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ABSTRACT
We present a non-parametric method for compressing multichannel audio data for reproduction through
Wave Field Synthesis. The method consists of applying a two-dimensional filterbank to the input mul-
tichannel signal, in both time and channel dimensions, and coding the two-dimensional spectra using a
spatio-temporal frequency masking model. The coded spectral data is organized into a bitstream together
with side information containing scale factors and Huffman codebook information. We demonstrate how this
coding method can be applied to any smooth distribution of loudspeakers in space, while obtaining a stable
bitrate that is 15% lower compared to coding each channel independently.

1. INTRODUCTION

Reproduction of audio through Wave Field Synthe-
sis (WFS) has gained considerable attention since it
was introduced by Berkhout and De Vries [1]. One
of the main reasons is the potential for reproducing
an acoustic wave field with high accuracy at every
location of the listening room. This is not the case
in traditional multichannel configurations, such as
Stereo and Surround, which are not able to gener-
ate the correct spatial impression beyond an optimal
location in the room - the sweet spot. With WFS,

the sweet spot can be extended to enclose a much
larger area, at the expense of an increased number
of loudspeakers.

The fact that WFS requires a large amount of audio
channels for reproduction presents several challenges
related to processing power and data storage. Usu-
ally, there is a trade-off between these two criteria:
optimally encoded audio data requires more process-
ing power and complexity for decoding, and vice-
versa. Parametric schemes [2], for example, consist
of gathering information about the acoustic scene,
such as sound sources and spatial cues, and then cod-
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ing this information through perceptual coding and
entropy coding. Some improvements to this tech-
nique consist of jointly coding the source signals in
order to reduce the required bitrate [3]. The prob-
lem associated with these approaches is that there is
an assumption regarding the availability the original
source signals and rendering algorithms to the end-
user. In fact, disclosing a complex and innovative
rendering algorithm may not be the ideal marketing
solution. In addition, rendering algorithms are very
demanding in terms of processing power, which may
increase the price dramatically. It would be useful,
instead, to provide to the end-users a final masteri-
zation ready for playback.

In this paper, we present an alternative coding ap-
proach that is non-parametric, has low complexity
(relies on basic signal processing operations), does
not require any source signal or rendering algorithm
for reproduction, and can be applied to any smooth
distribution of loudspeakers in space. The encod-
ing method consists of transforming the multichan-
nel audio data into the spatio-temporal frequency
domain in a blockwise fashion, i.e., by applying a
spatio-temporal window, and then quantizing the
spectrum based on a psychoacoustic model derived
for spatio-temporal frequencies. The spectral coef-
ficients are then quantized and entropy-coded, and
organized into a bitstream. On the decoder side, a
spatio-temporal inverse transform recovers the mul-
tichannel audio data. In this paper, the coding
scheme is referred to as Wave Field Coding (WFC).

We evaluate the performance of WFC by feeding the
encoder with multichannel audio data generated by
two point sources, one in near-field and other in far-
field, plus reflections, and observing the required bi-
trate. The results indicate that WFC achieves a re-
duction of around 15% in the required bitrate, com-
pared to coding each channel individually. This re-
duction is obtained through a psychoacoustic model
that does not take spatial masking into account, and
therefore is suboptimal.

2. WAVE FIELD SYNTHESIS

The WFS technique consists of surrounding the lis-
tening area with an arbitrary number of loudspeak-
ers, organized in some selected layout, and using the

Huygens-Fresnel principle to calculate the drive sig-
nals for the loudspeakers in order to replicate any
desired acoustic wave field inside that area. Since
an actual wave front is created inside the room, the
localization of virtual sources does not depend on the
listener’s position. Fig. 1 shows two possible WFS
configurations.

A typical WFS playback system [4] comprises both
the loudspeaker array and a rendering device, which
is in charge of generating the drive signals for the
loudspeakers in real-time. These signals can be de-
rived from the particle velocity v (t, r) measured at
rLS - where the loudspeakers are located in space
- and v (t, rLS) can be calculated from the source
signals sk (t) using the wave equation, plus some de-
sired effects (room impulse response, reverberation,
etc.). Only the source signals sk (t) and their po-
sitions in space need to be stored; each sk (t) can
be coded using any desired audio format. In such a
system, all end-users require a rendering device that
generates v (t, rLS) out of sk (t) in real-time.

Another approach to WFS playback is, instead of
providing the source signals sk (t) to the rendering
device, to provide the already generated particle ve-
locity signals v (t, rLS), or even the loudspeaker drive
signals, such that the rendering procedure is much
more simple and straightforward. In this case, how-
ever, all signals v (t, rLS) - one per channel - must
be coded for later reproduction.

Both approaches have their own advantages and dis-
advantages. On the one hand, coding sk (t) is much
more efficient in terms of storage, compared to cod-
ing v (t, rLS) for all channels. It is also makes user
interaction more flexible, since the source locations
and room effects can be manipulated in real-time.
On the other hand, rendering v (t, rLS) out of sk (t)
in real-time is much more greedy in terms of pro-
cessing power, compared to having v (t, rLS) already
available. Moreover, from a commercial point of
view, it may be undesirable to disclose the source
signals sk (t) or the rendering algorithm, which is a
key aspect of WFS and should be protected by their
inventors.

