
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur diplômé de l'Institut polytechnique de Hanoi, Viêt-Nam
et de nationalité vietnamienne

acceptée sur proposition du jury:

Lausanne, EPFL
2008

Prof. A. Wegmann, président du jury
Prof. B. Faltings , directeur de thèse

Dr J.-A. Rodriguez Aguilar, rapporteur
Dr A. Roli, rapporteur

Prof. M. A. Shokrollahi, rapporteur

Local Search Techniques for Multi-Agent
Constraint Optimization Problems

Quang Huy NGUyEN

THÈSE NO 4074 (2008)

ÉCOLE POLyTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 30 MAI 2008

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Laboratoire d'intelligence artificielle

SECTION D'INFORMATIQUE

Abstract

Combinatorial optimization problems in the real world are ubiquitous. Practical
applications include planning, scheduling, distributed control, resource allocation,
etc. These problems often involve multiple agents and can be formulated as a Multi-
agent Constraint Optimization Problem (MCOP). A major challenge in such systems
is the agent coordination, such that a global optimal outcome is achieved.

This thesis is devoted to two major issues that arise in MCOP: efficient optimiza-
tion algorithms and manipulations from self-interested agents. We introduce a new
randomized local search optimization algorithm called Random Subset Optimiza-
tion (RSO). The RSO algorithm is tested on various applications and demonstrated
to converge faster than other local search techniques while achieving competitive
performance. For self-interested agents, we define a new form of incentive compat-
ibility called size-limited incentive compatibility and show that RSO algorithm can
be used to prevent agents’ manipulations.

Keywords: artificial intelligence, constraint optimization, local search, incentive-
compatibility, mechanism design

1

Résumé

Les problèmes d’optimisations combinatoires dans le monde réel sont omniprésents.
Les applications pratiques incluent la planification, l’ordonnancement, les systèmes
de contrôle distribués, ou l’attribution de ressources. Ces problèmes impliquent sou-
vent de multiples agents et ils peuvent être formulés par des problèmes d’optimisation
multi-agent sous contraintes (MCOP). Un défi important dans de tels systèmes
est la coordination des agents, afin que des solutions globalement optimales soient
obtenues.

Cette thèse est consacrée à deux questions principales qui se posent dans
MCOP: l’efficacité des algorithmes d’optimisation et les manipulations par des
agents stratégiques. Nous introduisons une nouvelle algorithme de recherche locale
qui s’appelle l’optimisation par des sous-ensembles aléatoires (RSO). L’algorithme
RSO est testée sur des applications diverses et a démontré qu’elle converge plus
rapidement que d’autres techniques de recherche locale, tout en réalisant des per-
formances compétitives. Pour des agents stratégiques, nous proposons un nouveau
concept de incentive-compatibility de taille limitée. Nous montrons que l’algorithme
RSO peut être utilisée pour empêcher des manipulations des agents stratégiques.

Mots-clés : intelligence artificielle, optimisation sous contraintes, recherche lo-
cale, incentive-compatibility, mechanism design

3

Acknowledgements

I wish to address my sincere thanks to my advisor, Professor Boi Faltings, who gave
me the opportunity to work at the AI-Lab of the Swiss Federal Institute of Tech-
nology in Lausanne, for giving me much freedom in my work and for inspiring and
motivating me tremendously during my time in Lausanne. Without his supports,
this thesis would never be completed.

I would like to thank Professor Alain Wegmann for chairing my thesis committee.
I am also grateful to Professor Amin Shokrollahi, Dr. Andrea Roli, and Dr. Juan-
Antionio Rodriguez, for accepting the invitation to be in my thesis committee. I
appreciate all their efforts in reading my thesis and bringing valued comments, which
helped me considerably improve the quality of this thesis.

A special thank goes to Dr. Andrea Roli for insightful feedbacks and being a great
mentor at the CP2005 conference. I am also indebted Dr. Jean-Cédric Chappelier
for his useful suggestions on information theory. Thanks Vincent Schickel-Zuber and
Martin Vesely for helping me accessing the computation resources at the LIA. I am
also grateful to Luu Vinh Toan and Brammert Ottens for giving me their comments
on my thesis presentation.

I wish to thank my colleagues at the LIA for their friendly help and enthusias-
tic collaboration, especially Dr. Sam-Haroud Djamila, Radu Jurca, Adrian Petcu,
Paolo Viappiani, Michael Schumacher, Miroslav Melichar, Marita Ailomaa, Thomas
Léauté, Santiago Macho Gonzalez, David Portabella, and Arda Alp. I am also
grateful to Mrs. Marie Decrauzat for her administrative supports.

My Vietnamese friends from Lausanne (apologies to the ones I forgot, they’re
equally dear to me): Vu xuan Ha, Nguyen Tuan Viet, Bui Huu Trung, Ho Quoc
Bang, Le Lam Son, Mai Tuan Anh, Nguyen Ngoc Anh Vu, Nguyen Xuan Hung,
Nguyen Thanh Tung, Nguyen Vu Hieu, Vo Duc Duy, Pham Minh Hai, Pham Van
Thai, To Huy Cuong, Phan Van Anh, Do Lenh Hung Son, Nguyen Minh Thu,
Nguyen Hoang Minh, Nghiem Quynh Nga, and Vu Le Hung. Thanks to them,
nearly one thousand stressful hours in writing up this thesis have been harmoniously
relaxed by many enjoyable hours.

From the bottom of my heart, I am extremely thankful to my wife, my beloved
daughter, my parents and my family for so many priceless things and so much great
love they have ever given to me.

5

Contents

Abstract 1

Résumé 3

Acknowledgements 5

Table of Contents 7

List of Figures 9

List of Tables 11

List of Algorithms 13

1 Introduction 15
1.1 Multi-agent constraint optimization 15
1.2 Motivations and Objectives . 16
1.3 Organization of the thesis . 18

2 Preliminaries and Background 19
2.1 Multi-agent Constraint Optimization Problems 19
2.2 Local Search Methods for Multi-Agent Constraint Optimization

Problems . 21
2.2.1 A General Framework for Local Search 21
2.2.2 Metaheuristics for Escaping from Local Minima 23

2.3 Incentive Compatibility . 29
2.3.1 Important concepts in mechanism design 29
2.3.2 Revelation principle . 31
2.3.3 Impossibility results . 32
2.3.4 Directions to achieve incentive compatibility 32
2.3.5 Vickrey-Clarke-Groves (VCG) mechanism 33

3 Random Subset Local Search Optimization 37

7

8 Table of Contents

3.1 Random Subset Optimization algorithm 37
3.1.1 Parameters of RSO . 40
3.1.2 Completeness . 40

3.2 Extensions of RSO . 42
3.3 Distributed, asynchronous implementation 45
3.4 Applications . 46

3.4.1 Network Resource Allocation 46
3.4.2 Soft Graph Coloring Problem 49
3.4.3 Graph Coloring . 53

4 Size-limited Incentive Compatibility 61
4.1 Definition . 61
4.2 Payment budget balance and individual rationality 63
4.3 Computing VCG taxes . 64
4.4 Hardness of manipulation . 65
4.5 Average case analysis . 67
4.6 Experiments . 70

