
Tight Bounds on the Capacity of Binary Input

random CDMA Systems

Satish Babu Korada and Nicolas Macris

School of Information and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne
LTHC-IC-Station 14, CH-1015 Lausanne

Switzerland

March 10, 2008

Abstract

We consider multiple access communication on a binary input additive white Gaussian noise channel
using randomly spread code division. For a general class of symmetric distributions for spreading
coefficients, in the limit of a large number of users, we prove an upper bound on the capacity, which
matches a formula that Tanaka obtained by using the replica method. We also show concentration
of various relevant quantities including mutual information, capacity and free energy. The mathe-
matical methods are quite general and allow us to discuss extensions to other multiuser scenarios.

1 Introduction

Code Division Multiple Access (CDMA) has been a successful scheme for reliable communication between
multiple users and a common receiver. The scheme consists of K users modulating their information
sequence by a signature sequence, also known as spreading sequence, of length N and transmitting.
The number N is sometimes referred to as the spreading gain or the number of chips per sequence.
The receiver obtains the sum of all transmitted signals and the noise which is assumed to be white and
Gaussian (AWGN).

The achievable rate region (for real valued inputs) with power constraints and optimal decoding has
been given in [1]. There it is shown that the achievable rates depend only on the correlation matrix
of the spreading coefficients. It is well known that these detectors have exponential (in K) complexity.
Therefore, it is important to analyze the performance under sub-optimal but low-complexity detectors
like the linear detectors. For a good overview of these detectors we refer to [2]. In [3], the authors
considered random spreading (spreading sequences are chosen randomly) and analyzed the spectral
efficiency, defined as the bits per chip that can be reliably transmitted, for these detectors. In the large-
system limit (K → ∞, N → ∞, K

N = β) they obtained nice analytical formulas for the spectral efficiency
and showed that it concentrates. These formulas follow from the known spectrum of large covariance
matrices. In [4],[5] the authors analyzed the signal to interference ratio for the decorrelator and the
MMSE receiver and showed that it is asymptotically Gaussian with variance going to zero.

Now consider the case where the user input is restricted to take only binary values. Not much
is known in this case except for the spectral efficiency in the case of high SNR which is analyzed in
[6]. The random matrix techniques used for Gaussian inputs do not apply here because the spectral
efficiency cannot be written in terms of just the covariance matrix of the spreading sequences. Tanaka [7]
applied the formal replica method, developed in statistical mechanics, to this problem and conjectured
the formula for spectral efficiency and bit error rate (BER) for uncoded transmission. These results were
later extended in [8] to include the case of unequal powers and channel with fading. The replica method
is non-rigorous but believed to yield exact results for some models in statistical mechanics [9]. More
recently Montanari and Tse [10] have made progress towards a rigorous derivation of Tanaka’s capacity
formula in a restricted range of parameters.
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Our main contributions in this paper are twofold. First we prove that Tanaka’s formula is an upper
bound to the capacity for all values of the parameters and second we prove various useful concentration
theorems in the large-system limit.

1.1 Statistical Mechanics Approach

There is a natural connection between various communication systems and statistical mechanics of
random spin systems, stemming from the fact that often in both systems there is a large number of
degrees of freedom (bits or spins), interacting locally, in a random environment. So far, there have
been applications of two important but somewhat complementary approaches of statistical mechanics of
random systems.

The first one is the very important but mathematically uncontrolled replica method. The merit of
this approach is to obtain conjectural but rather explicit formulas for quantities of interest such as,
free energy, conditional entropy or error probability. In some cases the natural fixed point structure
embodied in the mean field formulas allows to guess good iterative algorithms. This program has been
carried out for linear error correcting codes, source coding, multiuser settings like broadcast channel (see
for example [11], [12], [13]) and the case of interest here [7]: randomly spread CDMA with binary inputs.

The second type of approach aims at a rigorous understanding of the replica formulas and has its
origins in methods stemming from mathematical physics (see [14, 15], [9]). For systems whose underlying
degrees of freedom have Gaussian distribution (Gaussian input symbols or Gaussian spins in continuous
spin systems) random matrix methods can successfully be employed. However when the degrees of
freedom are binary (binary information symbols or Ising spins) these seem to fail, but the recently
developed interpolation method [14],[15] has had some success1. The basic idea of the interpolation
method is to study a measure which interpolates between the posterior measure of the ideal decoder and
a mean field measure. The later can be guessed from the replica formulas and from this perspective the
replica method is a valuable tool. So far this program has been developed only for linear error correcting
codes on sparse graphs and binary input symmetric channels [16], [17].

In this paper we develop the interpolation method for the random CDMA system with binary inputs
(in the large-system limit). The situation is qualitatively different than the ones mentioned above in that
the “underlying graph” is complete. Superficially one might think that it is similar to the Sherrington-
Kirkpatrick model which was the first one treated by the interpolation method. However as we will see
the analysis of the randomly spread CDMA system is substantially different due to the structure of the
interaction between degrees of freedom.

1.2 Communication Setup

We consider a scenario where K users send binary information symbols x = (x1, . . . , xK)t, xk ∈ {±1}
to a common receiver, through a single AWGN channel. Each user k has a random signature sequence
sk = (s1k, ..., sNk)t where the components are independently identically distributed. For each time
division (or chip) interval i = 1, ..., N the received signal y = (y1, ..., yN ) is

yi =
1√
N

K
∑

k=1

sikxk + σni

where n = (n1, ..., nN )t are independent identically distributed Gaussian variables N (0, 1) so that the
noise power is σ2. The variance of sik is set to 1 and the scaling factor 1/

√
N is introduced so that

the power (per symbol) of each user is normalized to 1. Our results hold for the rather wide class of
distributions satisfying:

Assumption A. The distribution p(sik) is symmetric

p(sik) = p(−sik)

and has a rapidly decaying tail. More precisely, there exists positive constants s0 and A such that ∀s ≥ s0

p(sik ≥ s) ≤ e−As2

1Let us point out that, as will be shown later in this paper, the interpolation method can also serve as an alternative
to random matrix theory for Gaussian inputs.
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In particular, our favorite Gaussian and binary cases are included in this class, and also any compactly
supported distribution. An inspection of our proofs suggests that the results could be extended to a
larger class satisfying:

Assumption B. The distribution p(sik) is symmetric with finite second and fourth moments.

However to keep the proofs as simple as possible only one of the theorems is proven with such generality.
In the sequel we use the notations s for the N × K matrix (sik), S for the corresponding random

matrix, and X, Y for the input and output random vectors.
Our main interest is in proving a “tight” upper bound on

CK =
1

K
max
pX

ES[I(X;Y )] (1)

in the large-system limit K → +∞ with K
N = β fixed. In the next few paragraphs we discuss various

settings for which it is justified to consider this formula as a capacity. In principle for multiaccess
channels one maximizes over product distributions pX(x) =

∏K
k=1 pk(xk). But in fact this restriction

makes no difference when one maximizes the expected mutual information because the maximum is
attained for a uniform distribution. Indeed for any given s the mutual information I(X;Y ) is a concave
functional of pX and thus so is its average. Moreover the later is invariant under the transformations
pX(x1, x2, ..., xK) → pX(ǫ1x1, ǫ2x2, ..., ǫKxK) where ǫi = ±1. Combining these two facts we deduce that
the maximum in (1) is attained for the convex combination

1

2K

∑

ǫ1,...,ǫK

pX(ǫ1x1, ..., ǫKxK) =
1

2K

which is nothing else than the product of uniform distributions for each user. Before discussing the
meaning of (1) for the CDMA setting let us note that it can also be interpreted as the capacity of a MIMO
system with binary constellations, K transmit, N receive antennas, and ergodic channel coefficients sik

that are known to the receiver only [18], [19].
In the traditional CDMA setting (see for example [2]) the spreading sequences are assigned to each

user and do not change from symbol to symbol. Moreover it is assumed that the users and the receiver
know s. The general analysis of multiaccess channels implies that the total capacity per user (or maximal
achievable sum rate) is

1

K
max

QK
k=1 pk(xk)

I(X;Y ) (2)

where the maximum is over pi(x) = piδ(x − 1) + (1 − pi)δ(x + 1) and pi ∈ [0, 1], i = 1, ..., k. In the
large-system limit we are able to prove a concentration theorem for the mutual information I(X;Y )
which implies that if (p1, ..., pK) belongs to a finite discrete set D with cardinality increasing at most
polynomially in K, then (2) concentrates on 1

K maxp∈D ES[I(X;Y )]. Of course by the same argument
as before this maximum is attained for p = 1

2 as long as 1
2 ∈ D. Unfortunately, in order to extend these

arguments to the more realistic case of exponential cardinality of D, or even all possible continuous
values of the input distribution (and thus to fully justify (1)) we would have to prove stronger forms of
concentration.

At this point it is interesting to discuss the situation for the continuous input case. There it is known
that the maximum of (2) is attained for a Gaussian input distribution independent of the spreading
sequence realization [1]. Then the concentration theorems for I(X;Y ) suffice to prove that in the large-
system limit (2) asymptotically equals (1). It is an open problem to decide if an analogous result holds
in the binary input case, namely that the maximum of (2) is attained for the uniform distribution. We
conjecture that this is the case.

Alternatively, following [3] one may consider the case of “long spreading sequences”, that is sequences
that extend over many symbol durations. Then by “ergodicity” one can compute the capacity as an
expectation of (2) over S. In the continuous input case it turns out that one can switch the expectation
and the maximum because it can be shown (by the standard argument adapted above for the binary
case) that the maximum of the expectation is attained for the same Gaussian input distribution. Thus,
remarkably, in the continuous case one exchanges the expectation over S with the maximum over product
distributions even for finite K.

Finally let us return to the binary case and consider the situation of long spreading sequences as
in [3] that are assumed to be unknown (or rather not used) to the encoder and known to the receiver.
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Then, by the analysis in [18], formula (1) gives the capacity. If users do not cooperate pX is really a
product distribution. But in any case the maximum is attained for the uniform distribution.

Let us now collect a few formulas that will be useful in the sequel. The conditional entropy H(X |
Y ) = EY |s[H(X | y)] is the average over Y given s of the Shannon entropy for the posterior distribution

p(x | y, s) =
pX(x)

Z(y, s)
exp

(

− 1

2σ2
‖y −N− 1

2 sx‖2
)

(3)

with the normalization factor

Z(y, s) =
∑

x

pX(x)e−
1

2σ2 ‖y−N− 1
2 sx‖2

(4)

Note that this is the distribution used by the ideal or optimal detector. The average over Y is carried
out with the distribution induced by the channel transition probability

p(y | s) =
∑

x0

pX(x0)
e−

1
2σ2 ‖y−N− 1

2 sx0‖2

(
√

2πσ)N
=

1

(
√

2πσ)N
Z(y, s) (5)

where in the sum x0 is interpreted as the input signal. The normalization factor (4) can be interpreted
as the partition function of interacting Ising spins xk = ±1 with free measure pX . In view of this it is
not surprising that the free energy

f(y, s) =
1

K
lnZ(y, s) (6)

plays a crucial role. In appendix A we show that it is related to the mutual information by

1

K
I(X;Y ) = − 1

2β
− EY |s[f(y, s)] (7)

Therefore

CK = − 1

2β
− min

pX

EY ,S[f(y, s)] (8)

Of course by the previous discussion the minpX is attained for pX(x) = 1
2K .

1.3 Tanaka’s formula for binary inputs

By using the formal replica trick of statistical mechanics Tanaka reduced the calculation of the conditional
entropy to a variational problem. His conjectural formula is

lim
K→∞

CK = min
m∈[0,1]

cRS(m) (9)

where the “replica symmetric capacity functional”

cRS(m) =
λ

2
(1 +m) − 1

2β
lnλσ2 −

∫

Dz ln(2 cosh(
√
λz + λ)) (10)

with

λ =
1

σ2 + β(1 −m)
(11)

and Dz the standard Gaussian measure Dz ≡ e− z2

2√
2π
dz, has to be maximized over a parameter2 m. It is

easy 3 to see that the maximizer must satisfy the fixed point condition

m =

∫

Dz tanh(
√
λz + λ) (12)

2this parameter can be interpreted as the expected value of the MMSE estimate for the information bits
3using integration by parts formula for Gaussian random variables
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The formal calculations involved in the replica method make clear that the formula (9) should not depend
on the distribution of the spreading sequence (see [7]).

