accuracy doesn’t improve significantly, but the task time increases
does. To balance the prediction accuracy and the computational cost, we set the
recursive level as 2 in our later experiments .
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Figure 7.3: Performance results with various recursive levels.

Combination Weight Threshold

As mentioned earlier, the combination strategy (CS) is supposed to benefit from
both the conventional baseline strategy (BS) and the similarity strategy (SS). One
parameter that we need to determine is the combination weight threshold λ. In this
experiment, we set the neighbor size for both the BS strategy and the SS strategy
as 10 (i.e., K = 10 and K ′ = 10), the recursive level is set as 2 (i.e. ζ = 2). Please also
note that when λ = 0, the CS strategy is equivalent to the baseline BS strategy.

From Figure 7.4 we can see that the SS strategy can perform better than the
BS strategy. Also, we can get even better performance if we combine them together.
For instance, in the experiment when λ = 0.5, MAE can be reduced by around 1%
(compared with the SS strategy) and 3% (compared with the BS strategy) respec-
tively.
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Figure 7.4: Performance results of the combination strategy(CS) with various com-
bination weight thresholds.

Overlap Size Threshold

In this experiment we investigate the relationship between prediction performance
and the overlap size threshold for the two strategies: BS+ and CS+. As we can
see in Figure 7.5, increasing the overlap size threshold from 2 to 10 produces better
prediction performance for both strategies. However, the prediction performance
decreases gradually when the overlap size threshold increases from 10. From this
result we can see that a good choice of the overlap size threshold would be around
10. We can also see that in all cases, the CS+ strategy is more accurate than the
BS+ strategy given the same overlap size threshold. On average, the CS+ strat-
egy can reduce the MAE by around 2.1% compared to the BS+ strategy when the
overlap threshold is set as 10. In the following experiments, we set the overlap size
threshold as 10.

Performance Comparison

It is important to know if the recursive prediction algorithm (adopting the SS, CS
or CS+ strategy) can lead to substantial performance improvement compared with
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Figure 7.5: Performance results of the CS+ strategy with various overlap thresh-
olds.

the traditional direct prediction algorithm (adopting the BS or BS+ strategy) for
CF recommender systems. Here we carry out a set of experiments to compare the
performance of these strategies for various neighborhood size K. In this experi-
ment, we choose the following parameters for the recursive prediction algorithm:
the recursive level ζ is set as 2, and the combination weight threshold λ is set as
0.5. Additionally, the neighborhood size K ′ is set as 10. The overlap threshold ϕ for
both the BS+ and CS+ strategy is set as 10. The experimental result is shown in
Figure 7.6.

From Figure 7.6 we can learn several interesting results. Firstly, prediction
accuracy increases for all strategies, when the neighborhood size increases from 3
to 50. After that, it levels off. The performance of the baseline strategy (BS) is in
line with the results in the earlier literature (Herlocker et al., 2002).

Additionally, the BS+ strategy performs better than the BS strategy, especially
when the neighborhood size is relatively small. For example, when the neighbor size
K is 10, BS+ strategy can reduce the MAE from 0.774 to 0.762 (by 1.4%). Since the
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Figure 7.6: Overall performance comparison of the recursive prediction algorithm
with various strategies

only difference between the BS and the BS+ strategy is that BS+ only selects those
users with at least 10 overlap items to the active user, we can see that only keeping
neighbor users with a high overlap size has a positive influence on the prediction
power. However, such improvement is limited with the neighbor size: when the
neighbor size is bigger than 50, the BS+ strategy doesn’t make any substantial
improvement compared with the BS strategy.

Moreover, the CS strategy performs better than the BS strategy, especially when
the neighbor size is relatively small. For example, when K=10, the CS strategy can
reduce the MAE by 1.9% compared with the BS strategy. This shows that the pro-
posed recursive prediction algorithm can improve the prediction accuracy. Again,
this improvement is not significant when the neighbor size is bigger than 50.