In this paper, we propose a new way of coding
v (t, rLS) which may lead to a more commercially
feasible implementation of the second WFS ap-
proach described above. First, we describe the
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(a) (b)

Fig. 1: Typical WFS configuration: (a) on a circle
and (b) on a straight line. The acoustic wave field
is recorded with microphones, the recorded audio
data is coded, and the wave field is reproduced by
an array of loudspeakers with a similar positioning
in space. The enclosed space in (b) corresponds to
the whole upper half space.

mathematical basis of our method, which consists of
analyzing the physical aspects of WFS from a signal
processing perspective. Then, we present a complete
coding approach based of these same mathematical
ideas. The resulting compression is relatively effi-
cient, considering the simplicity of the approach.

3. CONTINUOUS SPACETIME DOMAIN

3.1. Spacetime Representation

The acoustic wave field can be modeled as a super-
position of point sources in the three-dimensional
space of coordinates (x, y, z). If the point sources
are located at z = 0, as is usually the case in a WFS
scenario, the three dimensional space can be reduced
to the horizontal xy-plane. Under this assumption,
let p (t, r) be the sound pressure1 at r = (x, y) gen-
erated by a point source located at rs = (xs, ys), as
shown in Fig. 2. The theory of acoustic wave prop-
agation [5] states that

1In this analysis, we focus only on the sound pressure
p (t, r) and not on the particle velocity v (t, r). In fact, p (t, r)
and v (t, r) are very similar signals, and both can be efficiently
coded with our WFC.

p (t, r) =
1

‖r− rs‖
s

(
t− ‖r− rs‖

c

)
, (1)

where s (t) is the temporal signal driving the point
source, and c is the speed of sound. Accordingly,
given a wave field generated by an arbitrary num-
ber of point sources, s0, s1, . . . , sS−1, located at
r0, r1, . . . , rS−1, the superposition principle implies
that

p (t, r) =
S−1∑
k=0

1
‖r− rk‖

si

(
t− ‖r− rk‖

c

)
. (2)

If p (t, r) is measured on a straight line, p.e., the
x-axis, (2) becomes

p (t, x) =
S−1∑
k=0

1
‖x− rk‖

sk

(
t− ‖x− rk‖

c

)
, (3)

which we call the continuous-spacetime signal, with
temporal dimension t and spatial dimension x. In
particular, if ‖rk‖ � ‖r‖ for all k, then all point
sources are located in far-field, and thus

p (t, x) ≈
S−1∑
k=0

1
‖rk‖

sk

(
t+

cosαk
c

x− ‖rk‖
c

)
, (4)

since ‖x− rk‖ ≈ ‖rk‖ − x cosαk, where αk is the
angle of arrival of the plane wave-front k. If (4) is
normalized and the initial delay discarded, the terms
‖rk‖−1 and 1

c ‖rk‖ can be removed.

3.2. Frequency Representation

The spacetime signal p (t, x) can be represented as
a linear combination of complex exponentials with
temporal frequency Ω and spatial frequency Φ, by
applying a spatio-temporal version of the Fourier
transform:

P (Ω,Φ) =
∫ ∞
−∞

∫ ∞
−∞

p (t, x) e−j(Ωt+Φx)dtdx , (5)
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(a) (b)

Fig. 2: The acoustic wave field is modeled by a
superposition of point sources located in: (a) near-
field and (b) far-field. The sound pressure in near-
field can be measured at any point in space using
the equation that governs the spherical wave propa-
gation, and in far-field using an approximated result
that depends only on the angle of arrival of the wave
front.

which we call the continuous-spacetime spectrum.

Consider the spacetime signal p (t, x) generated by a
point source located in far-field, and driven by s (t).
According to (4),

p (t, x) = s
(
t+

cosα

c
x
)
, (6)

where, for simplicity, the amplitude was normalized
and the initial delay discarded. The Fourier trans-
form is then

P (Ω,Φ) = S (Ω) δ
(

Φ− cosα

c
Ω
)
, (7)

which represents, in the spacetime frequency do-
main, a wall-shaped Dirac function2 with slope c

cosα
and weighted by the one-dimensional spectrum of
s (t). In particular, if s (t) = ejΩot,

P (Ω,Φ) = δ (Ω− Ωo) δ
(

Φ− cosα

c
Ωo
)
, (8)

which represents a single spatio-temporal frequency
centered at

(
Ωo, cosαc Ωo

)
, as shown in Fig. 3a. Also,

if s (t) = δ (t), then

2When viewed in three dimensions, the Dirac function re-
sembles a wall of infinite height placed on the line Φ− cosα

c
Ω =

0.

P (Ω,Φ) = δ
(

Φ− cosα

c
Ω
)
, (9)

as shown in Fig. 3b.

If the point source is not far enough from the x-axis
to be considered in far-field, (1) must be used, such
that

p (t, x) =
1

‖x− rs‖
δ

(
t− ‖x− rs‖

c

)
, (10)

for which the spacetime spectrum can be shown [6]
to be

P (Ω,Φ) = −jπe−jΦxsH(1)?
o

ys
√(

Ω
c

)2

− Φ2

 ,

(11)

where H
(1)?
o represents the complex conjugate of

the zero-order Hankel function of the first kind. In
Fig. 3c, it can be seen that P (Ω,Φ) has most of its
energy concentrated inside a triangular region sat-
isfying |Φ| ≤ |Ω|

c , and some residual energy on the
outside.