4.6.1 States space of RSO algorithm 70
4.6.2 Branching factors . 72
4.6.3 Individual rationality . 73

5 Conclusions 75

Bibliography 79

Curriculum Vitae 85

List of Figures

3.1 Network of transputers and the structure of individual processes . . . 46
3.2 Variation of the average cost of the random subset optimization algo-

rithm on network resource allocation problem, for different values of
p. 47

3.3 Variation of the average cost of the random subset optimization algo-
rithm on network resource allocation problem, for different values of
d. 48

3.4 Average utility gain of different local search algorithms on the net-
works resource allocation problem as a function of the number of steps. 49

3.5 A satisfiable graph with 2 color . 51
3.6 A non-satisfiable graph with 2 color 52
3.7 Average solution cost of various optimization algorithms on the soft-

k-coloring problem as a function of the number of steps. 53
3.8 Convergence over time of different heuristics on G250,0.5 graph 57
3.9 Convergence over time of different heuristics on G250,0.5 graph 58
3.10 Recovery performance results on G500,0.5 graphs 60

4.1 New states discovered in successive cycles of a simulation of local
search, for several problem sizes . 71

4.2 Growth of the total number of states involved in a local search simu-
lation as a function of the problem size 71

4.3 Maximum repetition probability of states in the local search algorithm
with RSO scheme . 72

4.4 Utilities of agents during local search 73
4.5 Utilities of agents in 100 runs . 74

9

List of Tables

3.1 Utility of agent 1 . 51
3.2 Utility of agent 2 . 51
3.3 Utility of agent 3 . 51
3.4 Utility of agents 4, 5, 6, and 7 . 52
3.5 Coloring results for G125,0.5 graph . 57
3.6 Coloring results for G250,0.5 graph . 57
3.7 Coloring results for G500,0.5 graph . 58
3.8 Coloring results for G1000,0.5 graph 58
3.9 Coloring results for Leighton graphs 59
3.10 Coloring results for k-partite graphs 59
3.11 Coloring results for class scheduling graphs 59

4.1 Computational results for pm . 73
4.2 Number of negative utilities in 100 runs 73

11

List of Algorithms

2.1 Local Search algorithm for MCOP . 22
2.2 Random Restart Local Search algorithm 23
2.3 Randomized Iterative Improvement algorithm 24
2.4 Simulated Annealing algorithm . 25
2.5 Tabu Search algorithm . 26
2.6 Guided Local Search algorithm . 28
2.7 Memetic algorithm . 29
2.8 Ant Colony Optimization algorithm . 30
3.1 Local Search algorithm for MCOP . 38
3.2 RSO algorithm for MCOP . 39
3.3 Adaptive RSO algorithm . 43
3.4 Annealing RSO algorithm . 44
3.5 RSO-tabu algorithm . 45

13

Chapter 1

Introduction

1.1. Multi-agent constraint optimization

Combinatorial optimization problems in the real world are ubiquitous. Examples in
everyday life include logic systems, transportation, scheduling, resource allocation,
combinatorial auction, and many others. In most of the cases, these optimization
tasks involve multiple agents and constraints that have to be satisfied. These prob-
lems consist finding an assignment of discrete values of variables such that the solu-
tion is optimal with respect to some criterion. We call these problems as Multi-agent
Constraint Optimization problems (MCOP).

There are two main tasks that have to be addressed in MCOP: the optimization
task and the incentive task. The optimization is a classic task in which we want to
maximize or minimize a global objective function, whereas the incentive, receiving
an increasing attention in recent years, deals with agents’ preferences.

The optimization is, however, a hard task due to the dimension of these systems
and to the presence of many complex constraints. In the theory of computational
complexity, the hardness of such problems corresponds to the fact that they are NP-
hard. The techniques available for solving MCOP fall into two main classes: exact
and approximate. Exact methods guarantee to find an optimal solution and to prove
its optimality for every finite size instance of a MCOP within an instance-dependent
run time. In the worst case, their time complexity function is exponential. Typ-
ically, exact methods are limited to very small problems and are not practical for
large scale real world problems. Approximate heuristic methods are often used in-
stead of exact methods to overcome these limitations: they provide a solution to a
problem in polynomial time with a certain performance guarantee. They are partic-
ularly appealing because of their flexibility, ease of implementation, and capability
of attaining satisfactory performance on many large optimization problems.

Local search methods are heuristic methods for MCOP developed in Operations
Research and Artificial Intelligence. The search process proceeds by trial and error:

15

16 1. Introduction

starting from an initial solution, the search makes a sequence of local changes, called
moves, chosen to improve the quality of the current solution as much as possible.
This process is an informed search process as it exploits problem-specific knowledge.
From a theoretical standpoint, local search algorithms sacrifice solution quality for
performance. They may fail to find optimal solutions. However they usually iso-
late optimal or near-optimal solutions within very reasonable time constraints. For
many problems, local search methods are recognized as state-of-the-art methods.
Examples are traveling salesman problem ([Lin and Kernighan 1973]), propositional
satisfiability problem (SAT) ([McAllester et al. 1997], [Selman et al. 1992], [Selman
et al. 1994]), Vehicle Routing problem ([Gendreau et al. 2001]), and the rapidly
growing bioinformatics area (see, e.g., [Fogel et al. 2002]).

Another issue in MCOP is the incentives of agents participating in the problem.
In this context, the algorithm for solving MCOP also serves as a protocol for coor-
dinating among agents. Agents are autonomous in the sense that they have control
over their own subproblems, and can choose their actions freely. They are intelli-
gent, in the sense that they can reason about the state of the world, the possible
consequences of their actions, and the utility they would extract from each possi-
ble outcome. However, they are resource-bounded agents, in that they only have a
limited computation capacity and a limited time for decision making. In real world
situations, agents usually have conflicting preferences and they are self-interested,
i.e., they want to maximize their own benefit while participating in the protocol.
Therefore, agents will act strategically using all means available to them to maximize
their profits. This strategic behavior will make the optimization problem difficult as
it might severely damage the efficiency of the system and prevent it to accomplish
the purposes that it was designed for.

1.2. Motivations and Objectives

Local search is widely used for solving large optimization problems in practice. Many
different local search methods have been proposed in the last 30 years. In settings
with multiple agents, it naturally adapts to local computation and synchronization
through message exchange. In recent years there has been an increasing attention
on the incentive aspects of the optimization algorithms in settings with multiple
agents. However, the incentive aspects of local search algorithms remain open.

This thesis will aim at designing local search algorithms that take into account
both optimization and incentives aspects. Our work will focus on satisfactory and
sub-optimal outcomes rather than an optimal outcome. The thesis builds on the
idea of using computational complexity as a barrier to prevent manipulations from
self-interested agents.