Finally, the results show that the CS+ strategy has the best performance among
all strategies in all cases. For example, when the neighbor size is K=10, the CS
strategy can reduce the MAE by 3.4% compared with the BS strategy. It is also
important to notice that when the neighbor size is large, the CS+ strategy still
improves on the BS strategy. For example, when the neighbor size is K=60, the
BS strategy reaches its best performance(MAE=0.748). By comparison, the CS+
strategy can further reduce the MAE to 0.742 (0.8% lower than BS strategy).
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7.6 Discussion

To predict the rating value of a given item for an active user, the conventional pre-
diction algorithm in collaborative filtering recommender systems selects neighbor
users only from those who have already rated the given item. Because of the dataset
sparseness, a large proportion of nearest-neighbor users are filtered out without
contributing to the prediction process. By comparison, our recursive prediction al-
gorithm is able to keep those nearest-neighbor users in the prediction process even
though they haven’t given ratings to the given item. To the best of our knowledge,
this is the first work of improving the prediction accuracy towards the direction of
selecting more promising nearest-neighbor users.

The key contribution of this work is that the recursive prediction algorithm en-
ables a larger range of neighbor users to be included in the prediction process of CF
recommender systems. Our experimental results show that the proposed predic-
tion algorithm can produce higher prediction accuracy than the conventional direct
nearest-neighbor prediction algorithm. When selecting nearest-neighbors with at
least a certain number of overlapped rating items with the active user(the CS+
strategy), the recursive prediction algorithm can reduce the prediction error (mea-
sured by MAE) by 0.8% compared to the best performance that can be achievable
by the conventional user-based prediction algorithm for collaborative filtering rec-
ommender systems.

It is worthy to point out that the parameters for the recursive prediction algo-
rithm in our experiments were determined empirically according to the feedback
from performance test, and so values are dependent to the current underlying
dataset. If the dataset changes, we may need to tune these parameters again to
make the algorithm reach its best overall performance on the new dataset.

This work can be extended in several directions. Here we only described our al-
gorithm for the user-based CF recommender systems. This algorithm can be easily
applied to the item-based CF recommender systems (Linden et al., 2001; Sarwar
et al., 2001). This change is intuitive: what we need to do is to change the nearest-
neighbor users into nearest-neighbor items. The item-based version of the recursive
prediction algorithm is left for future work. Furthermore, trust has been identified
as a very useful information in recommender systems (O’Donovan & Smyth, 2005).
We could also extract trust information from the training dataset and integrate it
into our recursive algorithm to improve the prediction accuracy and robustness. For
instance, we can apply the trust information as one of the criteria in selecting the
nearest-neighbor users in our recursive prediction algorithm to further improve the
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overall prediction performance. Moreover, recently O’Sullivan et al. (Sullivan, Wil-
son, & Smyth, 2002) has proposed a different approach to ameliorate the data spare-
ness problem. They use data mining technique to increase the similarity coverage
among users and could make recommender systems perform better. This technique
can also be integrated into the recursive prediction algorithm so to further improve
the overall recommendation performance.

Singular Value Decomposition (SVD) is a matrix decomposition approach in
linear algebra and some researchers (Berry, Dumais, & O’Brien, 1995; Sarwar,
Karypis, Konstan, & Riedl, 2000; Goldberg, Roeder, Gupta, & Perkins, 2001) sug-
gest it can be applied to improve the prediction accuracy of the classic CF approach.
Given the user-item rating matrix R of size m× n, SVD can decompose it into three
ones U(m ×m), S(m × n), and V (n × n) so that R = U × S × V T , where matrix U
and V are orthogonal and matrix S is diagonal containing the singular values. By
only keeping the largest k singular values and setting others to 0 in matrix S, we
can produce the matrix Sk. Similarly we can produce the matrix Sk and Vk. Then
a rank-k approximation Rk of R can be obtained as Rk = Uk × Sk × V T

k . Finally
the prediction can be generated from it by computing the similarities between m
pseudo-users Uk ·

√
Sk

T and n pseudo-items
√
Sk · V T

k . Unfortunately one serious
limitation of the SVD-based recommendation approach is that it is computationally
very expensive (O(max(m3, n3))). It is not suitable for large-scale deployment in
E-commerce. By comparison, the recursive-CF approach that we proposed here is
very flexible in balancing the computational complexity and the recommendation
accuracy by tuning some parameters.