Note that the spacetime signal p (t, x) generated by
a source signal s (t) = δ (t) is in fact a Green’s so-
lution for the wave equation [5] measured on the
x-axis. This means that (9) and (11) act as a trans-
fer function between p (t, rs) and p (t, x), depending
on how far the source is away from the x-axis. Fur-
thermore, the transition from (11) to (9) is smooth,
in the sense that, as the source moves away from
the x-axis, the dispersed energy in the spectrum of
Fig. 3c slowly collapses into the Dirac function of
Fig. 3b. In Section 4.4, we present another interpre-
tation for this phenomenon, in which the near-field
wave front is represented as a linear combination of
plane waves, and therefore a linear combination of
Dirac functions in the spectral domain.

3.3. Short-Spacetime Analysis

Consider an enclosed space E with a smooth bound-
ary on the xy-plane, as depicted in Fig. 4a. Outside
this space, an arbitrary number of point sources in
far-field generate an acoustic wave field that equals
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Fig. 3: Spacetime spectrum of: (a) a complex
exponential s (t) = ejΩot in far-field, (b) a Dirac
pulse s (t) = δ (t) in far-field, and (c) a Dirac pulse
s (t) = δ (t) in near-field. Although (b) and (c) result
from the same source signal, the differences in cur-
vature of the wave field result in a different energy
dispersion in the spectrum.

(a) (b)

Fig. 4: Approximation of an enclosed space E by
a K-sided polygon. The accuracy of the approx-
imation increases with the number of sides in the
polygon.

p (t, r) on the boundary of E according to (2). If
the boundary is smooth enough, it can be approxi-
mated by a K-sided polygon, as depicted in Fig. 4b.
Consider that x goes around the boundary of the
polygon as if it were stretched into a straight line.
Then, (4) can be written as

p (t, x) =
Kl−1∑
l=0

wl (x)
S−1∑
k=0

sk

(
t+

cosαkl
c

x
)
(12)

=
Kl−1∑
l=0

wl (x) pl (t, x) , (13)

where αkl is the angle of arrival of the wave-front
k to the polygon’s side l (see Fig. 5), in a total of
Kl sides, and wl (x) is a rectangular window of am-
plitude 1 within the boundaries of side l and zero
otherwise (see Section 3.4). The windowed partition
wl (x) pl (t, x) is called a spatial block, and is anal-
ogous to the temporal block w (t) s (t) known from
traditional signal processing.

In the frequency domain,

Pl (Ω,Φ) =
∫ ∞
−∞

∫ ∞
−∞

wl (x) pl (t, x) e−j(Ωt+Φx)dtdx ,

(14)

l = 0, . . . ,Kl − 1 ,

which we call the short-space Fourier transform. If a
window wg (t) is also applied to the time domain, the
Fourier transform is performed in spatio-temporal
blocks, wg (t)wl (x) pg,l (t, x), and thus

Pg,l (Ω,Φ) =
∫∞
−∞

∫∞
−∞ wg (x)wl (x) ·

pg,l (t, x) e−j(Ωt+Φx)dtdx
(15)

g = 0, . . . ,Kg − 1 , l = 0, . . . ,Kl − 1 ,

where Pg,l (Ω,Φ) is the short-spacetime Fourier
transform of block g, l, in a total of Kg ×Kl blocks.

3.4. Spacetime Windowing
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Fig. 5: Short-space analysis of the acoustic wave
field. Each side of the polygon “sees” the plane wave
from a different angle α.

(a)

(b)

Fig. 6: Effects of windowing in the spacetime spec-
trum for: (a) a complex exponential s (t) = ejΩot in
far-field and (b) a Dirac pulse s (t) = δ (t) in far-field.
The parameters for both cases are: α = 0 rad, ΩS =
2π ·44100 rad/s, ΦS = 2π ·167 rad/s, Lt = 48 for (a),
Lx = 24. In the case of the Dirac pulse, we used a
larger temporal window, with Lt = 512 samples, to
make the approximation more accurate.

The short-space analysis of the acoustic wave field is
similar to its time domain counterpart, and therefore
exhibits the same issues. For instance, the length Lx
of the spatial window controls the x/Φ resolution
trade-off: a larger window generates a sharper spec-
trum, whereas a smaller window exploits better the
curvature variations along x (see Fig. 3). The win-
dow type also has an influence on the spectral shap-
ing, including the trade-off between amplitude decay
and width of the main lobe in each frequency com-
ponent. Furthermore, it is beneficial to have over-
lapping between adjacent blocks, to avoid discon-
tinuities after reconstruction. Our WFC approach
comprises all these aspects in a spatio-temporal fil-
terbank (see Section 4.3).

The windowing operation in the spacetime domain
consists of multiplying p (t, x) both by a temporal
window wt (t) and a spatial window wx (x), in a sep-
arable fashion. The lengths Lt and Lx of each win-
dow determine the temporal and spatial frequency
resolutions.