In the present problem one expects a priori that replica symmetry is not broken because of a gauge
symmetry induced by channel symmetry. For this reason Tanaka’s formula is conjectured to be exact.
Our upper bound (Theorem 6) on the capacity precisely coincides with the above formulas and strongly
supports this conjecture.

Recent work announced by Montanari and Tse [10] also provides strong support to the conjecture
at least in a regime of β without phase transitions (more precisely, for β ≤ βs(σ) where βs(σ) is the
maximal value of β such that the solution of (12) remains unique). The authors first solve the case
of sparse signature sequence (using the area theorem and the data processing inequality) in the limit
K → ∞. Then the dense signature sequence (which is of interest here) is recovered by exchanging the
K → ∞ and sparse→ dense limits.

1.4 Gaussian inputs

In the case of continuous inputs xk ∈ R, in formulas (4), (5)
∑

x are replaced by
∫

dx. The capacity is
maximized by a Gaussian prior,

pX(x) =
e−

||x||2

2

(2π)N/2
(13)

and one can express it in terms of a determinant involving the correlation matrix of the spreading
sequences. Using the exact spectral measure given by random matrix theory Shamai and Verdu [3]
obtained the rigorous result

lim
K→∞

CK =
1

2
log(1 + σ−2 − 1

4
Q(σ−2, β))

+
1

2β
log(1 + σ−2β − 1

4
Q(σ−2, β)) − Q(σ−2, β)

8βσ−2
(14)

where

Q(x, z) =

(

√

x(1 +
√
z)2 + 1 −

√

x(1 −√
z)2 + 1

)2

On the other hand Tanaka applied the formal replica method to this case and found (9) with

cRS(m) =
1

2
log(1 + λ) − 1

2β
logλσ2 − λ

2
(1 −m) (15)

where λ = (σ2 + β(1 −m))−1. The maximizer satisfies

m =
λ

1 + λ
(16)

Solving (16) we obtain m = σ2

4βQ(σ−2, β) and substituting this in (15) gives the equality between (14)

and (15). So at least for the case of Gaussian inputs we are already assured that the replica method
finds the correct solution.

As we will show in section 7.3 our methods also work in the case of Gaussian inputs, and yield the
upper bound.

1.5 Contributions and organization of this work

The main focus and challenge of this work is on the case of binary inputs for the communication set
up described above, although the methods also work for many other constellations including Gaussian
inputs. The main results are explained in section 2 while the remaining sections are devoted to the
proofs.

We prove concentration of the mutual information in the limit of K → +∞ and β = K
N fixed

(Theorems 1, 3 in section 2.1). As we will see the mathematical underpinning of this is the concentration
of a more fundamental object, namely, the “free energy” of the associated spin system (Theorem 2). In
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fact this turns out to be important in the proof of the bound on capacity. When the spreading coefficients
are Gaussian the main tool used is a powerful theorem [9] of the concentration of Lipschitz functions
of many independent Gaussian variables, and this leads to subexponential concentration bounds. For
more general spreading coefficient distributions such tools do not suffice and we have to combine them
with martingale arguments which lead to weaker algebraic bounds. Since the concentration proofs are
mainly technical they are presented in appendices B, C.

Sections 3 and 4 form the core of the paper. They detail the proof of the main Theorem 6 announced
in section 2.4, namely the tight upper bound on capacity. We use ideas from the interpolation method
combined with a non-trivial concentration theorem for the empirical average of soft bit estimates.

Section 5 shows that the average capacity is independent of the spreading sequence distribution at
least for the case where it is symmetric and decays fast enough (Theorem 4 in section 2.2). This enables
us to restrict ourselves to the case of Gaussian spreading sequences which is more amenable to analysis.
The existence of the limit K → ∞ for the capacity is shown in section 6.

Section 7 discusses various extensions of this work. We sketch the treatment for unequal powers for
each user as well as colored noise. As alluded to before the bound on capacity for the case of Gaussian
inputs can also be obtained by the present method and we give some indications to this effect.

The appendices contain the proofs of various technical calculations. Preliminary versions of the
results obtained in this paper have been summarized in references [20] and [21].

2 Main Results

2.1 Concentration

In the case of a Gaussian input signal, the concentration can be deduced from general theorems on the
concentration of the spectral density for random matrices, but this approach breaks down for binary
inputs. Here we prove,

Theorem 1 (concentration of capacity, Gaussian spreading sequence, binary inputs). Assume
the distribution p(sik) are standard Gaussians. Given ǫ > 0, there exists an integer K1 = O(| ln ǫ|)
independent of pX , such that for all K > K1,

P[|I(X;Y ) − ES[I(X ;Y )]| ≥ ǫK] ≤ 3e−α1ǫ2K

where α1 = 1
16σ

4(64β + 32 + σ2)−1.

The mathematical underpinning of this result is in fact a more general concentration result for the
free energy (6), that will be of some use latter on.

Theorem 2 (concentration of free energy, Gaussian spreading sequence, binary inputs.).
Assume the distribution p(sik) are standard Gaussians. Given ǫ > 0, there exists an integer K2 =
O(| ln ǫ|) independent of pX, such that for all K ≥ K2,

P[|f(y, s) − EY ,S[f(y, s)]| ≥ ǫ] ≤ 3e−α2ǫ2
√

K

where α2 = 1
32σ

4β
3
2 (2

√
β + σ)−2.

We prove these theorems thanks to powerful probabilistic tools developed by Ledoux and Talagrand for
Lipschitz functions of many Gaussian random variables. These tools are briefly reviewed in Appendix
B for the convenience of the reader and the proofs of the theorems are presented in Appendix C.
Unfortunately the same tools do not apply directly to the case of other spreading sequences. However
in this case the following weaker result can at least be obtained.

Theorem 3 (concentration, general spreading sequence). Assume the spreading sequence satisfies
assumption B. There exists an integer K1 independent of pX , such that for all K > K1

P[|I(X ;Y ) − ES[I(X ;Y )]| ≥ ǫK] ≤ α

Kǫ2

P[f(y, s) − EY ,S[f(y, s)]| ≥ ǫ] ≤ α

Kǫ2

for some constant α > 0 and independent of K.
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To prove such estimates it is enough (by Chebycheff) to control second moments. For the mutual
information we simply have to adapt martingale arguments of Pastur, Scherbina and Tirrozzi, [22, 23]
whereas the case of free energy is more complicated because of the additional Gaussian noise fluctuations.
We deal with these by combining martingale arguments and Lipschitz function techniques.

The concentration of capacity, namely

P[|max
pX

I(X ;Y ) − max
pX

ES[I(X;Y )]| ≥ ǫK] ≤ α

Kǫ2
(17)

would follow from a stronger (uniform concentration with respect to pX)

P[max
pX

|I(X ;Y ) − ES[I(X ;Y )]| ≥ ǫK] ≤ α

Kǫ2
(18)

To see this it suffices to note that for two positive functions f and g we have |max f−max g| ≤ max |f−g|.
But unfortunately it is not clear how to extend our proofs to obtain (18). However as announced in the
introduction we can deduce (18) from our theorems, by using the union bound, as long as the maximum
is carried out over a finite set (sufficiently small with respect to K) of distributions.

We wish to argue here that Theorem 2 suggests a method for proving the concentration of the bit
error rate (BER) for uncoded communication

1

2
(1 − 1

K

K
∑

k=1

x0,kx̂k) (19)

where the MAP bit estimate for uncoded communication is defined through the marginal of (3), namely
x̂k = argmaxxk={±1}p(xk | y, s). We remark that

x̂k = sign〈xk〉

where we find it convenient to adopt the statistical mechanics notation 〈−〉 for the average with respect
to the posterior measure (3). For example the average

〈xk〉 =
∑

x

xkp(x | y, s)

(a soft bit estimate or “magnetization”) can be obtained from the free energy by adding first an in-

finitesimal perturbation (“small external magnetic field”) to the exponent in (3), namely h
∑K

k=1 x
0
kxk,

and then differentiating the perturbed free energy4,

1

K

K
∑

k=1

x0
k〈xk〉 = lim

h→0

d

dh

1

K
lnZ(y, s)

However one really needs to relate sign〈xk〉 to the derivative of the free energy and this does not appear
to be obvious. One way out is to introduce product measures of n copies (also called “real replicas”) of
the posterior measure

p(x(1) | y, s)p(x(2) | y, s) . . . p(x(n) | y, s)
and then relate

K
∑

k=1

(x0
k〈xk〉)n =

K
∑

k=1

〈x0
kx

1
k...x

0
kx

n
k 〉n

to a suitable derivative of the replicated free energy. Then from the set of all moments one can in
principle reconstruct sign〈xk〉. Thus one could try to deduce the concentration of the BER from the one
for the free energy. However the completion of this program requires a uniform, with respect the system
size, control of the derivative of the free energy precisely at h = 0, which at the moment is still lacking5.

4we do not write explicitly the h dependence in the perturbed free energy
5however this can be done for Lebesgue almost every h
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2.2 Independence with respect to the distribution of the spreading sequence

The replica method leads to the same Tanaka formula for general class of symmetric distributions
p(sik) = p(−sik). We are able to prove this: in particular binary and Gaussian spreading sequences lead
to the same capacity.

Theorem 4. Consider CDMA with binary inputs and assume A for the spreading sequence. Let Cg be
the capacity for Gaussian spreading sequences (symmetric i.i.d with unit variance). Then

limK→+∞(CK − Cg) = 0

This theorem turns out to be very useful in order to obtain the bound on capacity because it allows
us to make use of convenient integration by parts identities that have no clear counterpart in the non-
Gaussian case. The proof of the theorem is given in section 5.

2.3 Existence of the limit K → +∞
The interpolation method can be used to show the existence of the limit K → +∞ for CK .

Theorem 5. Consider CDMA with binary inputs and assume A for the spreading sequences with uniform
input distribution. Then

lim
K→∞

CK exists (20)

The proof of this theorem is given in section 6 for Gaussian spreading sequences. The general case
then follows because of Theorem 4.

2.4 Tight upper bound on the capacity

The main result of this paper is that Tanaka’s formula (10) is an upper bound to the capacity for all
values of β.

Theorem 6. Consider CDMA with binary inputs and assume A for the spreading sequence. We have

lim
K→∞

CK ≤ min
m∈[0,1]

cRS(m) (21)

where cRS(m) is given by (10).

If we combine this result with an inequality in Montanari and Tse [10], and exchanging as they do
the limits of K → +∞ and sparse → dense, one can deduce that the equality holds for some regime
of noise smaller than a critical value. This value corresponds to the threshold for belief propagation
decoding. Note that this equality is valid even if β is such that there is a phase transition (the fixed
point equation (12) has many solutions), whereas in [10] the equality holds for values of β for which the
phase transition does not occur.

Since the proof is rather complicated we find it useful to give the main ideas in an informal way. The
integral term in (10) suggests that we can replace the original system with a simpler system where the
user bits are sent through K independent Gaussian channels given by

ỹk = xk +
1√
λ
wk (22)

where wk ∼ N (0, 1) and λ is an effective SNR. Of course this argument is a bit naive because this
effective system does not account for the extra terms in (10), but it has the merit of identifying the
correct interpolation.