7.7 Summary

In this chapter we proposed a recursive prediction algorithm for CF recommender
systems which can predict the missing rating values of the neighbor users, and then
apply these missing values to the prediction process for the active user. Our studies
show that the recursive prediction algorithm is a promising approach for achiev-
ing higher prediction accuracy than the conventional direct prediction algorithm in
the nearest-neighbor based CF approach. Specifically, the recursive prediction al-
gorithm together with the CS+ strategy achieved the best prediction performance.
When the neighbor size is relatively small (K=10), it can reduce prediction error by
3.4%. When the neighbor size is large (K=60), it can reduce the prediction error by
0.8% than the best performance that the conventional nearest-neighbor based CF
approach could achieve.
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Conclusions

While the rapid growth of web technologies allows a massive amount of products
to be sold through online e-commerce systems, it also brings the information over-
load problem to end-users. An e-commerce website can easily provide millions of
products to end-users to choose from. However, it may not be feasible for users to
navigate all these products manually to find the desired ones. People are inclined
to rely on some well-designed online product search tools to help them find their
desired products both accurately and efficiently.

This dissertation pursues the user-centric approach in designing online product
search tools. A user-centric online product search tool should have the ability to
recommend suitable products to meet the user’s various preferences. In addition,
it should be able to help the user navigate the product space and reach the final
target product without expending too much effort. Furthermore, according to be-
havior decision theory, users are likely to construct their preferences during the
decision process, so the tool should be designed in an interactive way to elicit users’
preferences gradually.

In this thesis, we investigate both the design and evaluation issues of online
product search from the user’s perspective. For the design issue, we have proposed
both algorithms and user interfaces to improve the performance of product search
tools. For the evaluation issue, we have carried out both simulation evaluations and
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real-user studies. In the rest of this chapter, we summarize the contributions and
results from our research, and then outline the future research directions.

8.1 Contributions

8.1.1 Methodology for Performance Evaluation

We proposed a simulation environment, where a generic product search tool can be
evaluated quickly. In this environment, we can simulate the underlying decision
support approach of the system to generate performance evaluation results. Com-
pared to the real-user study evaluation method, this simulation method is faster,
cheaper, and scalable to different product domains. Based on this simulation envi-
ronment, we carried out simulation experiments to analyze the performances for a
set of various decision strategies.

In this simulation environment, the performance of a decision approach can be
evaluated quantitatively in terms of decision accuracy, elicitation effort and cog-
nitive effort under the extended effort–accuracy framework. The extended effort–
accuracy framework provides a way for us to analyze the performance of a given
product search tool from the user’s perspective. The simulation environment is a
methodology to forecast the acceptance of online product search tools in the real
world and curtail the evaluation of each tool’s performance from months of real-
user studies to rapid simulation process. It allows system designers to evaluate
more tools in various situations, and more importantly, discover design opportuni-
ties for new product search tools.

8.1.2 Algorithm for Generating Compound Critiques

Generating high quality compound critiques is essential in designing critique-based
product search tools. One approach for dynamically generating compound critiques,
called dynamic critiquing (Reilly et al., 2004a), discovers critique patterns that are
common to the remaining products in each interaction cycle based on the Apriori
algorithm. Essentially this is a data-driven approach. However, this approach may
not generate compound critiques that satisfy users’ real preferences, and users may
be frustrated and give up the interaction process in some situations.

We proposed a user-centric algorithm to generate compound critiques through a
preference model based on multi-attribute utility theory (MAUT) (Keeney & Raiffa,
1976) for online product search tools. In each interaction cycle our approach first
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determines a list of products via the user’s preference model, and then generates
compound critiques by comparing them with the current reference product. In this
approach, the user’s preference model is maintained adaptively based on user’s cri-
tique actions during the interaction process, and the compound critiques are deter-
mined according to the utilities they gained.

We developed an online evaluation platform called CritiqueShop so that real
users can evaluate various online product search tools in a natural way. Particu-
larly, two systems were implemented: the Apriori-base system and the MAUT-based
system.

We further carried out large-scale comparative real-user studies to verify the
performance of these two systems, using a mixture of objective criteria (such as
the interaction efficiency, recommendation quality/accuracy) and subjective criteria
(such as a user’s perceived satisfaction). Our findings showed that the MAUT-based
system is quite efficient and accurate. The real-user study results showed that
the accuracy of the search results can reach up to 82%. Users’ subjective feedback
also showed that this system is easy to use, informative, and effective for search
products. Most users are willing to use this system to purchase products in the
future.