Consider the plane wave examples of Section 3.2,
and let wt (t) and wx (x) be two rectangular windows
such that

wt (t) = u
(
t

Lt

)
=
{

1 , |t| < Lt
2

0 , |t| > Lt
2

, (16)

and the same for wx (x). In the spectral domain,

Wt (Ω) = Lt sinc

(
LtΩ
2π

)
. (17)

For the first case, where s (t) = ejωot,

p (t, x) = ejωo(t+
cosα
c x)wt (t)wx (x) , (18)

and thus

P (Ω,Φ) =
Wt (Ω− Ωo) ·

Wx

(
Φ− cosα

c Ωo
) (19)

=
Lt sinc

(
Lt
2π (Ω− Ωo)

)
·

Lx sinc
(
Lx
2π

(
Φ− cosα

c Ωo
)) (20)

For the second case, where s (t) = δ (t),
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p (t, x) = δ
(
t+

cosα

c
x
)
wt (t)wx (x) , (21)

and thus

P (Ω,Φ) =
c

|cosα| Wt

(
c

cosαΦ
)
?Φ

Wx

(
Φ− cosα

c Ω
) (22)

=
c

|cosα| Lt sinc
(
Lt
2π ·

c
cosαΦ

)
?Φ

Lx sinc
(
Lx
2π

(
Φ− cosα

c Ω
)) (23)

where ?Φ denotes convolution in Φ. Using the prop-
erty lima→∞ a sinc (ax) = δ (x), (23) is simplified
to

P (Ω,Φ) ≈ 2πδ (Φ) ?Φ

Lx sinc
(
Lx
2π

(
Φ− cosα

c Ω
)) (24)

= 2πLx sinc
(
Lx
2π

(
Φ− cosα

c
Ω
))

(25)

The results in (20) and (25) are shown in Fig. 6.

4. WAVE FIELD CODER

4.1. Overview

The WFC scheme, as illustrated in Fig. 7, can be
interpreted as a spatio-temporal extension of a tra-
ditional perceptual mono coder. The sampled mul-
tichannel signal, or spacetime signal, is transformed
into the frequency domain by applying an MDCT
filterbank to both temporal and spatial dimensions.
In the spectral domain, the two-dimensional coeffi-
cients are quantized according to a psychoacoustic
model derived for spatio-temporal frequencies, and
then converted to binary base through entropy cod-
ing. Finally, the binary data is organized into a
bitstream, together with side information necessary
to decode it. On the decoder side, the bitstream
is parsed, and the binary data converted back to
spectral coefficients, from which the inverse MDCT
recovers the multichannel signal. These steps are
described in detail in the next sections.

4.2. Sampling and Reconstruction

Fig. 7: Block diagram of the encoder.

In practice, p (t, x) can only be measured on discrete
points along the x-axis. A typical scenario is when
the wave field is measured with microphones, where
each microphone represents one spatial sample. If
sk (t) and rk are known, p (t, x) may also be com-
puted through (3). In either case, the goal is to
obtain (and code) only the spacetime signal p (t, x),
and not the original source signals sk (t) (see Sec-
tion 2).

The discrete-spacetime signal pn,m, with temporal
index n and spatial index m, is defined as

pn,m = p

(
n

2π
ΩS

,m
2π
ΦS

)
, (26)

where ΩS and ΦS are the temporal and spatial sam-
pling frequencies. We assume that both tempo-
ral and spatial samples are equally spaced. The
sampling operation generates periodic repetitions of
P (Ω,Φ) in multiples of ΩS and ΦS , as illustrated
in Fig. 8. Perfect reconstruction of p (t, x) requires
that ΩS ≥ 2Ωmax and ΦS ≥ 2Φmax = 2Ωmax

c , which
happens only if P (Ω,Φ) is bandlimited in both Ω
and Φ. While this may be the case for mono signals,
in the case of spacetime signals there is no way to
avoid spatial aliasing, unless the wave field is com-
posed solely by far-field components. For an exten-
sive analysis on spatio-temporal sampling and in-
terpolation, the reader may consult Ajdler and Vet-
terli [6].

4.3. Spacetime-Frequency Mapping

In our WFC approach, the actual coding occurs in
the frequency domain, where each frequency pair
(Ω,Φ) is quantized and coded, and then stored in
the bitstream. The transformation to the frequency
domain is performed by a two-dimensional filter-
bank that represents a spatio-temporal lapped block
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Fig. 8: Spectral repetitions that result from sam-
pling the continuous-spacetime signal, centered on
multiples of ΩS and ΦS .

transform. For simplicity, we assume that the trans-
formation is separable, i.e., the individual temporal
and spatial transforms can be cascaded and inter-
changed. In this analysis, we assume that the tem-
poral transform is performed first.

Let pn,m be represented in a matrix notation,

P =


p0,0 p0,1 · · · p0,M−1

p1,0 p1,1 · · · p1,M−1

...
...

. . .
...

pN−1,0 pN−1,1 · · · pN−1,M−1

 , (27)

where N and M are the total number of tempo-
ral and spatial samples, respectively. If the mea-
surements are performed with microphones, then M
is the number of microphones and N is the length
of the temporal signal received in each microphone.
Let also Ψ̃ and Υ̃ be two generic transformation ma-
trices of size N ×N and M ×M , respectively, that
generate the temporal and spatio-temporal spectral
matrices X and Y. The matrix operations that de-
fine the spacetime-frequency mapping can be orga-
nized as follows:

Temporal Spatial

Direct transform: X = Ψ̃TP Y = XΥ̃

Inverse transform: P̂ = Ψ̃X̂ X̂ = ŶΥ̃T

The matrices X̂,Ŷ, and P̂ are the estimations of
X, Y, and P, and have size N × M . Combin-
ing all transformation steps in the table yields P̂ =

Ψ̃Ψ̃T ·P · Υ̃Υ̃T, and thus perfect reconstruction is
achieved if Ψ̃Ψ̃T = I and Υ̃Υ̃T = I, i.e., if the
transformation matrices are orthonormal.