We investigate two following scientific questions:

1.2. Motivations and Objectives 17

1. Can the local search techniques that are successful in SAT, which are based
on a partial optimization function, be generalized to constraint optimization?

2. Can these techniques be adapted to prevent manipulation by self-interested
agents in a multi-agent setting?

Contribution

The main contributions of this thesis can be summarized as follows.

Local search optimization algorithms

We introduce a new local search algorithm for MCOP called Random Subset Op-
timization (RSO) algorithm. The RSO algorithm is based on the idea of using
randomization to guide the local search. The idea of the algorithm is to randomly
choose a part of the optimization function, and make a move that is optimal with
respect to this part only. It turns out that this results in a more focussed optimiza-
tion strategy while retaining the power to escape from local minima. Our algorithms
converge faster than other local search techniques while achieving a very competi-
tive performance. Several variants and improvements of the RSO algorithm are also
proposed in the thesis. The RSO algorithm can also be combined with other local
search algorithms as a general metaheuristics for escaping from local optima.

Comparison of local search algorithms

We re-implement and compare with our algorithms some of the renowned local
search algorithms including the Min-Conflicts (or Hill-Climbing) heuristics, Ran-
domized Iterated Improvement, Tabu Search, and Simulated Annealing algorithm.
The applications for testing are: network resource allocation problems, graph col-
oring with fixed number of colors (we call this problem as soft graph coloring), and
classical graph coloring with minimum number of colors (we call graph coloring). All
the applications are first transformed into the MCOP framework, and then solved
by local search methods mentioned above.

In this thesis, we aim at an ”unbiased” comparison, that is, a comparison in which
all algorithms are allowed to use the same computational resources and work under
the same conditions (same data structures and equal effort for tuning). We compare
the algorithms with respect to performance criteria, convergence time criteria, and
solution recovery criteria.

Size-limited incentive compatibility

In classical mechanism design, the concepts of incentive compatibility are defined
based on the equilibriums in games. However, when problems move towards reality,

18 1. Introduction

decision situations will become real-time and the agents will be bounded-rational.
The concepts of incentive compatibility in classical mechanism design are hard to
apply due to complexity and time constraints.

We define a new concept of incentive compatibility for bounded rational agents
settings that takes into account their limited computational capacities. We show
that RSO algorithms can be applied to have this property. Although a complete
theoretical proof is difficult to achieve in average-case complexity, our experimental
analysis results can provide intuitive answers.

1.3. Organization of the thesis

The thesis continues in Chapter 2 with background and related work in local search
methods and classical mechanism design. The first part of this chapter introduces
the multi-agent constraint optimization problem frame work and local search meth-
ods for solving it. The second part of the chapter provides an overview of the state
of the art of the classical mechanism design.

In Chapter 3, we describe the RSO algorithm and its extensions. The comparison
of the RSO algorithm and other local search algorithms is carried out on several
applications: network resource allocation problems, soft graph coloring, classical
graph coloring, and combinatorial auctions. For each application, we provide the
method for transforming it into a multi-agent constraint optimization framework.

Chapter 4 is concerned with self-interested agents. We defined the new concept of
size-limited incentive compatibility for bounded-rational agents. The RSO algorithm
can be applied with a proper payment scheme so that it achieves the size-limited
incentive compatibility property and budget balanced property at the same time.
We give experimental evidence to show that this indeed makes sense.

Finally, Chapter 5 closes the thesis with a summary of the main contributions
and directions for further research.

Chapter 2

Preliminaries and Background

The first two parts of this chapter introduce the Multi-agent Constraint Optimiza-
tion framework and the local search techniques available to solve them. The classical
mechanism design is introduced in the part three of the chapter.

2.1. Multi-agent Constraint Optimization Prob-

lems

In recent years, Constraint Optimization Problems (COP) ([Bertele and Brioschi
1972], [Schiex et al. 1995]) has emerged as the most successful paradigm for problem-
solving. We begin this chapter by introducing the definition of a COP. Formally,

Definition 2.1. (COP) A discrete constraint optimization problem (COP) is a
tuple 〈X, D, R〉 such that:

• X = {x1, ..., xn} is a set of variables.

• D = {d1, ..., dn} is a set of discrete, finite variable domains

• R = {r1, ..., rm} is a set of utility functions, where each ri is a function
ri : di1 × ... × dik → R. Such a function assigns a utility (reward) to each
possible combination of values of the variables. Negative utilities mean costs.
Hard constraints (which forbid certain value combinations) are a special case
of utility functions, which assign 0 to feasible tuples, and −∞ to infeasible
ones;

The goal of a COP is to find a complete assignment X∗ for the variables xi

that maximizes (or minimizes) the sum of utilities of individual utility functions.
Formally,

19

20 2. Preliminaries and Background

X∗ = argmaxX(
∑
ri∈R

ri(X)) (2.1)

where the values of ri are their corresponding values for the particular assignment
X.

In settings with multiple agents, we extend the standard definition of constraint
optimization as follows:

Definition 2.2. A discrete multi-agent constraint optimization problem (MCOP)
is a tuple 〈A,X, D, C, R〉 where:

• A = {A1, .., Am} is a set of agents.

• X = {x1, .., xn} is a set of variables.

• D = {d1, .., dn} is a set of domains of the variables, each given as a finite set
of possible values.

• C = {c1, .., cp} is a set of hard constraints, where a constraint ci is a function
di1 × ..× dil → {0, 1} that returns 1 if the value combination is allowed and
0 if it is not.

• R = {r1, .., ro} is a set of relations (soft constraints), where a relation ri is a
function di1× ..× dil → R giving the utility of choosing each combination of
values.

• RAi
is the subset of R that gives the relations associated with agent Ai.

The goal of a MCOP is to maximize a global objective function which is an
aggregate function f of the agents utilities

f(X) =
∑
a∈A

∑
rl∈Ra

rl(X) (2.2)

Definition 2.3. The solution to a MCOP is an assignment X∗ of values to all
variables xi that satisfies all hard constraints and maximizes the sum of agent
utilities as expressed by their relations

X∗ = argmaxX(f(X)) (2.3)

subject to
∀i = 1, ..., p : Ci(X) = 1

2.2. Local Search Methods for Multi-Agent Constraint Optimization
Problems 21

We assume that variables, domains, constraints are common and agreed upon
knowledge among the agents. On the other hand, relations are specified by the
individual agents, and they do not necessarily have to report them correctly. For
the first part of this thesis (Chapter 2 and Chapter 3), we assume that agents are
expected to work cooperatively towards finding the best solution to the optimization
problem, by following the steps the algorithm as prescribed. In Chapter 4 we relax
the assumption that the agents are cooperative, and discuss algorithms with self-
interested agents.

Many combinatorial optimization problems can be formulated as a MCOP. For
example, the meeting scheduling problem ([Kaplansky and Meisels 2005]) can be
formulated by a variable for the starting time of each meeting, constraints between
any two meetings involving the same participants ruling out start times that would
make them overlap, and relations that express each agent’s preferences for meeting
times. Additional constraints can be used to express precedence constraints between
meetings or external constraints on their times.