8.1.3 Visual Representation of Compound Critiques

To enhance the efficiency of critique-based product search tools, we not only need
to generate high quality compound critiques, but also need to attract users’ atten-
tion so that more compound critiques can be applied during the interaction process.
Traditionally the interface is textual, which shows compound critiques as sentences
in plain text. In this thesis we proposed a new visual interface which represents
various compound critiques by a set of meaningful icons. We implemented this vi-
sual interface for the MAUT-based system in the CritiqueShop platform and made
a comparative real-user study. The visual interface and the textual interface were
compared under a mixture of objective criteria and subjective criteria.

Our real-user study showed that the visual interface is more effective than the
textual interface. It can reduce user’s interaction effort and attract users to apply
the compound critiques more frequently. For instance, the length of interaction
cycles can be reduced 53% and the compound critiquing frequency can be doubled
for the laptop dataset in our real-user study. Also, we found that the system with
visual interface is more valued by users in terms of efficiency, ease of use, and degree
of satisfaction with respect to shopping experience.
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To the best of our knowledge, this is the first work on visualizing compound
critiques for critique-based product search tools, and we are the first to prove that
visual interface is a promising method of displaying compound critiques for critique-
based product search tools.

8.1.4 Improvement on Collaborative Filtering Approach

The collaborative filtering approach has been widely used to help people find prod-
ucts in low-risk domains such as movies and books (Resnick et al., 1994; Herlocker
et al., 1999). To predict the rating value of a given item for an active user, the
conventional prediction algorithm of the collaborative filtering approach is to select
nearest-neighbor users from those who have already rated the given item. If the
users’ ratings are very sparse, the given item may only receive a small number of
ratings from users. As a result, a large proportion of nearest-neighbor users of the
active user are filtered out from the prediction process because they haven’t rated
the given item.

In this thesis we proposed a recursive prediction algorithm for CF recommender
systems. This algorithm can predict the missing rating values of the nearest-
neighbor users, and then apply these missing values to the prediction process for
the active user. With this approach, we are able to alleviate the problem of data
sparsity.

Our studies showed that the recursive prediction algorithm is a promising ap-
proach for achieving higher prediction accuracy than the conventional direct predic-
tion algorithm in the nearest-neighbor based CF approach. Specifically, the recur-
sive prediction algorithm together with the CS+ strategy achieved the best predic-
tion performance. When the neighbor size is relatively small (K=10), it can reduce
prediction error by 3.4%. When the neighbor size is large (K=60), it can still re-
duce the prediction error by 0.8% than the best performance that the conventional
nearest-neighbor based CF approach could achieve.

8.2 Limitations

In this section we quickly summarize the limitations of our work. A detailed dis-
cussion of these limitations has already been provided in previous chapters.

In our work on the simulation environment for performance evaluation, the in-
teraction effort and cognitive effort are measured by approximation, and the results
might therefore contain some inaccuracies. So far, it is unknown how accurate the
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simulation results would be by comparing with the results obtained from real-user
studies. In addition, some criteria – such as a user’s degree of satisfaction, confi-
dence or trust – are also very important for measuring the performance of a given
product search tool. But the simulation environment is unable to generate direct
measurement on these criteria.

When we use MAUT to model users’ preferences, we adopt the utility function
with the weighted additive form, assuming that attributes are mutually preferen-
tially independent (MPI) to each other. However, MPI is a very strong condition,
and in reality this assumption may be violated. As a result, the user’s preference
model based on this form of utility function might be not very accurate. To achieve
better performance, we need to find some more sophisticated forms of utility func-
tions.

The recursive collaborative filtering approach that we proposed in Chapter 7 has
a limitation in terms of computational complexity. Currently we haven’t optimized
the implementation of this algorithm, and we only recursively predict the missing
rating values in two levels. We noticed that in the recursive prediction process there
are many computational redundancies. For example, those intermediate prediction
results can be calculated offline, or can be calculated only once and saved for later
use. Thus the online computation complexity could be significantly reduced.

8.3 Future Research Directions

In this section, we outline several promising research directions which might be
helpful for improving the performance of the online product search tools that we
have developed. We also briefly analyze the challenges that each research direction
may have.