For the WFC scheme, we have chosen a well known
orthonormal transformation matrix called the Mod-
ified Discrete Cosine Transform (MDCT) [7], which
is applied to both temporal and spatial dimensions.
The transformation matrix Ψ̃ (or Υ̃ for space) is
defined by

Ψ̃ =


Ψ1

Ψ0 Ψ1

Ψ0
. . .
. . .

 , (28)

and has size N × N (or M × M). The matrices
Ψ0 and Ψ1 are the lower and upper halves3 of the
transpose of the basis matrix Ψ, which is given by

ψbn,2B−1−n = wn

√
2
Bn

cos
[
π
Bn
·(

n+ Bn+1
2

) (
bn + 1

2

)] (29)

bn = 0, 1, . . . , Bn − 1 ; n = 0, 1, . . . , 2Bn − 1 ,

where n (or m) is the signal sample index, bn (or
bm) is the frequency band index, Bn (or Bm) is the
number of spectral samples in each block, and wn
(or wm) is the window sequence. For perfect re-
construction, the window sequence must satisfy the
Princen-Bradley conditions [7],

wn = w2Bn−1−n and w2
n + w2

n+Bn = 1 .

Note that the spatio-temporal MDCT generates a
transform block of size Bn × Bm out of a sig-
nal block of size 2Bn × 2Bm, whereas the inverse
spatio-temporal MDCT restores the signal block of
size 2Bn × 2Bm out of the transform block of size
Bn × Bm. Each reconstructed block suffers both
from time-domain aliasing and spatial-domain alias-
ing, due to the downsampled spectrum. For the

3Note that Ψ0 and Ψ1 are overlapped in the transforma-
tion matrix Ψ̃.
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aliasing to be canceled in reconstruction, adjacent
blocks need to be overlapped in both time and space.
However, if the spatial window is large enough to
cover all spatial samples, a DCT of Type IV with a
rectangular window is used instead.

One last important note is that, when using the
spatio-temporal MDCT, if the signal is zero-padded,
the spatial axis requires KlBm + 2Bm spatial sam-
ples to generate KlBm spectral coefficients. While
this may not seem much in the temporal domain, it
is actually very significant in the spatial domain be-
cause 2Bm spatial samples correspond to 2Bm more
channels, and thus 2BmN more spacetime samples.
For this reason, the signal is mirrored in both do-
mains, instead of zero-padded, so that no additional
samples are required.

4.4. Psychoacoustic Model

The psychoacoustic model for spatio-temporal fre-
quencies is a key aspect of the WFC, and an open
subject that requires further research. It requires
the knowledge of both temporal-frequency masking
and spatial-frequency masking, and these may be
combined in a separable or non-separable way. The
advantage of using a separable model is that the
temporal and spatial contributions can be derived
from existing models that are used in state-of-art
audio coders. On the other hand, a non-separable
model would be capable of estimating the dome-
shaped masking effect produced by each individual
spatio-temporal frequency over the surrounding fre-
quencies. These two possibilities are illustrated in
Fig. 9.

A non-separable masking model does not exist to
date, and it would most likely be difficult to develop.
For this reason, we chose to focus on the separa-
ble combination of temporal-frequency masking and
spatial-frequency masking, although in this paper
the described model is based on temporal-frequency
masking only, whereas spatial-frequency masking is
discarded.

The goal of the psychoacoustic model is to esti-
mate, for each spatio-temporal spectral block of size
Bn × Bm, a matrix M of equal size that contains
the maximum quantization noise power that each
spatio-temporal frequency can sustain without caus-
ing perceivable artifacts. Throughout the develop-

(a) (b)

Fig. 9: Two methods for estimating the spatio-
temporal masking surface induced by a given
masker: (a) separable combination of temporal
masking and spatial masking models and (b) a non-
separable masking effect estimated from an hypo-
thetical spatio-temporal psychoacoustic model.

ment of the WFC, we tested three different methods
for estimating M, which are described next.

4.4.1. Average based estimation

The simplest and fastest way of obtaining a rough
estimation of M is to first compute the masking
curve produced by the signal in each channel inde-
pendently, and then use the same average masking
curve in all spatial frequencies.

Let xn,m be the spatio-temporal signal block of size
2Bn×2Bm for which M is to be estimated. The tem-
poral signals for the channels m are xn,0, ..., xn,Bm−1

Suppose that M [·] is the operator that computes a
masking curve, with index bn and length Bn, for a
temporal signal or spectrum. Then,

M =
[

mask · · · mask
]
, (30)

where,

mask =
1
Bm

Bm−1∑
m=0

M [xn]m (31)

=
1
Bm

Bm−1∑
m=0

maskm . (32)

4.4.2. Spatial-frequency based estimation

Another way of estimating M is to compute one
masking curve per spatial frequency. This way, the
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triangular energy distribution in the spectral block
Y is better exploited.

Let xn,m be the spatio-temporal signal block of size
2Bn×2Bm, and Ybn,bm the respective spectral block.
Then,

M =
[

mask0 · · · maskBm−1

]
, (33)

where

maskbm = M [Ybn ]bm . (34)

Note that maskbm is actually computed from a
Power Spectral Density (PSD), as shown in Fig. 7,
but for the sake of simplicity we represent it with
the same notation of the MDCT.