Another example is allocating capacity in a public network, for example a train
or pipeline network. The network is a graph of connections, and only one agent
can use any one connection at a given time. This can be represented by having
one variable per link and time interval whose domain ranges over the set of agents.
Constraints would enforce for example that successive links and times are assigned
to the same agent. Agents serve customers’ transportation demands with different
efficiency by using different combinations of links. Thus, each agent has utilities for
being able to use certain combinations of links, and reports these as relations.

Agents want to find a combined assignment that maximizes the sum of their
utilities. Such combinatorial optimization is NP-complete and thus can be solved
exactly only for small problems. For large instances, in many cases only local search
methods can be implemented. They can provide no optimality guarantees, but with
high probability will find a solution that is very close to optimal.

2.2. Local Search Methods for Multi-Agent Con-

straint Optimization Problems

2.2.1. A General Framework for Local Search

The use of local search in combinatorial optimization reaches back to the late 1950s
and early 1960s. It was first used for the traveling salesman problem and since then
it has been applied to a very broad range of problems ([Aarts and Lenstra 1997]).

Generally, local search algorithms start from an initial solution and iteratively
move from one solution to a neighboring solution in hope of improving the objective
function. The decision in each step is based on local information only. The main

22 2. Preliminaries and Background

operation of a local search algorithm is a move from a solution v to one of its
neighbors. The set of neighboring solutions of v, denoted by N(v), is called the
neighborhood of v.

The local search framework we assume in this thesis is depicted in Algorithm 2.1.

Algorithm 2.1: Local Search algorithm for MCOP

procedure LocalSearch(A,X,D,C,R)

v ← SelectInitialSolution()
repeat

vold ← v
N ← ChooseNeighbors(vold, X, D, C)
(v, pay) ← LocalChoice(N, R)
agents make/receive payments according to pay

until termination condition met
return v

end procedure

The algorithm manipulates a complete assignment of values to all variables,
represented as a vector v. It is initially set by function SelectInitialSolution to an
assignment that satisfies all constraints and could be random.

Search then proceeds iteratively by local improvements. Function ChooseNeigh-
bors provides a set of candidate assignments that are close to the current one and
could possibly improve it. As an implementation example, they are generated by
randomly selecting a variable xi ∈ X and generating all assignments that are equal
to vold but assign to xi different values in the domain of xi that are consistent with
the rest of vold and the constraints in C.

In the second step of the iteration, the assignment v is updated using the function
LocalChoice. It chooses a new assignment to optimize the combined utility according
to the relations in R. It also computes a vector of payments pay that agents must
make or receive in the third step of the iteration. The payments sum up to zero and
the way they are derived is described in detail in Section 3.

The iteration continues until a termination condition is met, for example when
there is no further improvement in the utility of all agents for some number of steps,
or when the number of iterations has reached a maximum number allowed.

A local optimum solution is a solution which is better than all its neighboring
solutions. The local search algorithm always ends at a local optimum solution.
Notice that a global optimum solution is always a local optimum, but the converse
is in general not true. To avoid getting stuck in local optima, local search algorithms
often use metaheuristics that hopefully drive the search toward global optimality.

2.2. Local Search Methods for Multi-Agent Constraint Optimization
Problems 23

2.2.2. Metaheuristics for Escaping from Local Minima

Metaheuristics aim at escaping from local optima and at directing the search toward
the global optimal solution.

Random Restart

Random restart is the simplest metaheuristic that iterates a specific local search from
different starting points in order to sample various regions of the search space and
to avoid returning to low quality local optima. This metaheuristic can be composed
with other metaheuristics for local search.

The random restart metaheuristic is depicted in the algorithm 2.2. It start from
an initial solution and then performs a number of iterations. Each iteration consists
of a local search and the generation of a new starting point by perturbing the current
local optimum or by generating a new initial solution.

Algorithm 2.2: Random Restart Local Search algorithm

procedure RR(A,X,D,C,R)

v ← SelectInitialSolution()
v∗ ← v
for i = 1 : m do

v′ ← LocalSearch(A,X, D, C, R, v)
if f(v′) > f(v∗) then

v∗ ← v′

end if
v ← GenerateNewSolution(v)

end for
return v∗

end procedure

Randomized Iterative Improvement

The idea of the randomized iterative improvement is simply to accept side walk
steps. Side walk steps are moves that lead to candidate solutions whose objective
function can be worse than the current solution. The problem in doing this is that
if worsening solutions are accepted deterministically, there will be a possible cycling
behavior. A way to avoid this drawback is to determine when a worsening step has
to be performed by using a probabilistic criterion. The simplest algorithm which
does this is Randomized Iterative Improvement (RII). In RII, a parameter p ∈ [0, 1],
called walk probability, is used to probabilistically determine whether a worsening

24 2. Preliminaries and Background

step or an improving step will be performed. With probability p, a candidate solution
from the neighborhood N(s) is chosen randomly, otherwise an improving candidate
solution is taken. The RII algorithm is given in Algorithm 2.3.

Algorithm 2.3: Randomized Iterative Improvement algorithm

procedure RII(A,X,D,C,R,p)

v ← SelectInitialSolution()
v∗ ← v
repeat

N ← ChooseNeighbors(v, X, D,C)
rp ← random([0, 1])
if rp < p then

v ← ChooseRandom(N)
else

v ← LocalChoive(N, R)
end if
if f(v) > f(v∗) then

v∗ ← v
end if

until termination condition met
return v∗

end procedure

Purely random moves have the disadvantage that they are not guided towards
actually breaking out of a local optimum and thus they are rarely applied in practice.
An exception are algorithms for SAT problems, in particular Walksat and its variants
([Selman et al. 1994], [McAllester et al. 1997], [Selman et al. 1992]) are among
the state-of-the-art algorithms for SAT, in which only moves that satisfy at least
one currently unsatisfied clause are considered. RII algorithms are also applied
successfully to distributed sensor networks problems ([Zhang et al. 2005]).

An alternative idea to randomized iterative improvement, proposed by Kauffman
et al. ([Macready et al. 1996], [Kauffman and Macready 1995]), is to parallelize
the local search. As observed by the authors, optimization performance initially
improves when parallelism increased, but then abruptly degrades to no better to
random walk beyond a certain point.

Simulated Annealing

Simulated Annealing (SA) ([Kirkpatrick et al. 1983], [Cerny 1985]) is a popular
metaheuristics based on the Metropolis heuristic ([Metropolis et al. 1953]). In this

2.2. Local Search Methods for Multi-Agent Constraint Optimization
Problems 25

heuristic, inspired by statistical mechanics, a degrading move is accepted with a
probability given by the Boltzman probability distribution:

paccept(T, v, v′) =

{
1 if f(v) ≥ f(v′)
exp(f(v)−f(v′)

T
) otherwise.

(2.4)

where s is the current solution, s′ ∈ N(s), T is the temperature parameter of the
heuristic.