We introduce an interpolating parameter t ∈ [0, 1] such that the independent Gaussian channels
correspond to t = 0 and the original CDMA system corresponds to t = 1 (see Figure 2.4) It is convenient
to denote the SNR of the original Gaussian channel as B (that is B = σ−2). Then (11) becomes

λ =
B

1 + βB(1 −m)
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1

B(t)
)
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1

λ(t)
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λ(t)
)

ỹ1

ỹ2

ỹK

Figure 1: The information bits xk are transmitted through the normal CDMA channel with variance
1

B(t) and through individual Gaussian channels with noise 1
λ(t)

We introduce two interpolating SNR functions λ(t) and B(t) such that

λ(0) = λ, B(0) = 0 and λ(1) = 0, B(1) = B (23)

and

B(t)

1 + βB(t)(1 −m)
+ λ(t) =

B

1 + βB(1 −m)
(24)

The meaning of (24) is the following. In the interpolating t-system the effective SNR seen by each user
has an effective t-CDMA part and an independent channel part λ(t) chosen such that the total SNR
is fixed to the effective SNR of the CDMA system. There is a whole class of interpolating functions
satisfying the above conditions but it turns out that we do not need to specify them more precisely except
for the fact that B(t) is increasing, λ(t) is decreasing and with continuous first derivatives. Subsequent
calculations are independent of the particular choices of functions.

The parameter m is to be considered as fixed to any arbitrary value in [0, 1]. All the subsequent
calculations are independent of its value, which is to be optimized to tighten the final bound.

We now have two sets of channel outputs y (from the CDMA with noise variance B(t)−1) and ỹ (from

the independent channels with noise variance λ(t)−1) and the interpolating communication system has
a posterior distribution

pt(x|y, ỹ, s) =
1

2KZ(y, ỹ, s)
exp

(

−B(t)

2
‖y −N− 1

2 sx‖2 − λ(t)

2
‖ỹ − x‖2

)

(25)

Note that here we take without loss of generality pX(X) = 1
2K . By analyzing the mutual information

ES[It(X ;Y , Ỹ )] of the interpolating system we can relate ES[I(X ;Y )] (the t = 1 value) to the easily
computed entropy ES[I0(X ; Ỹ )] of the independent channel limit. The average over (Y , Ỹ ) is now
performed with respect to

pt(y, ỹ | s) =
1

2K

∑

x0

1

(
√

2πB(t)−1)N (
√

2πλ(t)−1)K
e−

B(t)
2 ‖y−N− 1

2 sx0‖2−λ(t)
2 ‖ỹ−x0‖2

(26)

These equations completely define the interpolating communication system.
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In order to carry out this program successfully it turns out that we need a concentration result on
empirical average of the “magnetization”,

m1 =
1

K

K
∑

k=1

x0
kxk

which, as explained in section 2.1, is closely related to the BER. Informally speaking we need to prove
that the fluctuations of E〈|m1−E〈m1〉|〉 are small. This involves the control of two types of fluctuations,
E〈|m1 − 〈m1〉|〉 and E|〈m1〉 − E〈m1〉| (by the triangle inequality). In some spin glass problems both
type of fluctuations need not be small at the same time. Indeed it is a quite general fact that the first
one is small for thermodynamic (or convexity) reasons while the smallness of the second is not assured
if replica symmetry breaking occurs (see [9]). Here we use a crucial ingredient that is specific to the
communication set up, namely the channel symmetry, which induces a gauge symmetry and prevents
replica breaking. This, it turns out, allows to prove that both fluctuations are small. The control of
these fluctuations is the object of Theorem 7 in section 3.3. There are technical complications that we
have to deal with because such control of fluctuations is only possible away from phase transitions. For
this reason we have to add small appropriate perturbations to the measure (25) and give almost sure
statements with respect to the strength of the perturbation. By being sufficiently careful with the order
of limits the extra perturbation terms can be removed at the end of the calculations.

3 Proof of bound on capacity: Theorem 6

3.1 Preliminaries

The interpolating communication system defined by the measure (25) allows us to compare the original
CDMA system with the independent channel system. The distribution of y, ỹ is given by (26). This

distribution consists of a summation of 2K terms, each corresponding to different possible input sequence.
Each of these terms contribute equally to the capacity (free energy). The reader can explicitly check
this by making the change of variables xk → x0

kxk and sik → sikx
0
k, wk → wkx

0
k, hk → hkx

0
k which

leave all standard Gaussians invariant. Hence we can assume that a particular input sequence say x0 is
transmitted. The distribution of the received vectors with this assumption is

pt(y, ỹ | s) =
1

(
√

2πB(t)−1)N (
√

2πλ(t)−1)K
e−

B(t)
2 ‖y−N− 1

2 sx0‖2−λ(t)
2 ‖ỹ−x0‖2

(27)

For technical reasons that will become clear only in the next section we consider a slightly more general
interpolation system where the perturbation term

hu(x) =
√
u

K
∑

k=1

hkxk + u

K
∑

k=1

x0
kxk −√

u

K
∑

k=1

|hk| (28)

is added in the exponent of the measure (25). Here hk are i.i.d. hk ∼ N (0, 1). For the moment u ≥ 0
is arbitrary but in the sequel we will take u→ 0. This time it is convenient to perform a new change of
variables y = B(t)−1/2n+N−1/2sx0 and ỹ = λ(t)−1/2w + x0, where ni, wi ∼ N (0, 1) and we set 〈−〉t,u
for the average corresponding to the posterior measure

pt,u(x|n,w, h, s) =
1

Zt,u
exp

(

−1

2
‖n+N− 1

2B(t)
1
2 s(x0 − x)‖2 (29)

− 1

2
‖w + λ(t)

1
2 (x0 − x)‖2 + hu(x)

)

with the obvious normalization factor Zt,u. We define a free energy

ft,u(n,w, h, s) =
1

K
lnZt,u (30)

For t = 1 we recover the original free energy,

E[f(y, s)] =
1

2
+ lim

u→0
E[f1,u(n,w, h, s)]

10



while for t = 0 the statistical sums decouple and we have the explicit result6

1

2
+ lim

u→0
E[f0,u(n,w, h, s)] = − 1

2β
− λ+

∫

Dz ln(2 cosh(
√
λz + λ)) (31)

where E denotes the appropriate collective expectation over random objects. In view of formula (7) in
order to obtain the average capacity it is sufficient to compute

lim
K→+∞

lim
u→0

E[f1,u(n,w, h, s)] +
1

2
(32)

There is no loss in generality in setting
x0

k = 1 (33)

for the input symbols. From now on in sections 3,4, and 6 we stick to (33). We also use the shorthand
notations

zk = x0
k − xk = 1 − xk, ft,u(n,w, h, s) = ft,u

Using |hu(x)| ≤ 2
√
u

∑

k |hk| +Ku it easily follows that (u small)

|E[ft,u] − E[ft,0]| ≤ 2
√
uE[|hk|] + u (34)

therefore we can permute the two limits in (32) and compute

lim
u→0

lim
K→+∞

E[f1,u] +
1

2

From now on we keep the limits in that order. By the fundamental theorem of calculus,

E[f1,u] = E[f0,u] +

∫ 1

0

dt
d

dt
E[ft,u] (35)

Our task is now reduced to estimating

lim
u→0

lim
K→+∞

∫ 1

0

dt
d

dt
E[ft,u]

This is done in sections 3.4, 3.5. This requires a few preliminary results that are the object of sections
3.2, 3.3.

3.2 Nishimori identities

As already alluded to in the introduction the “magnetization” plays an important role

m1 =
1

K

K
∑

k=1

xk (36)

A closely related quantity is the “overlap parameter”

q12 =
1

K

K
∑

k=1

x
(1)
k x

(2)
k (37)

where x
(1)
k and x

(2)
k are independent copies (“replicas”) of the xk. This means that the joint distribution

of (x
(1)
k , x

(2)
k ) is the product measure

pt(x
(1)|n,w, h, s)pt(x

(2)|n,w, h, s)

The average with respect to this joint distribution is denoted (by a slight abuse of notation) with the
same bracket 〈−〉t,u. The important thing to notice is that the replicas are “coupled” through the
common randomness (n,w, h, s).

6it is also straightforward to compute the full u dependence and see that it is O(
√

u), uniformly in K

11



Lemma 1. The distributions of m1 and q12 defined as

Pm1(x) = E〈δ(x −m1)〉t,u, Pq12(x) = E〈δ(x − q12)〉t,u
are equal, namely

Pm1(x) = Pq12(x)

In particular the following identity holds

E[〈m1〉t,u] = E[〈q12〉t,u] (38)

Such identities are known as Nishimori identities in the statistical physics literature and are a consequence
of a gauge symmetry satisfied by the measure E〈−〉t,u. They have also been used in the context of
communications (see [11],[16]). For completeness a sketch of the proof is given in Appendix F.

The next two identities also follow from similar considerations.

Lemma 2. Let

Z = n+

√

B(t)

N
sz

Consider two replicas Z(α), α = 1, 2 corresponding to z
(α)
k = 1 − x

(α)
k . We have then

1

N
E[〈‖Z‖2〉t,u] = 1 (39)

and

E[〈(n · Z(2))(z(1) · z(2))〉t,u] =
∑

k

E[〈(n · Z)zk〉t,u] (40)

3.3 Concentration of Magnetization

A crucial feature of the calculation in the next paragraph is that m1 (and q12) concentrate, namely

Theorem 7. Fix any ǫ > 0. For Lebesgue almost every u > ǫ,

lim
N→∞

∫ 1

0

dtE〈|m1 − E〈m1〉t,u|〉t = 0

The proof of this theorem, which is the point where the careful tuning of the perturbation is needed,
has an interest of its own and is presented section 4. Similar statements in the spin glass literature
have been obtained by Talagrand [9]. The usual signature of replica symmetry breaking is the absence
of concentration for the overlap parameter q12. This theorem combined with the Nishimori identity
“explains” why the replica symmetry is not broken.

We will also need the following corollary

Corollary 1. The following holds

1

N3/2
E〈(n · sz)(1 −m1)〉t,u =

1

N3/2
E〈n · sz〉t,u(1 − E〈m1〉t,u) + oN (1)

with limN→+∞ oN (1) = 0 for almost every u > 0.

Proof. By the Cauchy-Schwartz inequality

1

N3/2
E〈(n · sz)(E〈m1〉t,u −m1)〉t,u ≤ 1

N3/2
(E〈(n · sz)2〉t,u)1/2

× (E〈(E〈m1〉t,u −m1)
2〉t,u)1/2

Because of the concentration of the magnetization m1 (theorem 7) it suffices to prove that

E

〈(

N− 3
2

∑

i,l

nisilzl

)2〉

t,u
≤ D (41)

for some constant D independent of N . The proof follows from the central limit theorem and is given
in Appendix G.
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3.4 Computation of d
dt

E[ft,u]

We have
d

dt
E[ft,u] = T1 + T2 (42)

where

T1 = − λ′(t)

2
√

λ(t)K
E〈w · z〉t,u − λ′(t)

2K
E〈z · z〉t,u (43)

and

T2 = − 1

K
√
N

B′(t)

2
√

B(t)
E〈Z · sz〉t,u (44)

3.4.1 Transforming T1

Integration by parts with respect to wk leads to

T1 =
λ′(t)

2
√

λ(t)K
E〈(w +

√

λ(t)z) · z〉t,u

− λ′(t)

2
√

λ(t)K
E〈z(1) · (w +

√

λ(t)z(2))〉t,u − λ′(t)

2K
E〈z · z〉t,u

= −λ
′(t)

2
E〈1 − 2m1 + q12〉t = −λ

′(t)

2
E〈1 −m1〉t,u

To obtain the second equality we remark that the w terms cancel and for the third one follows from
(38). From the relation between λ(t) and B(t) given in equation (24), T1 can be rewritten in the form

T1 =
B′(t)

2(1 + β(1 −m)B(t))2
E〈1 −m1〉t,u (45)

3.4.2 Transforming T2

The term T2 can be rewritten as

T2 = − B′(t)

2βB(t)N
E〈‖Z‖2〉t,u +

B′(t)