One interesting remark about this method is that,
since the masking curves are estimated from verti-
cal lines along the Ω-axis, this is actually equivalent
to coding each channel separately after decorrela-
tion through a DCT. In Section 5, we show that
this method gives a worst estimation of M than the
plane-wave method, which is the most optimal with-
out spatial masking consideration.

4.4.3. Plane-wave based estimation

The most accurate way we found for estimating M
was by decomposing the spacetime signal p (t, x) into
plane-wave components, and estimating the mask-
ing curve for each component. The theory of wave
propagation states that any acoustic wave field can
be decomposed into a linear combination of plane
waves and evanescent waves traveling in all direc-
tions. In the spacetime spectrum, plane waves con-
stitute the energy inside the triangular region |Φ| ≤
|Ω|
c , whereas evanescent waves constitute the energy

outside this region [6]. Since the energy outside the
triangle is residual, we can discard evanescent waves
and represent the wave field solely by a linear combi-
nation of plane waves, which have the elegant prop-
erty described next.

As derived in (7), the spacetime spectrum P (Ω,Φ)
generated by a plane wave with angle of arrival α is
given by

P (Ω,Φ) = S (Ω) δ
(

Φ− cosα
c

Ω
)
, (35)

where S (Ω) is the temporal-frequency spectrum of
the source signal s (t). Consider that p (t, x) has
F plane-wave components, p0 (t, x) , . . . , pF−1 (t, x),
such that

p (t, x) =
F−1∑
k=0

pk (t, x) . (36)

The linearity of the Fourier transform implies that

P (Ω,Φ) =
F−1∑
k=0

Sk (Ω) δ
(

Φ− cosαk
c

Ω
)
. (37)

Note that, according to (37), the higher the number
of plane-wave components, the more dispersed the
energy is in the spacetime spectrum. This provides
good intuition on why a source in near-field gener-
ates a spectrum with more dispersed energy then a
source in far-field (see Section 3.2): in near-field, the
curvature is more stressed, and therefore has more
plane-wave components.

As mentioned before, we are discarding spatial-
frequency masking effects in this analysis, i.e., we
are assuming there is total separation of the plane
waves by the auditory system. Under this assump-
tion,

M (Ω,Φ) =
F−1∑
k=0

M [Sk (Ω)] δ
(

Φ− cosαk
c

Ω
)
, (38)

or, in discrete-spacetime,

M =
F−1∑
k=0

M [Sbn ] δbn, c
cosαk

bm . (39)

If p (t, x) has an infinite number of plane-wave com-
ponents, which is usually the case, the masking
curves can be estimated for a finite number of com-
ponents, and then interpolated to obtain M. This
method is illustrated in Fig. 10.

4.5. Quantization
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Fig. 10: Estimation of the spatio-temporal masking
surface, by interpolation of the contributions of a
selected number of plane waves. Note that the region
outside the shaded triangle is not supposed to have
plane-wave energy, but we use these profiles to help
in the interpolation process.

The main purpose of the psychoacoustic model, and
the matrix M, is to determine the quantization step
∆bn,bm required for quantizing each spectral coeffi-
cient Ybn,bm , so that the quantization noise is lower
than Mbn,bm . If the bitrate decreases, the quanti-
zation noise may increase beyond M to compensate
for the reduced number of available bits. In this pa-
per, we assume that pn,m is encoded with maximum
quality, which means that the quantization noise is
strictly bellow M.

Another way of controlling the quantization noise,
which we adopted for the WFC, is by setting
∆bn,bm = 1 for all bn and bm, and scaling the co-
efficients Ybn,bm by a scale factor SFbn,bm , such that
SFbn,bmYbn,bm falls into the desired integer. In this
case, given that the quantization noise power equals
∆2

12 ,

SFbn,bm =
√

12Mbn,bm . (40)

The quantized spectral coefficient Y Qbn,bm is then

Y Qbn,bm = sign (Ybn,bm) ·
⌊
(SFbn,bm · |Ybn,bm |)

3
4

⌋
,

(41)

where the factor 3
4 is used to increase the accuracy

at lower amplitudes. Conversely,

(a) (b)

Fig. 11: (a) Spatio-temporal distribution of critical
bands: 21 non-uniform bands in Ω; 1

2Bm uniform
bands in Φ. (b) Pair-wise Huffman coding. Vertical
and horizontal pairs are selected according to the
one that requires less bits do encode.

Ybn,bm = sign
(
Y Qbn,bm

)
·
(

1
SFbn,bm

·
∣∣∣Y Qbn,bm ∣∣∣ 43) .

(42)

In state-of-art audio coders, it is not possible to have
one scale factor per coefficient. Instead, a scale fac-
tor is assigned to one critical band, such that all
coefficients within the same critical band are quan-
tized with the same scale factor. In WFC, the criti-
cal bands are two-dimensional, and the scale factor
matrix SF is approximated by a piecewise constant
surface. The spatio-temporal critical bands are orga-
nized as shown in Fig. 11a, with uniform bandwidths
in bark scale [8] for the Ω-axis, and uniform band-
widths in linear scale for the Φ-axis. In the Ω-axis,
the bandwidths are the ones used in MPEG-Layer
3 [9], whereas in the Φ-axis the critical bands have
width 2. The bandwidth distribution of the critical
bands along the Φ-axis is still an open subject, and
requires further research. Some preliminary results
have suggested that the bandwidth can be larger for
higher spatial frequencies, just like in the case of
temporal frequencies.