The temperature is set relatively high at the beginning of the search and is
then decreased according to a cooling schedule. The exact characterization of the
temperature over the whole search depends on the implementation.

The SA algorithm is depicted in Algorithm 2.4. The parameter T0 is the initial
temperature. The cooling schedule is performed by the UpdateTemperature function.

Algorithm 2.4: Simulated Annealing algorithm

procedure SA(A,X,D,C,R,T0)

v ← SelectInitialSolution()
v∗ ← v
T ← T0

repeat
N ← ChooseNeighbors(v,X,D,C)
v′ ← ChooseRandom(N)
v ← v′ with probability paccept(T, v, v′)
if f(v) > f(v∗) then

v∗ ← v
end if
UpdateTemperature(T)

until termination condition met
return v∗

end procedure

Tabu Search

Tabu search (TS) is another popular and effective metaheuristics introduced in-
dependently by Glover ([Glover 1989], [Glover 1990]) and Hansen and Jaumard
([Hansen and Jaumard 1990]). An outline of the TS alorithm is shown in Algorithm
2.5.

In the TS algorithm, a short-term memory TT is used to avoid the search to
return to recently visited solutions. A parameter tt, called tabu tenure, determines
the duration of the search steps in which the re-insertion or removal of the solutions

26 2. Preliminaries and Background

Algorithm 2.5: Tabu Search algorithm

procedure SimulatedAnnealing(A,X,D,C,R,tt)

v ← SelectInitialSolution()
v∗ ← v
InitTabuList(TT)
repeat

N ← ChooseNeighborsTabu(v, X, D, C, TT)
v′ ← LocalChoice(N)
if f(v) > f(v∗) then

v∗ ← v
end if
v ← v′

UpdateTabuList(TT)
until termination condition met
return v∗

end procedure

is forbidden. In practice, only a part of each solution is stored instead of the whole
solution in order to save memory space and comparison time.

During the search, it may happen that some attractive solutions are forbidden.
This situation can be avoided by using the aspiration criteria, which specifies con-
ditions under which the tabu status of a candidate solution may be overridden.

Many refinements and variants have been proposed in the literature. Taillard
([Taillard 1991]) improves the robustness of the TS performance by choosing tt ran-
domly from an interval [ttmin, ttmax]. In [Battiti and Protasi 2001], the authors
propose a reactive mechanism to dynamically adjust the tabu tenure during the
search based on the detection of trajectory repetitions. Glover and Laguna ([Glover
and Laguna 1997])) report several ideas to include a long-term memory and extend
the neighborhood set N(s) through the inclusion of elite candidate solutions. They
focus on the trade off between intensification and diversification, i.e., between ex-
ploiting the experience accumulated during the search and exploring new regions of
the search space.

The tabu search and its improvements are still among the state-of-the-art for the
graph coloring problem ([Hertz and de Werra 1987], [Fleurent and Ferland 1996],
[Galinier and Hao 1999]).

Dynamic Local Search

Dynamic local search is another approach for escaping from local optima. The
idea is to modify the objective function during the search in such a way that further

2.2. Local Search Methods for Multi-Agent Constraint Optimization
Problems 27

improvement steps become possible. This can be done by associating penalty weights
to individual solution components which have an impact on the objective function.
Whenever the search stucks in a local optimum, the penalties of some solution
components present in the solution are changed and the objective function is updated
with the new weights. The modified evaluation function is usually expressed in the
form:

f ′(v) = f(v) + λ

n∑
i=1

wiIi(v)

where wi is the penalty weight of solution component i and Ii(v) is an indicator
function which returns 1 if the solution component i is present in v and 0 other-
wise. The parameter λ is used to control the relative weight of the penalties on the
evaluation function.

The penalties are initially set to zero and subsequently updated after each new
iterative improvement run. The update may involve multiple solution components
present in locally optimal solution. Variants of dynamic local search may differ in
the update scheme.

In Guided Local Search (GLS) ([Mills and Tsang 2000]), solution component i
is used to estimate the utility ui of increasing the penalty weight of component
i: ui = fi(v)/(1 + wi) . Only solution components with maximal utility values are
updated by setting wi = wi+1. Thus solution components with high negative impact
in the solution should increase their penalties during the search. GLS procedure is
depicted in Algorithm 2.6.

In constraint optimization problems, GLS may associate weights with constraints
and components of the objective function. The weights of the violated constraints
can be increased each time the local search produces a new solution. By increasing
the weight of a constraint c, GLS makes it more likely to explore solutions satisfying
c.

Evolutionary Algorithms

Evolutionary algorithms (EA) are approaches inspired by natural evolution. Recom-
mended books for EA in combinatorial optimization are [Holland 1992], [Goldberg
1989], and [Michalewicz and Fogel 2004].

In EA algorithms, a population of candidate solutions is maintained and a se-
ries of genetic operators are repeatedly applied to replace, partially or totally, the
population with the next one. Typically, two operators are used to modify a solu-
tion: a mutation operator which modifies an individual of the population by random
changes, and a recombination operator which generates one or more individuals by
combining information from two or more other individuals. Finally, a selection cri-
terion chooses the solutions for the next generation based on their fitness (usually

28 2. Preliminaries and Background

Algorithm 2.6: Guided Local Search algorithm

procedure GLS(A,X,D,C,R)

v ← SelectInitialSolution()
v∗ ← v
Initialize penalty weights w
repeat

Update objective function f ′(v) = f(v) + λ
∑n

i=1 wiIi(v)
v′ ← LocalSearch(A,X,D, C,R, v, f ′)
if f(v′) > f(v∗) then

v∗ ← v′

end if
for all i ∈ argmaxi(ui(v)) do

wi = wi + 1
end for

until termination condition met
return v∗

end procedure

associated with the value of the objective function). Individuals with higher fitness
have higher probability of being selected.

There are two popular variants of EA in combinatorial optimization: Genetic
algorithms and Memetic algorithms. Genetic algorithms represent a solution based
on bit strings of equal length. Memetic algorithms are genetic algorithms in which
a local search procedure is applied after the mutation and recombination operators.
Memetic algorithms typically achieve better performance than Genetic algorithms
in most of the cases.

An outline of a general memetic algorithm is given in the algorithm 2.7.
An example of application of the memetic algorithms is graph coloring problem

([Fleurent and Ferland 1996], [Dorne and Hao 1998], [Galinier and Hao 1999]).

Ant Colony Optimization

Ant Colony Optimization (ACO) ([Dorigo et al. 1999])is a nature-inspired,
population-based metaheuristic. The main idea of ACO, loosely inspired by the
behavior of real ants, is that of a parallel search over several constructive compu-
tational threads based on local problem data and on a dynamic memory structure
containing information on the quality of previously obtained result.