2βB(t)N
E‖n‖2

+
B′(t)

2
√

B(t)K
√
N

E〈n · sz〉t,u

Because of (39) the first two terms cancel,

T2 =
B′(t)

2
√

B(t)K
√
N

E〈n · sz〉t,u (46)

Now we use integration by parts with respect to sik,

T2 = −B′(t)

2KN
E〈(n · Z)(z · z)〉t,u +

B′(t)

2KN
E〈(n · Z(2))(z(1) · z(2))〉t,u

and the Nishimori identity (40)

T2 = − B′(t)

2KN

∑

k

E〈(n · Z)zk〉t,u

= −B
′(t)

2

1

NK

∑

k

E[‖n‖2〈zk〉t,u]

− B′(t)
√

B(t)

2KN3/2

∑

k

E〈(n · sz)(1 − xk)〉t,u

13



Since 1
N ‖n‖2 = 1

N

∑

i n
2
i concentrates on 1, we get

T2 = − B′(t)

2
βE〈1 −m1〉t,u + oN (1)

− βB′(t)
√

B(t)

2KN1/2
E〈(n · sz)(1 −m1)〉t,u

Applying Corollary 1 to the last expression for T2 together with (46) we obtain a closed affine equation
for the later, whose solution is

T2 = − B′(t)E〈1 −m1〉t
2(1 + βB(t)E〈1 −m1〉t,u)

+ oN (1) (47)

3.5 End of proof

We add and subtract the term 1
2β ln(1 + βB(1 −m)) from (35) and use the integral representation

1

2β
ln(1 + βB(1 −m)) =

1

2β

∫ 1

0

dt
βB′(t)(1 −m)

1 + βB(t)(1 −m)

to obtain

E[f1,u] = E[f0,u] − 1

2β
ln(1 + βB(1 −m)) +

∫ 1

0

dt

(

d

dt
E[ft,u] +

B′(t)(1 −m)

2(1 + βB(t)(1 −m))

)

If one uses (42) and expressions (45), (47) some remarkable algebra occurs in the last integral. The
integrand becomes

R(t) +
B′(t)(1 −m)

2(1 + βB(t)(1 −m))2

with

R(t) =
βB′(t)B(t)(E〈m1 −m〉t,u)2

2(1 + βB(t)(1 −m))2(1 + βB(t)E〈1 −m1〉t,u)

So the integral has a positive contribution
∫ 1

0 dtR(t) ≥ 0 plus a computable contribution equal to
B(1−m)

2(1+βB(1−m)) = λ
2 (1 −m). Finally thanks to (31) we find

1

2
+ E[f1,u] =

∫

Dz ln(2 cosh(
√
λz + λ)) − 1

2β
− 1

2β
ln(1 + βB(1 −m))

− λ

2
(1 +m) +

∫ 1

0

R(t)dt+ oN (1) +O(
√
u) (48)

where for a.e u > ǫ, limN→∞ oN (1) = 0. We take first the limit N → ∞, then u → ǫ (along some
appropriate sequence) and then ǫ → 0 to obtain a formula for the free energy where the only non-

explicit contribution is
∫ 1

0
dtR(t). Since this is positive for all m, we obtain a lower bound on the free

energy which is equivalent to the announced upper bound on the capacity.

4 Concentration of Magnetization

The goal of this section is to prove Theorem 7. The proof is organized in a succession of lemmas. By
the same methods used for Theorem 2 we can prove

Lemma 3. There exists a strictly positive constant α (which remains positive for all t and u) such that

P[|ft,u − E[ft,u]| ≥ ǫ] = O(e−αǫ2
√

K)

The perturbation term (28) has been chosen carefully so that the following holds,
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Lemma 4. When considered as a function of u, ft,u is convex in u.

Proof. We simply evaluate the second derivative and show it is positive.

dft,u

du
= 〈L(x)〉t,u − 1

K2
√
u

∑

k

|hk|

where we have defined

L(x) =
1

K

1

2
√
u

∑

k

hkxk +
1

K

∑

k

xk

Differentiating again,

d2ft,u

du2
=

1

K

〈 −1

4u3/2

∑

k

hkxk

〉

t,u
+

1

4u3/2K

∑

k

|hk|

+K(〈L(x)2〉t,u − 〈L(x)〉2t,u) ≥ 0 (49)

The quantity L(x) turns out to be very useful and satisfies two concentration properties.

Lemma 5. For any a > ǫ > 0 fixed,

∫ a

ǫ

duE

〈
∣

∣

∣
L(x) − 〈L(x)〉t,u

∣

∣

∣

〉

t,u
= O

( 1√
K

)

Proof. From equation (49), we have

∫ a

ǫ

duE

〈(

L(x) − 〈L(x)〉t,u
)2〉

t,u
≤

∫ a

ǫ

du
1

K

d2

du2
E[ft,u]

≤ 1

K

( d

du
E[ft,a] − d

du
E[ft,ǫ]|

)

= O
( 1

K

)

In the very last equality we use that the first derivative of E[ft,u] is bounded for u ≥ ǫ. Using Cauchy-
Schwartz inequality for

∫

E〈−〉t,u we obtain the lemma.

Lemma 6. For any a > ǫ > 0 fixed,

∫ a

ǫ

duE

∣

∣

∣
〈L(x)〉t,u − E〈L(x)〉t,u

∣

∣

∣
= O

( 1

K
1
16

)

Proof. From convexity of ft,u with respect to u (lemma 4) we have for any δ > 0,

d

du
ft,u − d

du
E[ft,u] ≤ ft,u+δ − ft,u

δ
− d

du
E[ft,u]

≤ ft,u+δ − E[ft,u+δ]

δ
− ft,u − E[ft,u]

δ

+
d

du
E[ft,u+δ] −

d

du
E[ft,u]

A similar lower bound holds with δ replaced by −δ. Now from Lemma 3 we know that the first two
terms are O(K

1
4 ). Thus from the formula for the first derivative in the proof of Lemma 4 and the fact

that the fluctuations of 1
K

∑K
k=1 |hk| are O( 1√

K
) we get

E

∣

∣

∣
〈L(x)〉t,u − E〈L(x)〉t,u

∣

∣

∣
≤ 1

δ
O

( 1√
K

)

+
1

δ
O

( 1

K
1
4

)

+
d

du
E[ft,u+δ] −

d

du
E[ft,u]
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We will choose δ = 1

K
1
8
. Note that we cannot assume that the difference of the two derivatives is small

because the first derivative of the free energy is not uniformly continuous in K (as K → ∞ it may
develop jumps at the phase transition points). The free energy itself is uniformly continuous. For this
reason if we integrate with respect to u, using (34) we get

∫ a

ǫ

duE

∣

∣

∣
〈L(x)〉t,u − E〈L(x)〉t,u

∣

∣

∣
≤ O

( 1

K
1
16

)

Using the two last lemmas we can prove Theorem 7.

Proof of Theorem 7: Combining the concentration lemmas we get
∫ a

ǫ

duE〈|L(x) − E〈L(x)〉t,u|〉t,u ≤ O
( 1

K
1
16

)

For any function g(x) such that |g(x)| ≤ 1, we have
∫ a

ǫ

du|E〈L(x)g(x)〉t,u − E〈L(x)〉t,uE〈g(x)〉t,u|〉t,u ≤
∫ a

ǫ

duE〈|L(x) − E〈L(x)〉t,u|〉t,u

More generally the same thing holds if one takes a function depending on many replicas such as
g(x(1), x(2)) = q12. Using integration by parts formula with respect to hk,

E〈L(x)q12〉t,u = E

〈 1

2K
√
u

∑

k

hkxkq12

〉

t,u
+ E〈m1q12〉t,u

=
1

2
E〈(1 + q12)q12〉t,u − 1

2
E〈(q13 + q14)q12〉t,u + E〈m1q12〉t,u

=
1

2
E〈(1 + q12)q12〉t,u =

1

2
E〈m1 +m2

1〉t,u (50)

where in the last two equalities we used the Nishimori identity (38). By a similar calculation,

E〈L(x)〉t,uE〈q12〉t,u =
1

2
E〈1 − q12 + 2m1〉t,uE〈q12〉t,u

=
1

2
(E〈m1〉t + (E〈m1〉t)2) (51)

From equations (50) and (51), we get
∫ a

ǫ

du|E〈m2
1〉t,u − (E〈m1〉t,u)2| ≤ O

( 1

K
1
16

)

Now integrating with respect to t and exchanging the integrals (by Fubini’s theorem), we get

∫ a

ǫ

du

∫ 1

0

dt|E〈m2
1〉t,u − (E〈m1〉t,u)2| ≤ O

( 1

K
1
16

)

The limit of the left hand side as K → ∞ therefore vanishes. By Lebesgue’s theorem this limit can be
exchanged with the u integral and we get the desired result. (Note that one can further exchange the
limit with the t-integral and obtain that the fluctuations of m1 vanish for almost every (t, u)).

5 Proof of independence from spreading sequence distribution:
Theorem 4

We consider a communication system with spreading values rik generated from a symmetric distribution
with unit variance and satisfying assumption A. We compare the capacity of this system to the Gaussian
N (0, 1) case whose spreading sequence values are denoted by sik. The comparison is done through an
interpolating system with respect to the two spreading sequences

vik(t) =
√
trik +

√
1 − tsik, 0 ≤ t ≤ 1
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Let v(t) denote the matrix with entries vik(t) and let vi(t) denote the ith row of the matrix. By the
fundamental theorem of calculus the capacities are related by

CK − Cg = ER[C(r)] − ES[C(s)] =

∫ 1

0

dt
d

dt
EV(t)[C(v(t))]

From (7) the derivative is equal to

d

dt
EV(t)[C(v(t))] = −ESER

d

dt
EY |V(t)[f(y,v(t)]

As before we can assume that the transmitted sequence is s0. It is convenient to first perform the change
of variables y = n+N−1/2v(t)x0 and then perform the t derivative. One finds

d

dt
EV(t)[C(v(t))] =

1

σ2K
√
N

ES,R,N

〈

(

n+
1√
N

v(t)(x0 − x)

)

· v′(t)(x0 − x)
〉

t
(52)

where 〈−〉t is the average with respect to the normalized measure

1

2KZt
exp(− 1

2σ2
‖n−N− 1

2 v(t)(x0 − x)‖2)

We split (52) in two contributions T1 − T2 corresponding to

v′(t) =
1

2
√
t
r − 1

2
√

1 − t
s (53)

For T1 we have

T1 =
∑

i,k

T1(i, k) =
1

2
√
t

∑

i,k

ES,R,N [rikgik] (54)

with

gik =
1

σ2K
√
N

〈

(

n+
1√
N

v(t)(x0 − x)

)

i

(x0
k − xk)

〉

t
(55)

For T2 we have

T2 =
∑

i,k

T2(i, k) =
1

2
√

1 − t

∑

i,k

ES,R,N [sikgik] (56)

with the same expression for gik. For each contribution in the sums (54), (56) we use integration by
parts formulas. For (54) we use the formula (it is an exercise to check that it is valid for any symmetric
random variable)

E[rikg(rik)] = E[r2ik
∂g(rik)

∂rik
] − 1

4
E

[

|rik|
∫ |rik|

−|rik|
(r2ik − u2)

∂3g(u)

∂u3
du

]

= E[
∂g(rik)

∂rik
] + E

[

(r2ik − 1)

∫ rik

0

∂2g(u)

∂u2
du

]

− 1

4
E

[

|rik|
∫ |rik|

−|rik|
(r2ik − u2)

∂3g(u)

∂u3
du

]

(57)

and for (56) we use the standard Gaussian (unit variance) integration by parts formula

E[sikg(sik)] = E[
∂g(sik)

∂sik
] (58)

When we consider T1 − T2 the term corresponding to the expectation in (58) cancels with that of the
first expectation in (57) and we get

T1 − T2 =
1

2
√
t

∑

i,k

E

[

(r2ik − 1)

∫ rik

0

∂2gik(u)

∂u2
du

]

− 1

8
√
t

∑

i,k

E

[

|rik|
∫ |rik|

−|rik|
(r2ik − u2)

∂3gik(u)

∂u3
du

]

(59)
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It remains to prove that both terms with the partial derivatives tend to zero as N → +∞. This
computation is rather lengthy and is deferred to Appendix E, but for the convenience of the reader we

point out the mechanism that is at work. On the expression for gik one sees that when the ∂2

∂u2 and ∂3

∂u3

derivatives are performed extra powers N−1 and N−3/2 are generated. Therefore we get

E

[

(r2ik − 1)

∫ rik

0

∂2gik

∂u2
ik

duik

]

= O(N−5/2) (60)

and

E

[

|rik|
∫ |rik|

−|rik|
(r2ik − u2

ik)
∂3g

∂u3
ik

duik

]

= O(N−3) (61)

Since one sums over KN terms one finds that the final contributions are O(N−1/2) and O(N−1).

