Action Filename Description Size Access License Resource Version
Show more files...


To improve the resolution of the Very Large Telescope Interferometer (VLTI) a two-stage mechanical system, a so called Differential Delay Line (DDL), is developed jointly by the EPFL and the Observatory of Geneva. The system is designed to reach nanometer accuracy at high bandwidth over large displacements. The coarse stage features a permanent magnet (PM) stepper motor driving a lead screw connected to a double parallelogram flexure with notch-hinges (blade) guiding system, and the fine stage features a stacked piezoelectric device, combine to one single measurable output. This paper compares different control approaches for the DDL with their respective advantages and disadvantages. The developed control methods are based on modern linear and nonlinear control theory. The performance of the control schemes is illustrated via simulation and measurement on the available prototype. The new developed methods are compared to the currently implemented decoupled SISO design which features a direct-coil controller for the coarse stage and a simple PID-controller for the fine one.