In each iteration of ACO, a population of k candidate solutions is generated by
a construction procedure that uses probabilistic decisions. Next, the solutions are
improved by an iterative improvement procedure, resulting in a population of locally

2.3. Incentive Compatibility 29

Algorithm 2.7: Memetic algorithm

procedure Memetic(A,X,D,C,R)

pv ← GenerateInitialPopulation()
v∗ ← argminv∈pv′(f(v))
repeat

pv′ ← Recombination(pv)
pv′′ ← Mutation(pv′

⋃
pv)

pv′ ← LocalSearch(pv′
⋃

pv′′)
if minv∈pv′ f(v) > f(v∗) then

v∗ ← argminv∈pv′(f(v))
end if
pv ← Selection(pv′)

until termination condition met
return v∗

end procedure

optimal solutions. Finally, they are updated in such a way that it bias the search
toward components found in high-quality solutions. The ACO procedure is outlined
in Algorithm 2.8.

Earlier version of ACO, called Ant System ([Dorigo 1992]), achieved only poor
results. A more successful refinement of ACO is MAX-MIN Ant System which has a
peculiar update procedure ([Stützle and Hoos 2000]). For a comprehensive coverage
of Ant Colony Optimization we refer the reader to Dorigo and Stützle ([Dorigo and
Stützle 2004]).

2.3. Incentive Compatibility

There exists a huge literature in the classical mechanism design and computational
mechanism design which we can not mention in full generality within the scope of
this thesis. In this section, we will give some of the most important results in the
mechanism design literature that related with the thesis.

2.3.1. Important concepts in mechanism design

In mechanism design, we consider settings in which each agent has its own prefer-
ences over different outcomes. The agents are self interested, in the sense that each
one would like to obtain the decision that maximizes its own utility. A function that
choose an outcome given agents’ preferences is called social choice function. Let Ri

be the set of possible preferences of agent i, X is the set of possible outcomes

30 2. Preliminaries and Background

Algorithm 2.8: Ant Colony Optimization algorithm

procedure ACO(A,X,D,C,R)

Initialize s∗;
repeat

Construct a population of solutions S
for all s ∈ S do

s ← LocalSearch(s)
end for
if mins∈S f(s) < f(v∗) then

s∗ ← argmins∈S(f(s))
end if
Update(s∗, S)

until termination condition met
return s∗

end procedure

Definition 2.4. A social choice function f : R1 × ... × Rm → X chooses an
outcome f(r) ∈ X, given preferences r = (r1, ..., rm).

In our context of multi-agent constraint optimization problems, the preferences
of an agent ai are its set of relations Rai

, and the outcomes are possible assignments
of values to all variables.

A mechanism (or protocol) defines the strategies available for agents and the
method used to select the outcome based on agent strategies. We say that a mecha-
nism implements social choice function f if the outcome computed with equilibrium
agent strategies is a solution to the social choice function for all possible agent
preferences.

The mechanism design problem is to define possible strategies and the method
used to select an outcome based on agent strategies, to implement the solution to
the social choice function despite agent’s self-interest.

The concept of incentive compatibility (IC) was first introduced by Hurwicz in
his seminal paper [Hurwicz 1972] and followed by other authors [d’Aspremont and
Gérard-Varet 1979], [Green and Laffont 1977], [Jackson 1991]. The strongest form of
IC is strategy-proof, where truth telling is dominant strategy for agents regardless of
others’ strategies. Another form of IC is Bayesian incentive compatible, where truth
telling is in Bayesian-Nash equilibrium for agents. This solution concept requires
assumptions about information of prior distributions of agents’ preferences, which
is difficult in real world problems.

2.3. Incentive Compatibility 31

Definition 2.5. (Incentive compatible) We say that a mechanism M is incentive-
compatible if truth-telling is an equilibrium of the game induced by M .

Depending on the protocol, incentive-compatibility often means that each agent
is reporting its relations truthfully, thus one also speaks of truthful protocols. Clearly,
incentive-compatibility is important to obtain a meaningful solution to the MCOP.
It is often achieved through tax or auction mechanisms such as the VCG mechanism
([Clarke 1971; Groves 1973; Vickrey 1961]).

Other important solution concepts in mechanism design are individual rational-
ity, efficiency, and budget-balance.

Definition 2.6. (Individual rationality) We say that a mechanism is individually
rational (IR) if if the expected utility that each agent gets when it participates in
the protocol is at least as high as non-participation.

In other words, a mechanism is individually rational it is in best interest of
each agent to participate in the protocol. The IR property is important because
otherwise, agents may choose not to participate in the protocol.

Definition 2.7. (Efficiency) We say that a solution to a mechanism is allocatively-
efficient if it maximizes the total utility over all agents.

An efficient solution is the optimal solution to the protocol.

Definition 2.8. (Budget-balance) We say that a mechanism is budget-balanced
(BB) if the total payments from all agents to the mechanism is zero.

In other words, there are no net transfers out of the protocol or into the protocol.

Definition 2.9. (Weak budget-balance) We say that a protocol is weak budget-
balanced if and only if the total payments from all agents is non-negative.

In other words, there can be a net payment made from agents to the protocol,
but no net payment from the protocol to the agents.

2.3.2. Revelation principle

One important result called revelation principle ([Gibbard 1973], [Green and Laffont
1977], [Myerson 1979]) states that under weak conditions any mechanism can be
transformed into an equivalent incentive-compatible mechanism. This means that if
a mechanism satisfies certain properties (e.g., Individual rational, budget-balanced),
the IC property can also be satisfied using an equivalent direct-revelation truthful
mechanism. However, it is usually difficult to design direct-revelation mechanisms
but it can be easier for indirect mechanisms ([Parkes and Ungar 2000], [Conen and
Sandholm 2002]).

32 2. Preliminaries and Background

2.3.3. Impossibility results

The revelation principle allows the derivation of a number of impossibility results
that outline the combinations of properties that no mechanism can achieve in par-
ticular types of environments. These results assume direct-revelation and incentive-
compatibility, express the desired properties of an outcome rule as a set of mathe-
matical conditions, and then show a conflict across the conditions.

Fundamental impossibility results ([Green and Laffont 1977], [Green and Laf-
font 1979], [Myerson and Satterthwaite 1983]) show that in general settings, it is
impossible to achieve mechanisms that satisfy budget-balance, Pareto-efficiency, and
incentive compatibility at the same time. Similar impossibility results in the voting
environment include [Arrow 1963], [Gibbard 1973], and [Satterthwaite 1975]. These
impossibility results are starting points for further research. There are two general
approaches to overcome these results: the first one is to relax one of the properties
when designing mechanisms; the second one is to relax the general setting assump-
tion, designing mechanisms in particular and restricted settings.

2.3.4. Directions to achieve incentive compatibility

In the first approach, the most important result are the VCG mechanisms ([Clarke
1971; Groves 1973; Vickrey 1961]). These mechanisms are incentive compatible,
efficient, and individual rational (Clarke mechanism), but they are not budget-
balanced. However, VCG mechanisms are computationally intractable for both the
mechanism designer to compute the optimal outcome and for the agents to compute
their complete preferences. Moreover, combining VCG tax schemes and a non-
optimal choice function breaks the IC property [Nisan and Ronen 2000]. Some re-
searchers based on the VCG tax schemes to design mechanisms that impose budget-
balance and satisfy only approximate efficiency and incentive compatibility ([Parkes
et al. 2001]).