6 Proof of existence of limit : Theorem 5

Let us recall the following relation between the free energy and the capacity.

CK =
1

2β
− E[f(y, s)] (62)

where f(y, s) is defined in (6) with pX(x) = 1
2K . This implies that it is sufficient to show the existence of

limit for the average free energy FK = E[f(y, s)]. The theorem is proved by showing that the sequence
KFK is super additive, KFK ≥ K1FK1 +K2FK2 for K = K1 +K2. From standard theorems it then
follows that the limit FK exists. As in the previous sections, working directly with this system is difficult
and hence we perturb the Hamiltonian with hu(x) as defined in (28).

Hu(x) = − 1

2σ2
‖n+

1√
N

s(1 − x)‖2 + hu(x) (63)

Let us define the corresponding partition function as Zu and the free energy as FK(u) = 1
K E[lnZu]. The

original free energy is obtained by substituting u = 0, i.e., FK = FK(0). From the uniform continuity of
FK(u), it is sufficient to show the convergence of FK(u) for some u close to zero. Even this turns out to
be difficult and what we can show is the existence of the limit

∫ a

u=ǫ FK(u)du for any a > ǫ > 0. However
this is sufficient for us due to the following: from the continuity of the free energy with u (34) we have

∫ 2ǫ

ǫ

(FK(u) − |O(1)|√u)du ≤ ǫFK ≤
∫ 2ǫ

ǫ

(FK(u) + |O(1)|√u)du

Since the limit of the integral exists, we have

| lim sup
K→∞

FK − lim inf
K→∞

FK | ≤ |O(1)|√ǫ

This ǫ can be made as small as desired and hence the theorem follows.
Let K = K1 + K2 and let K

β ,
K1

β , K2

β ∈ N. This assumption can be removed by considering their
integer parts. But we will stick to this assumption to simplify the proof. Split the N ×K dimensional
spreading matrix s in to two parts of dimension N1 ×K and N2×K and denote these matrices by s1, s2

respectively. Let t1, t2 be two spreading matrices with dimensions N1×K1 and N2×K2. All the entries
of these matrices are distributed as N (0, 1) and the noise is Gaussian with variance σ2. Similarly split
the noise vector n = (n1, n2) where ni is of length Ni and x = (x1, x2) where xi is of length Ki. Let us
consider the following Hamiltonian:

Ht,u(x) = − 1

2σ2
‖n1 +

√
t√
N

s1(1 − x) +

√
1 − t√
N1

t1(1 − x1)‖2

− 1

2σ2
‖n2 +

√
t√
N

s2(1 − x) +

√
1 − t√
N2

t2(1 − x2)‖2 + hu(x)

Note that the all-one vectors 1 appearing above are of different dimensions (the dimension is clear from
the context). For a moment neglect the hu(x) part of the Hamiltonian and consider the remaining
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part. At t = 1, we get the Hamiltonian corresponding to an N × K CDMA system with spreading

matrix

[

s1

s2

]

. At t = 0 we get the Hamiltonian corresponding to two independent CDMA systems with

spreading matrices ti of dimensions Ni ×Ki. As before we perturb the Hamiltonian with hu(x) so that
we can use the concentration results for the magnetization.

Let Zt,u be the partition function with this Hamiltonian and the corresponding average free energy
is given by gt,u = 1

K E[lnZt,u]. Note that g1,u = FK(u) and g0,u = K1

K FK1(u) + K2

K FK2(u). From the
fundamental theorem of calculus,

g1,u = g0,u +

∫ 1

0

d

dt
gt,udt (64)

Let zi = 1 − xi, Zi = ni +
√

t
N siz +

√

1−t
Ni

tizi. Using integration by parts formula with respect to the

spreading sequences, the derivative can be simplified as follows

d

dt
gt,u =

1

2Kσ4

∑

i=1,2

E

〈

‖Zi‖2
( 1

N
‖z‖2

−
1

Ni
‖zi‖2

)〉

t,u

− 1

2Kσ4

∑

i=1,2

E

〈

(

Z(1)
i · Z(2)

i

)( 1

N
z(1) · z(2) − 1

Ni
z
(1)
i · z(2)

i

)

〉

t,u
(65)

The system with Hamiltonian Ht,u(x) has Nishimori symmetry and hence we can derive results similar
to Theorem 7 and Lemma ??. In addition to these we need one more Nishimori identity which we did
not use before.

E

〈

(

Z(1)
i · Z(2)

i

)

(
1

N
z(1) · z(2) − 1

Ni
z
(1)
i · z(2)

i

)

〉

t,u

= E

〈

(

ni · Zi

)

(
1

N
1 · z − 1

Ni
1 · zi

)

〉

t,u
(66)

Let

m1 =
1

K

K
∑

j=1

xj , m11 =
1

K1

K1
∑

j=1

xj , and m12 =
1

K2

K
∑

j=K1+1

xj

Let ǫ > 0 be fixed. Using 1
N i

E〈‖Zi‖2〉t,u = 1 and Theorem 7, for a.e., u > ǫ and a.e., t > 0, we get

d

dt
gt,u =

β

2Kσ4

∑

i=1,2

E

〈

ni · Zi

〉

t,u
E〈m1 −m1i〉t,u + oK(1)

=
β

2Kσ4

∑

i=1,2

E

〈

ni ·
(

√

t

N
siz +

√

1 − t

Ni
tizi

)

〉

t,u
E〈m1 −m1i〉t,u + oK(1) (67)

Now using integration by parts formula with respect to the spreading sequences, and doing transforma-
tions similar to section 3.4.2, we get for a.e., u > ǫ and a.e., t > 0,

d

dt
gt,u =

1

2Nσ4

∑

i=1,2

KiE〈(1 −m1)t+ (1 −m1i)(1 − t)〉t,u
1 + βσ−2E〈(1 −m1)t+ (1 −m1i)(1 − t)〉t,u

E〈m1 −m1i〉t,u + oK(1)

= − 1

2Kσ2

∑

i=1,2

KiE〈m1 −m1i〉t,u
1 + βσ−2E〈(1 −m1)t+ (1 −m1i)(1 − t)〉t,u

+ oK(1) (68)

Let us define a function ηa,b1,b2(t) as follows,

ηa,b1,b2(t) = − 1

2Kσ2

∑

i=1,2

Ki(a− bi)

1 + βσ−2((1 − a)t+ (1 − bi)(1 − t))

Note that for a = E〈m1〉t,u, bi = E〈m1i〉t,u we get the summation in (68). When a, bi satisfy

a =
K1

K
b1 +

K2

K
b2 (69)
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the function ηa,b1,b2(t) has the following useful properties: ηa,b1,b2(1) = 0 and the derivative with t of
this function given by

1

2Kσ4

∑

i=1,2

βKi(a− bi)
2

(1 + βσ−2(1 − a)t+ (1 − bi)(1 − t))2
≥ 0 (70)

Therefore for any a, bi satisfying (69), ηa,b1,b2(t) ≤ 0 and hence we can claim the summation in (68) is
also non-positive.

Bringing the oK(1) in (68) to the left, we get for a.e., u > ǫ,

∫ 1

0

d

dt
gt,u + oK(1) ≤ 0 (71)

Therefore for a.e., u > ǫ, we get

g1,u + oK(1) ≤ g0,u (72)

Let a > ǫ be a constant. Then
∫ a

ǫ

g1,udu+ oK(1) ≤
∫ a

ǫ

g0,udu

which implies
∫ a

ǫ

FK(u)du+ oK(1) ≤ K1

K

∫ a

ǫ

FK1(u)du +
K2

K

∫ a

ǫ

FK2(u)du

which in turn implies that limK→∞
∫ a

ǫ FK(u)du exists.

7 Extensions

In this section we briefly describe three variations for which our methods extend in a straightforward
manner.

7.1 Unequal Powers

Suppose that the users transmit with unequal powers Pk,

yi =
1√
N

K
∑

k=1

sik

√
P kxk + σni

with normalized average power 1
K

∑

Pk = 1. We assume that the empirical distribution of the Pk tends
to a distribution and denote the corresponding expectation by EP [−].

The interpolation method can be applied as before. We interpolate between the true communication
system and a decoupled one where

ỹk =
√
P kxk +

1√
λ
wk

Let P denote the diagonal matrix Pkδkk′ . The relevant posterior measure replacing (29) is now

pt,u(x|n,w, h, s) =
1

Zt,u
exp

(

−1

2
‖n−N− 1

2B(t)
1
2 s
√
P(x0 − x)‖2 (73)

− 1

2
‖w − λ(t)

1
2

√
P(x0 − x)‖2 + hu(x)

)

where λ(t) and B(t) are related as in (23). The whole analysis can again be performed in exactly
the same manner with the proviso that the correct “order parameters” are now m1 = 1

N

∑

Pkxk and

q12 = 1
N

∑

Pkx
(1)
k x

(2)
k . One finds in place of (48)

1

2
+ E[f1,u] = − 1

2β
+ EP

[
∫

Dz ln(2 cosh(
√
Pλz + Pλ))

]
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− λ

2
(1 +m) − 1

2β
ln(1 + βB(1 −m)) +

∫ 1

0

R(t)dt

where R(t) has the same form as before but the with new definition of m1. From the positivity of R(t)
we deduce the upper bound (21) on the capacity with cRS(m) replaced by

−EP

[
∫

Dz ln(2 cosh(
√
Pλz + Pλ)

]

+
λ

2
(1 +m) − 1

2β
lnλσ2

7.2 Colored Noise

Now consider the scenario where

yi =
1√
N

K
∑

k=1

sikxk + ni

with colored noise of finite memory. More precisely we assume that the the covariance matrix E[ninj ] =
C(i, j) (depends on |i − j|) is circulant as N → +∞ and has well defined (real) Fourier transform
(the noise spectrum) Ĉ(ω). The covariance matrix is real symmetric and thus can be diagonalized by
an orthogonal matrix: Γ = OCOT with OOT = OTO = I. As N → +∞ the eigenvalues are well
approximated by γn ≡ Ĉ(2π n

N ). Multiplying the received signal by Γ−1/2O the input-output relation
becomes

y′i =
1√
N

K
∑

k=1

tikxk + n′
i

where
y′i = (Γ−1/2Oy)i, n′

i = (Γ−1/2On)i

The new noise vector n′ is white with unit variance, but the spreading matrix is now correlated with

E[tiktjl] = δijδklγ
−1
i (74)

One may guess that this time the interpolation is done between the true system and the decoupled
channels

ỹk = xk +
1√
λcol

wk

where this time

λcol =

∫ 2π

0

dω

2π

B

Ĉ(ω) + βB(1 −m)

Note that Ĉ(ω) = 1 when the noise is white and we get back the λ defined in (11). The interpolating
system has the same posterior as in (29) but with λcol(t) and B(t) related by

∫ 2π

0

dω

2π

B(t)

Ĉ(ω) + βB(t)(1 −m)
+ λcol(t) =

∫ 2π

0

dω

2π

B

Ĉ(ω) + βB(1 −m)

The only difference in the subsequent analysis is in the algebraic manipulations for the term T2 in section
3.4.2. Indeed these require integrations by parts with respect to the spreading sequence which involve
(74). The analog of (47) now becomes

T2 =
1

N

N
∑

n=1

B′(t)E〈1 −m1〉t
2(γn + βB(t)E〈1 −m1〉t)

(75)

→
∫ 2π

0

dω

2π

B′(t)E〈1 −m1〉t
2(S(ω) + βB(t)E〈1 −m1〉t)

dω

This finally leads to the bound on capacity with cRS(m) replaced by,

−
∫

Dz ln 2 cosh(
√

λcolz + λcol) +
λcol

2
(1 +m)

+
1

2β

∫ 2π

0

dω

2π
ln

Ĉ(ω)

Ĉ(ω) + β(1 −m)
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7.3 Gaussian Input

The interpolation method also works for non binary inputs. Here we consider the simplest case of
Gaussian inputs with distribution (13) (which achieves the maximum of the mutual information for any
symmetric sik). Here we outline the necessary changes in the analysis.