4.6. Huffman Coding

After quantization, the spectral coefficients are con-
verted into binary base using entropy coding. A
Huffman codebook with a certain range is assigned
to each spatio-temporal critical band, and all coef-
ficients in that band are coded with the same code-
book.
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The use of entropy coding is possible because the
MDCT has a different probability of generating cer-
tain values. An MDCT occurrence histogram, for
different signal samples, clearly shows that small
absolute values are more likely than large absolute
values, and that most of the values fall within the
range of −20 to 20. For this reason, state-of-art
audio coders use a predefined set of Huffman code-
books that cover all ranges up to a certain value r.
If any coefficient is bigger than r or smaller than
−r, it is encoded with a fixed number of bits using
Pulse Code Modulation (PCM). In addition, adja-
cent values (Ybn , Ybn+1) are coded in pairs, instead
of individually. Each Huffman codebook covers all
combinations of values from (Ybn , Ybn+1) = (−r,−r)
up to (Ybn , Ybn+1) = (r, r).

In the WFC, a set of 7 Huffman codebooks covering
all ranges up to [−7, 7] is generated according to the
following probability model. Consider a pair of spec-
tral coefficients y = (Y0, Y1), adjacent in the Ω-axis.
For a codebook of range r, we define a probability
measure P [y] such that

P [y] =
W [y]

r∑
Y0=−r

r∑
Y1=−r

W [y]
, (43)

where

W [y] =
1

E [|y|] + V [|y|] + 1
. (44)

The weight of y, W [y], is inversely proportional to
the average E [|y|] and the variance V [|y|], where
|y| = (|Y0| , |Y1|). This comes from the assumption
that y is more likely to have both values Y0 and Y1

within a small amplitude range, and that y has no
sharp variations between Y0 and Y1.

When performing the actual coding of the spec-
tral block Y, the appropriate Huffman codebook
is selected for each critical band according to the
maximum amplitude value Ybn,bm within that band,
which is then represented by r. In addition, the
selection of coefficient pairs is performed verti-
cally in the Ω-axis or horizontally in the Φ-axis
(see Fig. 11b), according to the one that pro-
duces the minimum overall weight W [y]. Hence,
if v = (Ybn,bm , Ybn+1,bm) is a vertical pair and

h = (Ybn,bm , Ybn,bm+1) is an horizontal pair, then
the selection is performed according to

min
v,h

∑
bn,bm

W [v] ,
∑
bn,bm

W [h]

 .

If any of the coefficients in y is greater than 7 in
absolute value, the Huffman codebook of range 7
is selected, and the exceeding coefficient Ybn,bm is
encoded with the sequence corresponding to 7 (or
−7 if the value is negative) followed by the PCM
code corresponding to the difference Ybn,bm − 7.

4.7. Bitstream Format

The final step of the WFC is to organize all binary
data into a time series of bits, called the bitstream, in
a way that the decoder can parse the data and use it
reconstruct the multichannel signal p (t, x). The ba-
sic components of the bitstream are the main header,
and the frames that contain the coded spectral data
for each block (see Fig. 12). The frames themselves
have a small header with side information necessary
to decode the spectral data.

The main header is located at the beginning of
the bitstream, and contains information about the
sampling frequencies ΩS and ΦS (see Section 4.2),
the window type and the size Bn × Bm of spatio-
temporal MDCT (see Section 4.3), and any parame-
ters that remain fixed for the whole duration of the
multichannel audio signal.

The frame format is repeated for each spectral block
Yg,l, and organized in the following order:

Y0,0 . . . Y0,Kl−1YKg−1,0 . . . YKg−1,Kl−1 ,

such that, for each time instance, all spatial blocks
are consecutive. Each block Yg,l is encapsulated in
a frame, with a header that contains the scale fac-
tors used by Yg,l (see Section 4.5) and the Huffman
codebook identifiers (see Section 4.6).

The scale factors can be encoded in logarithmic scale
using 5 bits. The number of scale factors depends
on the size Bm of the spatial MDCT, and the size
of the critical bands. Since the width along the Φ-
axis is 2 and the number of bands in the Ω-axis is
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Fig. 12: Bitstream format. Each frame contains
coded spectral data plus a header with side infor-
mation.

21, the number of scale factors is 21 · Bm2 , and the
number of bits required is

(
21 · Bm2

)
· 5. The Huff-

man codebook selection can be done with 3 bits per
band, plus 1 bit for switching between vertical and
horizontal coefficient-pair selection. Hence, the side
information for Huffman coding requires

(
21 · Bm2

)
·4

bits per frame. Overall, each frame contains at least(
21 · Bm2

)
· 9 bits of side information.

4.8. Decoding

The decoding stage of the WFC comprises three
steps: decoding, re-scaling, and inverse filterbank.
The decoding is controlled by a state machine repre-
senting the Huffman codebook assigned to each crit-
ical band. Since Huffman encoding generates prefix-
free binary sequences, the decoder knows immedi-
ately how to parse the coded spectral coefficients.
Once the coefficients are decoded, the amplitudes are
re-scaled using (42) and the scale factor associated to
each critical band. Finally, the inverse MDCT is ap-
plied to the spectral blocks, and the recombination
of the signal blocks is obtained through overlap-and-
add in both temporal and spatial domains.