Another direction in the first approach is to relax the efficiency and design mech-
anisms that satisfy other properties (e.g., incentive compatible, budget-balanced,
individual rational), this includes the works of [Myerson and Satterthwaite 1983],
[McAfee 1990], [Barberà and Jackson 1995]. Other works in [Lehmann et al. 2002],
[Mu’alem and Nisan 2002] followed this direction but they assume only restricted
settings.

Using weaker forms of the incentive compatibility can also extend implementable
mechanisms. d’Aspremont and Grard-Varet showed that it is possible to achieve
efficiency and budget-balance with Bayesian incentive compatibility in the dAGVA
mechanism ([d’Aspremont & Grard-Varet 79]). However it requires information
about prior distribution of agents’ preferences, so it is unrealistic in real world
settings.

2.3. Incentive Compatibility 33

A more recent direction in the first approach is to use approximation in the incen-
tive compatibility concept. Schummer ([Schummer 1999]) proposed almost truthful
concept, where agents cannot gain too much from manipulation. Other researchers
consider the effects of intractability on bounded-rational agent. In [Nisan and Ro-
nen 2000], the authors proposed feasibly truthful mechanisms in which agents cannot
manipulate without solving a NP-hard problem. They also proposed a feasibly truth-
ful mechanism which is a variant of VCG-based mechanisms called second-chance
mechanism. However, their mechanism is not realistic for bounded-rational agents
as the appeal function requires extra knowledge of the algorithm from agents. Some
researchers recently characterized incentive compatible mechanisms even with inef-
ficient outcome ([Bikhchandani et al. 2003]). However, their characterization is only
for single-item multi-unit auctions. For other settings it is still an open question.

In the second approach, researchers design incentive compatible mechanisms by
assuming that the domain of admissible preferences is restricted. For example, in
the quasi-linear utility environment, some authors developed approximation mech-
anisms for single-minded agents ([Lehmann et al. 2002], [Mu’alem and Nisan 2002])
and single-parameter agents ([Archer and Tardos 2001]). In the voting environ-
ment, Moulin shows that if the preferences are assumed to be single-peaked ([Moulin
1980]), then the median voter rule provides appropriate incentives for all agents to
be truthful. Bogomolnaia and Moulin ([Bogomolnaia and Moulin 2001]) also show
that it is possible to design randomized truthful mechanisms for dichotomous pref-
erences. Sandholm and Conitzer ([Conitzer and Sandholm 2002], [Sandholm 2003])
show that if the preferences are explicitly given or structured, then it is possible to
search for mechanisms that satisfy certain properties by automated mechanism de-
sign. However, this direction only works with finite preference spaces and it requires
the mechanism designer to have prior knowledge about agents preferences.

2.3.5. Vickrey-Clarke-Groves (VCG) mechanism

The Vickrey-Clarke-Groves (VCG) mechanism is a widely-used mechanism in mech-
anism design. In seminal papers Vickrey ([Clarke 1971; Groves 1973; Vickrey 1961]),
proposed the Vickrey-Clarke-Groves family of mechanisms (also called Groves mech-
anism) for problems in which agents have quasi-linear preferences. The VCG mech-
anisms are allocatively-efficient and strategy-proof direct-revelation mechanisms. In
special cases there is a Groves mechanism that is also IR and satisfies weak BB, for
example, the VCG mechanism for a combinatorial auction.

The special case of VCG mechanism for the allocation of a single item is the fa-
miliar second-price sealed-bid auction (auction with private bids), or Vickrey auction
[Vickrey, 1961]. In this case, the item will be awarded to the agent with highest bid
at the second highest price. The Vickrey mechanism satisfies IR, strategy-proofness
and Pareto efficiency.

34 2. Preliminaries and Background

In VCG mechanism, given reported preferences r = (r1, ..., rm), the choice rule
must compute the efficient outcome that maximizes the total reported value over all
agents:

v∗ = arg max
v

∑
r∈R

r(v)

The payment rule for VCG mechanism is computed as follows: for an agent ai,
the VCG payment is the ”damage” it does the others, i.e., the decrease in utility
gain its presence causes to the remaining agents:

V CGTax(ai) =
∑

r∈R\{ri}
r(v∗A\{ai})−

∑

r∈R\{ri}
r(v∗A) (2.5)

where v∗A is the optimal outcome with respect to the set of agent A, v∗A\{ai} is
the optimal outcome when agent ai is not participated in the protocol.

Note that since v∗A\{ai} is optimized for A\{ai}, the sum of its utilities for these
agents will always be at least as large as that for v∗A and thus the V CGtax is never
negative. Thus, the payments of all agents together leave a positive budget surplus.

The VCG payment is a special case of the Groves taxes:

GrovesTax(ai) = hi(.)−
∑

r∈R\{ri}
r(v∗A) (2.6)

where hi : R−i → R is an arbitrary function on the relations of all agents except
ai. This fredom in selecting hi(.) loeds to a family of mechanisms. Different choices
of hi(.) make different tradeoffs across budget-balance and individual-rationality.

In [Green & Laffont, 1977], it is shown that the VCG family of mechanisms are
the only mechanisms that are allocatively-efficient and strategy-proof among direct-
revelation mechanisms. Krishna and Perry [Krishna & Perry, 1998], and Williams
[Williams, 1999] have recently proved the uniqueness of VCG mechanisms among
efficient and Bayesian-Nash mechanisms.

VCG mechanisms demonstrate that it is possible to implement allocatively-
efficient (but not budget-balanced) strategy-proof mechanisms in quasi-linear do-
mains. However, the impossibility results of Green and Laffont [Green & Laffont,
1977] show that they are not efficient and budget-balanced.

The seminal work of Ephrati and Rosenschein ([Ephrati and Rosenschein 1991])
was the first attempt to propose applying VCG mechanisms to agent coordination in
settings with multiple agents. For constraint optimization, game theory has shown
that the only practical mechanism for incentive-compatibility in MCOP is of the
form of a VCG mechanism ([Green and Laffont 1977]). However, it has also been
shown that VCG mechanisms require finding the provably optimal solution ([Nisan
and Ronen 1999]). Many practical settings of optimization problems are too large

2.3. Incentive Compatibility 35

for complete optimization algorithms. Local search algorithms can quickly find a
good approximation to an optimal solution. However, VCG mechanisms cannot be
used directly with local search algorithms. In this thesis we thus introduce a weaker
concept of incentive-compatibility, called size-limited incentive compatibility, where
manipulation is hard through computational complexity. The uncertainty created
by randomized local search makes it computationally intractable to evaluate the
outcome of an untruthful behavior, thus rendering it uninteresting to agents.