The interpolation is done as explained in section 2.4 except that (25) is multiplied by the Gaussian
distribution (13). In (26) we also have to include this Gaussian factor and the sum over x0 is replaced
by an integral. Then as in section 3.1 we do the change of variables y → B(t)−1/2 + N−1/2sx0 and

ỹ → λ(t)−1/2w + x0. The posterior measure used for the interpolation becomes

pt,u(x|n,w, h, s) =
1

Zt,u
exp

(

−1

2
‖n−N− 1

2B(t)
1
2 s(x0 − x)‖2 (76)

− 1

2
‖w − λ(t)

1
2 (x0 − x)‖2 + hu(x)

)

e−
||x||2

2

(2π)N/2

and we have to compute limK→+∞ limu→0 E[f1,u(n,w, h, s, x0)]. The main difference is that now the
expectation E is also with respect to the Gaussian vector x0. The algebra is done as in section 3 except
that x0

k is not set to one, zk is replaced by x0
k −xk and the correct order parameters are m1 = 1

K

∑

x0
kxk

and q12 = 1
K

∑

x
(1)
k x

(2)
k .

The interpolation method then yields in place of (48)

1

2
+ E[f1,u] = − 1

2β
− 1

2
ln(1 + λ) − 1

2β
ln(1 + βB(1 −m))

+
λ

2
(1 −m) +

∫ 1

0

R(t)dt+ O(
√
u)

where R(t) is the same function as before but with new definition of m1. Again the positivity of R(t)
implies that the replica solution is an upper bound to the capacity.

8 Concluding remarks

In this contribution we have shown that the capacity of binary input CDMA system with random
spreading is upper bounded by the formula conjectured by Tanaka using replica method. The approach
we follow is by developing an interpolation method for this system. This idea has its origins in statistical
mechanics and has been applied to Gaussian energy models. The current system is very much different
from those models and the proof we develop is also significantly different. In fact this model is closer to
the Hopfield model for neural networks, for which the interpolation method is still an open problem.

We also show that the capacity and the free energy functions concentrate around their average in
the large-system limit. In addition we prove a weak concentration for the magnetization for a system
which is slightly perturbed using a Gaussian field. It might be interesting to show a similar result for the
CDMA system itself which has some implications towards proving the concentration of the BER. We
also show the independence of the capacity from the spreading sequence distributions in the large-system
limit.

We expect that the powerful probabilistic tools used here have applications for other similar situations
in communication systems. We have shown some of the extensions here but there are many other cases
like constellations other than binary, CDMA with LDPC coded communication to name a few, to which
this method can be applied. In all these cases we can prove an upper bound on the capacity. The most
interesting and also important open problem is to prove the lower bound. This seems to be a difficult
problem and again the standard techniques fail. Other important problems are proving the conjectures
related to the BER of various decoders.

A Relation between capacity and free energy

Replacing (3) in the conditional entropy

H(X |Y ) = − EY

[

∑

x

p(x|y, s) ln p(x|y, s)
]
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= EY

[

∑

x

p(x|y, s) lnZ(y, s)

]

+ EY

[

∑

x

p(x|y, s) 1

2σ2
‖N− 1

2 sx− y‖2

]

(77)

− EY [
∑

x

p(x | y, s) ln pX(x)]

The first term on the r.h.s is equal to EY [lnZ(y, s)] because
∑

x p(x | y, s) = 1. The second term on the
r.h.s can be computed exactly. Indeed,

EY

[

∑

x

p(x|y, s) 1

2σ2
‖N− 1

2 sx− y‖2

]

=

∫

dy
Z(y, s)

(
√

2πσ2)N

∑

x

p(x|y, s) 1

2σ2
‖N− 1

2 sx− y‖2

=
∑

x

pX(x)

∫

dy
1

(
√

2πσ2)N
e−

1
2σ2 ‖N− 1

2 sx−y‖2

× 1

2σ2
‖N− 1

2 sx− y‖2

=
N

2
=
K

2β

A similar calculation shows that the third term is equal to H(X). Therefore the relation between
Shannon’s conditional entropy and the free energy is

H(X | Y ) = EY [lnZ(y, s)] +
K

2β
+H(X)

This is equivalent to the announced relation (8).

B Probabilistic tools

Our proofs rely on a general concentration theorem for suitable Lipschitz functions of many Gaussian
random variables [24], [9] and this is why we need Gaussian signature sequences. In the version that we
use here we need functions that are Lipschitz with respect to the Euclidean distance. More precisely we
say that a function f : R

M → R is a Lipschitz function with constant LM if for all (u, v) ∈ R
M × R

M

|f(u) − f(v)| ≤ LM‖u− v‖

When another distance is used the function will still be Lipschitz but one has to carefully keep track of
the possibly qualitatively different M dependence.

Theorem 8. [24] Let (U1, ..., UM ) = U be M independent identically distributed Gaussian random
variables with distribution N (0, v2) and let f : R

M → R be Lipschitz with respect to the Euclidean
distance, with constant LM . Then f satisfies

P[|f(u) − E[f(u)]| ≥ t] ≤ 2e
− t2

2v2L2
M

In our application it will not be possible to apply directly this theorem because the relevant function
is Lipschitz only on a subset G ⊂ R

M . It turns out that the measure of the complement Gc is negligible
as M → +∞. For the “good part” of the function supported on G we will use the following result of
McShane and Whitney

Theorem 9. [25] Let f : G → R, be Lipschitz over G ⊂ R
M with constant LM . Then there exists an

extension g : R
M → R such that g|G = f which is Lipschitz with the same constant over the whole of

R
M .

From these two theorems we can prove the following.
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Lemma 7. Let f and g be as in theorem 9. Assume 0 ∈ G and E[f(u)2] ≤ C2, f(0)2 ≤ C2 for some
positive number C. Then for

t

2
≥ 3(C + v

√
M)

√

P(Gc)

we have

P[|f(u) − E[f(u)]| ≥ t] ≤ 2e
− t2

8v2L2
M + P [Gc]

Proof. We drop the u dependence to lighten the notation. Notice that 0 ∈ G implies f(0) = g(0). Thus
g(0)2 ≤ C2. Also, since g is Lipschitz on the whole of R

M

E[g2] ≤ 2(g(0)2 + E[(g − g(0))2])

≤ 2(C2 + LME[‖u2‖)
= 2(C2 +Mv2LM )

Furthermore on G we have g = f , so by the Cauchy-Schwartz inequality

|E[g − f ]| = |E[(g − f)1Gc ]|
≤ (E[g2]1/2 + E[f2]1/2)

√

P[Gc]

≤ (C +
√

2(C2 +Mv2LM )1/2)
√

P[Gc]

≤ 3(C + v
√
MLM )

√

P[Gc] ≤ t

2

Moreover

P[|f − Ef | ≥ t] = P[|g − Ef | ≥ t | U ∈ G]P[G]

+ P[|f − Ef | ≥ t | U ∈ Gc]P[Gc]

≤ P[|g − Eg| ≥ t− |Eg − Ef |] + P[Gc]

The result of the lemma then follows from

P[|g − Eg| ≥ t− |Eg − Ef |] ≤ P[|g − Eg| ≥ t

2
]

and the application of theorem 8.

In order to prove Theorems 1 and 2 it will be sufficient to find suitable sets G with measure nearly
equal to one (as M → +∞), on which the capacity and free energy have a Lipschitz constant LM → 0.

C Proofs of Theorems 1 and 2

For the proofs, it is convenient to reformulate the statements of the theorems as follows. Let 1 be
the K dimensional vector (1, ..., 1), s0 be the K × N matrix with elements sikx

0
k. We set p0

X(x) =
∏K

k=1 pX(xkx
0
k) and consider the partition function

Z ′(n, s0) =
∑

x

p0
X(x)e−

1
2σ2 ‖N−1/2

s
0(x−1)−σn‖2

(78)

where we recall that n = (n1, ..., nN) are independent Gaussian variables N (0, 1). Notice that due to
the invariance of the distribution of sik under the transformation sik → x0

ksik,

EN,S[lnZ ′(n, s0)] = EN,S[lnZ ′(n, s)]

The statements of Theorems 1 and 2 are equivalent to

P[|
∑

x0

pX(x0)EN [lnZ ′(n, s0)]−EN,S[lnZ ′(n, s)]| ≥ tK] ≤ 3e−α1t2N (79)

and
P[

∑

x0

pX(x0)| lnZ ′(n, s0) − EN,S[lnZ ′(n, s)]| ≥ tK] ≤ 3e−α2t2
√

N (80)

To see this use the change of variable y = N−1/2sx0+σn followed by xk → xkx
0
k in the partition function

summation (4).
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C.1 Proof of (79)

Let B be a positive constant to be chosen later and define

G = {s | for all x, x0, ‖s0(x− 1)‖2 ≤ BN}

Lemma 8. We have the following estimate for the measure of Gc,

P(Gc) ≤ 3K2
N
2 e−

B
16β

Proof. First notice that for any given x,

1√
K

K
∑

k=1

s0ik(xk − 1), i = 1, ..., N

are independent Gaussian random variables with zero mean and variance (a2) smaller than 4. Thus the
identity

∫

dx
e−

x2

2a2

√
2πa2

e
x2

16 =
(

1 − a2

8

)− 1
2

implies (because a2 ≤ 4)

E[e
1

16K ‖s0(x−1)‖2

] ≤ 2
N
2

Then from the Markov inequality, for any x

P(‖s0(x− 1)‖2 ≥ BN) ≤ 2
N
2 e−

BN
16K = 2

N
2 e−

B
16β

The result of the lemma then follows from the union bound over 3K possible x0 − x vectors.

We will apply Lemma 8 to

f(s) =
1

K

∑

x0

pX(x0)EN [lnZ ′(n, s0)]

for a suitable choice of B. In the application the matrix s is to be thought as a vector with KN
components and norm

‖s‖ =

( N
∑

i=1

K
∑

k=1

s2ik

)
1
2

Clearly 0 ∈ G and f(0)2 = ( 1
K EN [ 12‖n‖2])2 = 1/4β2. Also it is evident that lnZ ′(n, s0) ≤ 0. On the

other hand restricting the sum in the partition function to x = 1 we have

1

K

∑

x0

pX(x0)EN [lnZ ′(n, s0)] ≥ − 1

2σ2K
EN [σ2‖n‖2] − 1

K
H(X) ≥ − N

2K
− ln 2

Therefore we have

ES[f(s)2] ≤ (
1

2β
+ ln 2)2

Let us now compute the Lipschitz constant.