8.3.1 Generating Diverse Compound Critiques

In this thesis we proposed the approach of dynamically generating compound cri-
tiques through a utility-based preference model. Some researchers have pointed out
that increasing a certain amount of diversity in the product search results has the
potential to make the interaction more efficient (Smyth & McClave, 2001; McGinty
& Smyth, 2003; McCarthy et al., 2005). For example, in (McCarthy et al., 2005) di-
versity is enhanced by reducing the overlap among those compound critiques gen-
erated by the dynamic critiquing approach. In our current approach of generat-
ing compound critiques, the weight of each product attribute is revised adaptively
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during the critiquing process; thus, we believe that there is a certain degree of di-
versity among the compound critiques generated by our approach. However, this
is not enough and we need to further study the relationship between the diversity
and the performance of product search tools in detail. One challenging research
problem that we are facing here is how to integrate the diversity effectively into the
existing utility-based decision approaches to determine the final search results.

8.3.2 Collaborative Critiquing

The critique-based product search tools that we have discussed so far are based
on the preferences elicited from each individual. There is no mechanism for users
to share their preferences between each other. When two or more similar-minded
users are looking for products through the same product search tool, each of them
has to follow the preference elicitation process.

The collaborative filtering approach provides a mechanism for users to share
their tastes on products based on their ratings. Motivated by this idea, we could
identify some similar-minded users based on their critiquing history, and then pre-
dict which critiques is most likely to be selected by a given user according to the
critiquing history from his or her similar-minded users. In this way, we believe the
system is able to generate compound critiques for users more effectively. One chal-
lenge of this research is how to gather information from users’ critique history to
build the preference model effectively.

8.3.3 Adaptive Interfaces for Preference Elicitation

Currently most product search tools are designed in a way that users’ preferences
are elicited in one of the four styles: (1) Value elicitation, (2) Item-based, (3) Ratings-
based, and (4) Critiquing. In reality, different users may prefer different styles of
preference elicitation. Even for the same user, he or she may like to input prefer-
ences in different styles in different situations. For example, if a user is using a
desktop computer to search products, maybe he or she is willing to input some val-
ues as the preferences. But for a mobile user, most likely he or she will try to avoid
typing values because it is not easy to do so on small devices. Instead he or she may
prefer critiquing or rating-based preferences. As a result, here we believe that an
adaptive interface that allows users to reveal preferences in different styles would
be very helpful for online product search. One challenge to this research direction is
the mechanism to change the interface dynamically according to users’ needs. An-

158



8.4. SUMMARY

other challenge is how to utilize various styles of preferences together to generate
search results accurately.

8.3.4 Handling Implicit Preferences

The critiquing-based product search tool that we have investigated in this thesis
is based on preferences explicitly elicited from users. That is, users are obliged to
specify their preferences through the given user interfaces provided by the system.
This inevitably requires some effort from users each time. In some situations, the
system may capture some implicit preferences from the user. For example, if a
music search tool has detected that a user skipped a specific song several times, it
can guess that the user does not like this song and will not show it to him or her in
the future. Understanding the implicit preferences is necessary to help users find
products more efficiently.

The main challenges of this research are the following: 1) How to gather users’
implicit preferences; 2) How to apply the implicit preferences to improve the qual-
ity of the search results. For the first challenge, we need to identify those implicit
preferences that are stable for making decisions and representative to users’ true
preferences. For the second challenge, the Bayesian filtering technique can be used
as a way to improve the quality of the search results. Bayesian filtering is a well-
known technique in classifying data into different classes and has been successfully
used in some email filtering and anti-spam software (Sahami, Dumais, Heckerman,
& Horvitz, 1998). In our work (Zhang & Pu, 2007) we have proposed an approach
of refining the search results through Bayesian filtering and the preliminary exper-
iment shows that it is promising in generating more accurate search results and
saving users’ interaction effort.

8.4 Summary

In this thesis, we are aiming at designing and evaluating user-centric online prod-
uct search tools to help end-users find desired products effectively in e-commerce
environment. Our main work is the implementation of a critique-based product
search tool with two novel improvements: a user-centric algorithm to automati-
cally generate compound critiques, and a visual interface to represent compound
critiques effectively. Evaluation results from both simulation and real-user studies
confirm the positive benefits of these improvements. Overall, we believe our work is
helpful for designing the next generation of product search tools in the e-commerce
environment.
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