The decoded multichannel signal pn,m can be inter-
polated into p (t, x), without loss of information, as
long as the anti-aliasing conditions are satisfied (see
Section 4.2). The interpolation can be useful when
the number of loudspeakers in the playback setup
does not match the number of channels in pn,m.

5. EXPERIMENTAL RESULTS

To test the WFC scheme in Matlab, we generated
a spacetime signal P in two acoustic scenarios, de-
picted in Fig.13. In both cases, there is a source in
near-field and one in far-field, and the two are un-
correlated. Each source has two mirror reflections

Bm 96 48 24 12
Entropy 3.0 2.8 2.8 2.7

(bit/sample)
Data Bitrate 147 149 149 151
(kbit/s/ch)

Side Info. Bitrate 7 7 7 7
(kbit/s/ch)

Table 1: Circle setup with 96 channels. Plane-wave
method.

Bm 96 48 24 12
Entropy 3.1 2.8 2.7 2.7

(bit/sample)
Data Bitrate 144 146 146 150
(kbit/s/ch)

Side Info. Bitrate 7 7 7 7
(kbit/s/ch)

Table 2: Line setup with 96 channels. Plane-wave
method.

with attenuation factor 0.75 and one double reflec-
tion with attenuation 0.752. In the first acoustic sce-
nario, the listening area is defined by a circle with 96
loudspeakers, whereas in the second one the listening
area is the half plane bellow a line of 96 loudspeak-
ers. We also performed a test with P downsampled
in space by a factor of 4.

The sampling frequencies are ΩS = 2π · 44100 s−1

for both cases, and ΦS = 2π · 7.64m−1 for the circle
setup and ΦS = 2π ·11.9m−1 for the line setup. The
spatio-temporal MDCT has parameters Bn = 576
and BM according to the tables. The quantiza-
tion and Huffman encoding are performed accord-
ing to Sections 4.5 and 4.6. We show results for
two psychoacoustic models: plane-wave based esti-
mation (Tables 1 and 2) and spatial-frequency based
estimation (Tables 3 and 4). In the last two tables,
the method used is the plane-wave based estimation.
After decoding, we informally confirmed that the de-
coded spacetime signal P̂ had no audible artifacts.
The achieved bitrates per channel are shown in the
following tables.

The entropies are computed using Shannon’s for-
mula, −

∑
p log2 p, where the probabilities p are es-

timated through an histogram of quantized values
YQ. The side information bitrate accounts only
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(a)

(b)

Fig. 13: Two loudspeaker setups: (a) circle and (b)
straight line. In both acoustic scenes, there is one
source in near-field and one source in far-field, both
with four mirror reflections.

Bm 24 12
Entropy (bit/sample) 3.7 3.7

Data Bitrate (kbit/s/ch) 184 185
Side Info. Bitrate (kbit/s/ch) 7 7

Table 3: Circle setup with 96 channels. Spatial-
frequency method.

Bm 24 12
Entropy (bit/sample) 3.7 3.7

Data Bitrate (kbit/s/ch) 180 184
Side Info. Bitrate (kbit/s/ch) 7 7

Table 4: Line setup with 96 channels. Spatial-
frequency method.

Bm 24 12
Entropy (bit/sample) 3.0 3.0

Data Bitrate (kbit/s/ch) 150 156
Side Info. Bitrate (kbit/s/ch) 7 7

Table 5: Circle setup with 24 channels. Plane-wave
method.

for scale factors, Huffman codebook selection, and
horizontal/vertical pair selection, according to Sec-
tion 4.7.

The results in Tables 1 and 2 show that increas-
ing the spatial resolution slightly decreases the en-
tropy, although after Huffman encoding the bitrate
is nearly the same. The importance of processing
P in short-space, specially in the circle configura-
tion, becomes evident when the quantization noise
is increased, where we verify that for Bm = 96 the
artifacts become audible faster than with Bm = 12.
This is because for Bm = 96 the circle can not be
approximated by a polygon (see Section 3.3), and
therefore the plane-wave decomposition is not valid
anymore. The results also suggest that when P is
downsampled in space (less loudspeakers) the bitrate
per channel is not significantly affected, although
there is less flexibility in selecting Bm.

The results in Tables 3 and 4 show that the spatial-
frequency based estimation of the masking surface
(equivalent, as mentioned, to DCT-based decorrela-
tion of the channels) is not as optimal as the plane-
wave method.

Bm 24 12
Entropy (bit/sample) 3.0 3.0

Data Bitrate (kbit/s/ch) 147 154
Side Info. Bitrate (kbit/s/ch) 7 7

Table 6: Line setup with 24 channels. Plane-wave
method.
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These results were compared to coding each chan-
nel independently, using the exact same masking
curve estimation method (the operator M [·] in Sec-
tion 4.4). This coding approach required around
175 kbit/s/ch for spectral data and 13 kbit/s/ch for
side information. The bitrate reduction achieved by
WFC is therefore around 15%. Note, however, that
the purpose of this publication is not to exhaustively
optimize the coder’s design and performance, but
only to demonstrate the potential of this new tech-
nique. In fact, the bitrate can be further reduced
if the spatial masking effect is also exploited, which
is not possible when coding the channels indepen-
dently. Improving the spatio-temporal psychoacous-
tic model is part of our future work.
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