Lemma 9. K−1
EN [

∑

x0 pX(x0) lnZ ′(n, s0)] is Lipschitz on G, with constant

LN = σ−2
√

βK−1(
√
B +

√
Nσ)
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Proof. The exponent of the partition function is7

H(n, s0, x) =
1

2σ2
‖N−1/2s0(x− 1) − σn‖2 (81)

In the section C.4 we show that for (s, t) ∈ G×G

|H(n, s0, x) −H(n, t0, x)| ≤ σ−22
√

β(
√
B + ‖n‖)‖s− t‖ (82)

Using this inequality together with

−H(n, s0, x) ≤ −H(n, t0, x) + |H(n, s0, x) −H(n, t0, x)|

we have for (s, t) ∈ G×G

ln

∑

x p
0
X(x) exp(−H(n, s0, x))

∑

x p
0
X(x) exp(−H(n, t0, x))

≤ ln

∑

x p
0
X(x) exp(|H(n, s0, x) −H(n, t0, x)| −H(n, t0, x))

∑

x p
0
X(x) exp(−H(n, t0, x))

≤ σ−22
√

β(
√
B + ‖n‖)‖s− t‖

Therefore taking the expectation over the noise, we get

|
∑

x0

pX(x0)EN [lnZ ′(n, s0)] −
∑

x0

pX(x0)EN [lnZ ′(n, t0)]|

≤ σ−22
√

β(
√
B + σE[‖n‖])‖s− t‖

≤ σ−22
√

β(
√
B + σE[‖n‖2]1/2)‖s− t‖

which yields the Lipschitz constant of the lemma.

Finally (79) follows from Lemmas 7, 8 and 9 with the choice B = 32β(2K + N). We obtain α1 =
1/(8KL2

N) ≥ σ4/(16β(64β + 32 + σ2)).

C.2 Proof of (80)

This case is more cumbersome but the ideas are the same. We choose the set G as

G =
{

s, n | max
i

|ni| ≤
√
A and for all x, ‖s0(x− 1)‖2 ≤ BN

}

where, as before A and B will be chosen appropriately later on. For Gaussian noise P[|ni| ≥
√
A] ≤ 4e−

A
4

therefore from the union bound P(maxi |ni| ≥
√
A) ≤ 4Ne−

A
4 . Using Lemma 8 we obtain an estimate

for the measure of Gc,

P[Gc] ≤ 4Ne−
A
4 + 2K+ N

2 e−
B

16β

The goal is to apply Lemma 7 to f(n, s) = lnZ ′(n, s0) defined on R
K × R

NK .
Clearly (0, 0) ∈ G, f(0, 0) = ln 2 and by the same argument as before we have E[f(n, s)2] ≤ ( 1

2β +

ln 2)2 = C2. It remains to compute the Lipschitz constant.

Lemma 10. The free energy K−1 lnZ ′(n, s0) is Lipschitz on G with constant

LN = σ−2(2
√

β + σ)K−1(σ
√
NA+

√
B)

7a Hamiltonian
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Proof. For the same Hamiltonian (81) we show in section C.3

|H(n, s0, x) −H(n, t0, x)|
≤ σ−22(2

√

β + σ)(σ
√
NA+

√
B)‖(n, s) − (m, t)‖ (83)

Then proceeding in the same way as in the proof of Lemma 9 we get

| lnZ ′(n, s0) − lnZ ′(m, t0)|
≤ σ−2(2

√

β + σ)(σ
√
NA+

√
B)‖(n, s) − (m, t)‖

We can now conclude the proof of (80) by collecting the previous results and choosing A =
√
N/σ2

and B = 32β(K +N). This gives α2 = 1/(8
√
KL2

N ) ≥ σ4β
3
2 /(32(2

√
β + σ)2).

C.3 Proof of (83)

Let n, m be two noise realizations and s, t two spreading sequences all belonging to the appropriate set
G. Let y = x− 1. First we expand the Euclidean norms

‖N− 1
2 s0y − σn‖2 − ‖N− 1

2 t0y − σm‖2

= σ2‖n‖2 − σ2‖m‖2 +N−1(‖s0y‖2 − ‖t0y‖2)

− 2σN− 1
2 (nt · s0y −mt · t0y)

= σ2(n−m)t · (n+m) +N−1(s0y − t0y)t · (s0y + t0y)

− 2σN− 1
2 (n−m)t · s0y − 2σN− 1

2mt · (s0y − t0y)

We estimate each of the four terms on the right hand side of the last equality. By Cauchy-Schwartz the
first term is bounded by

‖n−m‖‖n+m‖ ≤
√
Nmaxi(|ni| + |mi|)‖n−m‖

≤ 2
√
NA‖n−m‖

Using Cauchy-Schwartz and ‖(s0−t0)y‖ ≤ ‖s0−t0‖‖y‖ where ‖s0−t0‖ = ‖s−t‖ is the (Hilbert-Schmidt)
norm,

‖s− t‖ =

( N
∑

i=1

K
∑

l=1

(sil − til)
2

)1/2

we obtain for the second term the estimate

N−1‖s− t‖‖y‖(‖s0y‖ + ‖t0y‖) ≤ N−1‖s− t‖2
√
K2

√
BN

= 4
√

βB‖s− t‖
Similarly the third term is bounded by,

2N− 1
2 ‖n−m‖‖s0y‖ ≤ 2N− 1

2 ‖n−m‖
√
BN

= 2
√
B‖n−m‖

and the fourth one by

2N− 1
2 ‖m‖‖s− t‖‖y‖ ≤ 2N− 1

2

√
NA‖s− t‖2

√
K

= 4
√

βNA‖s− t‖
Collecting all four estimates we obtain

‖N− 1
2 s0(x− 1) − σn‖2 − ‖N− 1

2 t0(x− 1) − σm‖2

≤ 2σ(σ
√
NA+

√
B)‖n−m‖ + 4

√

β(σ
√
NA+

√
B)‖s− t‖

≤ 2(2
√

β + σ)(σ
√
NA+

√
B)‖(n, s) − (m, t)‖

where the last norm is the Euclidean norm in R
N × R

NK .
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C.4 Proof of (82)

Let s and t be two spreading sequences both belonging to the appropriate G. Let y = x− 1. Following
similar steps as in the previous paragraph with n = m the result can be read off

‖N− 1
2 s0y − σn‖2 − ‖N− 1

2 t0y − σn‖2

≤ 4
√

β(
√
B + σ‖n‖)‖s− t‖

D Proof of Theorem 3

The idea of this proof is based on [22],[23].

Proof. Here, for simplicity of notation and without loss of generality, we assume the noise variance to
be 1 and the second and fourth moments of spreading sequences to be less than 1. For l ≤ K, let φl be
the sigma algebra generated by {sik : 1 ≤ i ≤ N, 1 ≤ k ≤ l}. and set

fl = E [I(X ;Y )|φl] , ψl = fl − fl−1

Then

E(I(X ;Y ) − E[I(X ;Y )])2 =

K
∑

l=1

E[ψ2
l ]

The goal is to bound each term in this sum by O( 1
K2 ). Here we use the following form of the mutual

information

I(X;Y ) = − 1

2β
− EN

[

∑

x0

pX(x0) ln
∑

x

pX(x)eH(x0,x)
]

where,

H(x0, x) = −1

2

∑

i

(

ni +
1√
N

∑

k

sik(x0
k − xk)

)2

= −1

2

∑

i

n2
i −

1√
N

∑

i,k

nisikx
0
k − 1

2N

∑

i

(

∑

k

sik(x0
k − xk)

)2

+
1√
N

∑

ik

nisikxk

In the above expanded form, the first two terms do not involve x and hence the concentration of these
terms follows very easily. Therefore, in the rest of the proof we consider the Hamiltonian with only the
remaining two terms. From now on in the notation, we do not explicitly show the dependency of H on
x0 and x. To this end we define the following three Hamiltonians.

Hl =
−1

2N

∑

k1,k2 6=l,i

sik1sik2(x
0
k1

− xk1)(x
0
k2

− xk2)

+
1√
N

∑

i,k 6=l

nisikxk

Rl =
1

2N

∑

i

s2il(x
0
l − xl)

2

− 1

N

∑

i,k

siksil(x
0
l − xl)(x

0
k − xk) +

1√
N

∑

i

nisilxl

H̃l(t) = Hl + tRl

where t ∈ [0, 1] will play the role of an interpolating parameter. We also introduce the difference of free
energies associated to the Hamiltonian H̃l(t) and Hl,

f̃l(t) =
∑

x0

pX(x0)(lnZ(H̃l(t)) − lnZ(H̃l(0)))
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In the last definition the partition function is defined by the usual summation over all configurations x.
With these definitions we have the representation

ψl =
1

K
E≥l+1f̃l(1) − 1

K
E≥lf̃l(1)

where E≥l means expectation with respect to {sik ∀ k ≥ l}. Using convexity in the form of E≥l+1[f̃l(1)]2 ≤
E≥l+1[f̃l(1)2], it follows that

E[ψ2
l ] ≤ 1

K2
EE≥l+1f̃l(1)2 +

1

K2
EE≥lf̃l(1)2

− 2

K2
E[(E≥l+1f̃l(1)|φl−1)(E≥lf̃l(1))]

=
2

K2
Ef̃l(1)2 − 2

K2
E[(E≥lf̃l(1))2]

≤ 2

K2
Ef̃l(1)2

Notice that f̃l(0) = 0 and d2

dt2 f̃l(t) ≥ 0. Therefore,

f̃ ′
l (0) ≤ f̃l(1) ≤ f̃ ′

l (1)

and
E[f̃l(1)2] ≤ E[f̃ ′

l (0)2] + E[f̃ ′
l (1)2]

This shows that our task is reduced to a proof of E[f̃ ′
l (0)2] = O(1), E[f̃ ′

l (1)2] = O(1). This is a technical
calculation and is given in the next lemma.

Lemma 11. E[(f̃ ′
l (0))2] = O(1), E[(f̃ ′

l (1))2] = O(1)

Proof. From convexity,

(f̃ ′(t))2 ≤
∑

x0

pX(x0)〈R2
l 〉H̃l(t)

≤ 3
∑

x0

pX(x0)
〈(

− 1

2N

∑

i

(sil)
2(x0

l − xl)
2
)2〉

H̃l(t)

+
〈(

∑

k 6=l

1

N

∑

i

siksil(x
0
l − xl)(x

0
k − xk)

)2〉

H̃l(t)

+
〈(

∑

i

ni
1√
N
silxl

)2〉

H̃l(t)

We will find a uniform bound for each term in the above sum over x0. Let us consider a particular term
in the above sum and set x0

k − xk = z0k. We use the simple bound of z2
0k ≤ 4 in the following and hence

we remove the average over x0.

E[(f̃ ′
l (0))2] ≤ 12

+ 3E

〈

∑

k1,k2 6=l

1

N2

∑

i1,i2

si1k1si1lsi2k2si2lz0k1z0k2z
2
0l

〉

H̃l(0)

+ 3E

〈 1

N

∑

i1,i2

ni1ni2si1lsi2l

〉

H̃l(0)

Since H̃(0) does not depend on sil and since they are symmetric random variables, in the above sums
only those terms remain where sil are repeated even number of times. Let Jkl = 1

N

∑

i siksil and ‖J‖
denote its largest singular value. Therefore,

E[(f̃l(0)′)2] ≤ 12 + 3E

〈

∑

k1k2

1

N
Jk1,k2z0k1z0k2z

2
0l

〉

H̃l(0)
+ 3
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≤ 15 + 3 × 24
E‖J‖ + 3 = O(1)

where we use that E‖J‖ = (1 +
√
β)2. For bounding E[(f̃l(1)′)2] we use symmetry of the indices and

take the sum over l and divide by K. Let Aij = 1
K

∑

l silsjl.

E[(f̃ ′
l (1))2] ≤ 12 + 3E

〈 1

K

∑

l

∑

k1,k2

Jlk1Jlk2z0k1z0k2z
2
0l

〉

+ 3E

〈 1

K

1

N

∑

i1,i2

ni1ni2

∑

l

si1lsi2l

〉

≤ 12 + 6 × 24
E‖J‖2 + 3E[‖A‖ 1

N

∑

i

(ni)
2]

= 12 + 96E‖J‖2 + 3E‖A‖ = O(1)

In order to estimate E‖J‖ and E‖A‖ one can use standard methods (see for example [26])

E Estimates (60) and (61)

Let z
(α)
k = x0k − x

(α)
k and z(α) denote the vector (z

(α)
1 , . . . , z

(α)
K ). Let us split the contribution from

T1 − T2 in to T11 + T12 corresponding to the two terms appearing in (59). For T11(i, k), we get

T11(i, k) =
1

2
√
t
Erik

[(r2ik − 1)

∫ rik

0

E∼rik

[

∂2gik(u)

∂u2
du

]

] (84)

where gik(u) denotes the function in (55) with rik = u. Let 〈.〉t,i,k denote the Gibbs measure with
rik = u. Let vk

i (t) denote the vector vi(t) with rik replaced by u. We now show that the term inside the
integral decays with N .

∂gik(u)

∂u
=

1

2σ4KN

(

σ2
E

〈

z2
k

〉

t
− E

〈

(ni + vi(t) · z)2z2
k

〉

t

+ E

〈

(ni +N− 1
2 vi(t) · z(1))(ni +N− 1

2 vi(t) · z(2))z
(1)
k z

(2)
k

〉

t

)

(85)

∂2gik(u)

∂u2
=

1

2σ6KN
3
2

(

− σ2
〈

(ni +N− 1
2 vk

i (t) · z)3z3
k

√
t
〉

t,i,k

+ 3σ2
〈

(ni +N− 1
2 vk

i (t) · z(2))(z
(1)
k )2z

(2)
k

√
t
〉

t,i,k

+
〈

(ni +N− 1
2 vk

i (t) · z)3z3
k

√
t
〉

t,i,k

− 3
〈

(ni +N− 1
2 vk

i (t) · z(1))2(ni +N− 1
2 vk

i (t) · z(2))(z
(1)
k )2z

(2)
k

√
t
〉

t,i,k

+ 2
〈

Πa=1,2,3(ni +N− 1
2 vk

i (t) · z(a))z
(1)
k z

(2)
k z

(3)
k

√
t
〉

t,i,k

)

(86)

The Hamiltonians corresponding to 〈.〉t and 〈.〉t,i,k are

H(z) = − 1

2σ2
‖n+N− 1

2 v(t)z‖2, Hi,k(z) = − 1

2σ2
‖n+N− 1

2 vi,k(t)z‖2

where vi,k(t) differs from v(t) only in the (i, k)th entry with u replacing rik. Expanding Hi,k,

Hi,k(z) = −
∑

j 6=i

(nj +N− 1
2 vj · z)2 − (ni +N− 1

2

∑

l 6=k

vilzl +N− 1
2

√
1 − tsikzk)2

− u2tz2
k

N
+
u
√
tzk√
N

(ni +N− 1
2

∑

l 6=k

vilzl +N− 1
2

√
1 − tsikzk)
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Let the sum of the first two terms be denoted as H ′
ik(z) and the terms involving u be H ′′

ik(z). Consider
the following set

G = {n, r, s : ∀i 1√
N

|ni| +
1

N

∑

k

2|rik| +
1

N

∑

k

2|sik| ≤ C}

For sufficiently large C we have P (Gc) = O(e−αN ) for some constant α > 0. If (n, s, r) ∈ G, then for all
z ∈ {0, 2}K

|H ′′
i,k(z)| ≤ 4|u|2

N
+ 2|u|C ≡ C′(u). (87)

Therefore for the first term in the equation (86)

∣

∣

∣
E∼rik

〈

(ni +N− 1
2 vk

i · z)
〉

t,i,k

∣

∣

∣

≤ E

〈

∑

z e
−H′

ik(z)e
C′(u)

2σ2 |ni +N− 1
2 vk

i · z − u
√
tN− 1

2 zk|
∑

z e
−H′

ik(z)e−
C′(u)

2σ2

1{G}
〉

t,i,k
+O

( |u|√
N

)

+ E

〈

|ni +N− 1
2 vi · z|1{Gc}

〉

t,i,k

The expectation over Gc can be bounded as O(e−αN )O(|u|). Therefore the last two terms contribute

O( |u|√
N

). For the first term after we have removed the terms with u dependence, the Hamiltonian H ′
ik

satisfies Nishimori symmetry. Therefore we get the first term to be equal to,

Es,r

∫

1

2K
e2

C′(u)

2σ2

∑

z

e−Hik(z)|ni +N− 1
2 vk

i · z − u
√
tN− 1

2 zk| dn

=

√

σ2

2π
e

C′(u)

σ2

Note that the above integral is a Gaussian integral and can be evaluated easily. Using similar method,
we can show that

E∼rik

[∂2gik(u)

∂u2

]

≤ O(1)e
3C′(u)

σ2 +O(N− 1
2 )|u|3 (88)

The exponent 3 is due the occurrence of 3 replicas in the equation (86). Therefore,

Erik

[

(r2ik − 1)

∫ rik

0

E∼rik

[∂2gik(u)

∂u2

]

du
]

≤Erik

[

r2ik

∫ rik

0

N− 5
2 (O(1)e3

C′(u)

σ2 +O(N− 1
2 |u|3))du

]

≤O(N− 5
2 ) (89)

where we have used the assumption A for the distribution of rik. Now summing this over all i, k we get

|T11| ≤ O(N− 1
2 ) (90)

Now consider the term T13. For this we have to evaluate the following term.

∂3gik(u)

∂u3
=

t

2σ8KN2

(

− 3σ4
E〈z4

k〉t + 6σ2
E

〈

(ni +N− 1
2 vi(t) · z)2z4

k

〉

t

− 12σ2
E

〈

Πa=1,2(ni +N− 1
2 vi(t) · z(a))(z

(1)
k )3z

(2)
k

〉

t

+ 3σ4
E

〈

(z
(1)
k )2(z

(2)
k )2

〉

t
− 6σ2

E

〈

(ni +N− 1
2 vi(t) · z(2))2(z

(1)
k )2(z

(2)
k )2

〉

t

+ 9σ2
E

〈

Πa=2,3(ni +N− 1
2 vi(t) · z(a))(z

(1)
k )2z

(2)
k z

(3)
k

〉

t
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− E

〈

(ni +N− 1
2 vi(t) · z)4z4

k

〉

t

+ 4E

〈

(ni +N− 1
2 vi(t) · z(1))3(ni +N− 1

2 vi(t) · z(2))(z
(1)
k )3z

(2)
k

〉

t

+ 3E

〈

Πa=1,2(ni +N− 1
2 vi(t) · z(a))2(z

(1)
k )2(z

(2)
k )2

〉

t

− 12E

〈

(ni +N− 1
2 vi(t) · z(1))2(ni +N− 1

2 vi(t) · z(2))(ni +N− 1
2 vi(t) · z(3))(z

(1)
k )2z

(2)
k z

(3)
k

〉

t

+ 6E

〈

Πa=1,2,3,4(ni +N− 1
2 vi(t) · z(a))z

(1)
k z

(2)
k z

(3)
k z

(4)
k

〉

t

)

We can prove along similar lines that |T12| ≤ O(N−1).

F Nishimori Identities

Proof of Lemma 1. We only give a brief sketch because the method is standard (see for example [27, 28]).
One writes fully explicitly the expression for P

t
m1

(x) and performs the gauge transformation xk → x0
kxk,

sik → x0
ksik where x0 is an arbitrary binary sequence. Since P

t
m1

(x) does not depend on x0 we sum over
all such 2K sequences and obtain a lengthy expression. Exactly the same procedure is applied to P

t
q12

(x)
and one gets another lengthy expression. Then one can recognize that these two expressions are the same.

Proof of Lemma 2.
Proof of (39). We will prove it for t = 1 and for general t it is similar. Let the transmitted sequence

be the all one sequence, and the received vector be r = σn +
√

1
N s1 where ni ∼ N (0, 1). The proof

follows by using gauge symmetry. Let u denote the K dimensional vector (u, . . . , u).

E[〈‖Z‖2〉1,u] = ES

[

∫

1

(2πu)
K
2 (2πσ2)

N
2

e−
‖h−u‖2

2u e−
1

2σ2 ‖r−N− 1
2 s‖2〈‖Z‖2〉1,udr dh

]

= ES

[

∫

1

(2πu)
K
2 (2πσ2)

N
2

e−
‖h‖2

2u +h·1−Ku
2 e−

1
2σ2 ‖r−N− 1

2 s‖2

∑

x e
− 1

2σ2 ‖r−N− 1
2 sx‖2+h·x‖Z‖2

∑

x e
− 1

2σ2 ‖r−N− 1
2 sx‖2+h·x

dr dh
]

=
1

2K
ES

[

∫

1

(2πu)
K
2 (2πσ2)

N
2

e−
‖h‖2

2u −Ku
2

∑

x0

e−
1

2σ2 ‖r−N− 1
2 sx0‖2+h·x0

∑

x e
− 1

2σ2 ‖r−N− 1
2 sx‖2+h·x‖Z‖2

∑

x e
− 1

2σ2 ‖r−N− 1
2 sx‖2+h·x

dr dh
]

(91)

= N

(91) is obtained by performing the gauge transformation xk → xkx
0
k, sik → sikx

0
k and hk → hkx

0
k and

summing over all the 2K possibilities of x0. Now canceling the summation over x0 with the denominator
and then integrating we get it to be equal to N .

Proof of (40). The proof is complete if we show E[〈(n · Z(2))(x(1) · z(2))〉t,u] = 0. We will prove this
for t = 1 and it is similar for other t.

E[〈(n · Z(2))(x(1) · z(2))〉t,u]

=
∑

i,k

E[〈(ri −N− 1
2

∑

l

sil)(ri −N− 1
2

∑

l

silx
(2)
l )(x

(1)
k − x

(1)
k x

(2)
k )〉t,u]

Now performing the gauge transformation x
(1)
k → x

(1)
k x0

k, x
(2)
k → x

(2)
k x0

k, sik → sikx
0
k and hk → hkx

0
k we

get

∑

i,k

E[〈(ri −N− 1
2

∑

l

silx
0
l )(ri −N− 1

2

∑

l

silx
(2)
l )(x

(1)
k x0

k − x
(1)
k x

(2)
k )〉t,u]

This quantity can be shown to be equal to 0 by noticing that the x0 and x(2) play symmetric roles.
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G Proof of inequality (41)

For a given configuration of z, 1√
N

∑

l silzl ≡ Zi is a Gaussian random variable with mean 0 and variance

smaller than 4. Thus for ni ∼ N (0, 1) and independent of Z,

E[e
niZi

α ] = E[e
−niZi

α ] ≤
√

α2

α2 − 4

If α > 2, we have both the expectations to be less than some constant C > 1. Therefore for any z

E[e−
1
α N− 1

2
P

i,l nisilzl ] = E[e
1
α N− 1

2
P

i,l nisilzl ] ≤ CN

Using the Markov inequality,

P

(
∣

∣

∣

1

α

∑

i

ni
1√
N

∑

k

sikzk

∣

∣

∣
> yN

)

≤ 2CNe−yN

Using the union bound over z, for y large enough there exists a constant γ > 0 such that

P

(

∃z ∈ {0, 2}K :
∣

∣

∣

1

N3/2

∑

i,k

nisikzk

∣

∣

∣
> αy

)

≤ 2−γN

Let G be the event that
∣

∣

∣

1
N3/2

∑

i,k nisikzk

∣

∣

∣
> αy holds for all z. Splitting the expectation into two parts

corresponding to G and Gc and using Cauchy-Schwartz inequality, we have

E

〈( 1

N3/2

∑

i,k

nisikzk

)2〉

t

≤ α2y2 +
√

P (Gc)
(

E

〈( 1

N3/2

∑

i,l

nisikzk

)4〉

t

)1/2

≤ α2y2 +O(2−
γ
2 N )
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