36 2. Preliminaries and Background

Chapter 3

Random Subset Local Search
Optimization

In this chapter, we introduce the Random Subset Optimization algorithms. We
then present some extensions of the algorithm in different ways. We compare the
performance of our algorithm with other local search techniques in several bench-
mark problems including Network Resource Allocation, Soft Graph Coloring, and
Graph Coloring. Our empirical analysis gives a detailed view of the algorithm’s
performance and suggests the problem domains where it performs the best.

3.1. Random Subset Optimization algorithm

The objective function of the MCOP described in the previous chapter is the total
of soft constraints and it can be decomposed into parts. The random subset opti-
mization (RSO) ([Faltings and Nguyen 2006], [Nguyen and Faltings 2005], [Faltings
and Nguyen 2005b]) algorithm comes from the idea that when the local search is
stuck in a local minimum, only some part of the objective function is maximized
locally and other parts of it need to be optimized elsewhere. The RSO algorithm
randomly chooses a part of the optimization function, and makes a move that is
optimal with respect to this part only. It turns out that this strategy results in a
more focussed optimization strategy while retaining the power to escape from lo-
cal minima. A similar randomized technique for escaping from local minima is the
Walksat algorithm ([Selman et al. 1994]), which is one of the most successful algo-
rithms for SAT. However, Walksat applies randomization in a slightly different way:
it randomly picks a literal that occurs in an unsatisfied clause and flipping it, thus
satisfying that clause. This kind of random walk is more directed towards actually
improving some aspect of the solution.

The RSO algorithm is based on the generic local search framework presented
earlier in the Chapter 2. It is useful to depict this framework again in Algorithm

37

38 3. Random Subset Local Search Optimization

3.1. We will leave out the payment elements in the algorithm as we only focus on
the optimization part in this chapter.

Algorithm 3.1: Local Search algorithm for MCOP

procedure LocalSearch(A,X,D,C,R)

v ← SelectInitialSolution()
repeat

vold ← v
N ← ChooseNeighbors(vold, X, D, C)
(v, pay) ← LocalChoice(N, R)
agents make/receive payments according to pay

until termination condition met
return v

end procedure

Algorithm RSO, as shown in the algorithm 3.2, is a development of Algorithm 3.1
and introduces two random elements.

First, the neighborhood set N is generated by randomly choosing a variable xk

and considering as neighbors all assignments that differ in the value given to that
variable. Function ChooseRandom(X) returns the xk for considering in the current
iteration. The variable xk is chosen randomly from the set of variables which are
present in an unsatisfied hard constraint. If the set of hard constraints is empty, xk

is chosen from the set of variables X.

Second, when the algorithm reaches a local optimum, the algorithm chooses
with probability p to optimize only for a subset R̃ of the constraints making up
the objective function, and with probability (1 − p) to choose a random neighbor
regardless of whether it improves the objective function or not. The subset R̃ is
chosen by function ChooseRandomSet that takes as an additional parameter d the
number of soft constraints that are dropped from the set R. The algorithm then
chooses a value for xk in the neighborhood set N that optimizes for the subset
R̃ only. In this way, the search avoids moves that only degrade the solution and
rapidly lead back to the original optimum, and focusses on moves that actually have
a chance to break out of it. This technique can be applied whenever the objective
function can be decomposed into parts, as for example when it is given as a set of
soft constraints.

The RSO algorithm terminates when a termination condition is met, for example,
when there is no improvement after a certain number of steps, or when a maximum
number of steps is reached. In the experiments we report later, it appears that the
best performance is reached when d is small and p is close to 1.

3.1. Random Subset Optimization algorithm 39

Algorithm 3.2: RSO algorithm for MCOP

procedure RSO(X,D,C,R,p,d)

1: v ← SelectInitialSolution()
2: v∗ ← v
3: repeat
4: vold ← v
5: xk ← ChooseRandom(X)
6: N ← ChooseNeighbors(xk, v

old, X,D, C, R)
7: if LocalOptimum(v) then
8: if random(0..1) ≤ p then
9: R̃ ← ChooseRandomSet(R, d)

10: v ⇐ LocalChoice(N, R̃)
11: else
12: v ⇐ ChooseRandom(N)
13: end if
14: else
15: v ⇐ LocalChoice(N, R)
16: end if
17: if f(v) > f(v∗) then
18: v∗ ← v
19: end if
20: until termination condition met
21: return v∗

end procedure

40 3. Random Subset Local Search Optimization

3.1.1. Parameters of RSO

In each local search step of the RSO algorithm, one variable xk is chosen randomly
for changing value. However this is not limited to single variable-neighborhood, but
the RSO algorithm can be applied to any kind of neighborhood. For example, in the
experiments for the graph coloring problem we report later in the next section, we
also implemented RSO algorithm for the path-exchange and s-impasse neighborhood
structures.

Size of the subset

The parameter d is the number of soft constraints that are taken out from the set R.
If d is large, the search performs similar to random walk. In an extreme case, only
one agent is considered for optimization in each iteration. This will drive the search
in the direction starting from the agent being considered in the set R̃ at the current
iteration. If d if small, the search behaves similar to the hill-climbing algorithm.
When the search is close to the global optimum, the value of d should be small in
order to avoid the search jump out out the global optimum region.

Probability of random walk

In the RSO algorithm, p is the probability that the search will perform a random
subset optimization in each iteration. With a small probability 1−p, RSO algorithm
allows a random move in order to escape from the current local optimum. It helps
the search when the RSO heuristics keep staying in the current local optimum region.
If the probability 1 − p is large, the search behaves similar to to the random walk,
thus have more chance to reach the global optimum region. However the convergence
time of the algorithm is longer. When the search close to the global optimum region,
the probability 1− p should be close to 0. In our implementation, we always set the
the probability p to a value close to 1.

In Section 3.4, we will give further experiments on how the behavior of RSO
algorithms depend on parameters d and p.

3.1.2. Completeness

The outcome of randomized algorithms cannot be predicted with certainty, and so
the notion of completeness cannot be applied directly here. However, Hoos [Hoos
1999] has defined the notion of probabilistically approximately complete (PAC):

Definition 3.1. A randomized search algorithm is probabilistically approximately
complete (PAC) if for all solvable problem instances, the probability p(t) that it
finds the optimal solution in time less than t goes to 1 as t goes to infinity.

3.1. Random Subset Optimization algorithm 41

Pure random walk strategies, such as picking random values without regard for
whether they improve or degrade solution quality, make a local search algorithm
PAC: starting with any initial state, there is a sequence of moves that sets each
variable xi to the value it has in an optimal assignment v∗i , and this sequence of
moves has a non-zero probability.

The RSO strategy by itself, reached when the parameter p of Algorithm 3.2 is set
to 1, is clearly not PAC, as there are problems where the optimal assignment v∗ is
not reachable by the algorithm at all. This is the case when the optimal assignment
is a compromise among all relations, i.e. there is no subset of the relations for which
v∗ is also optimal. When p < 1, the algorithm also performs a random walk with
some probability and does become PAC. However, the probability is very small, in
fact equal to the probability of picking the optimal assignment at random among
all possible assignments, so that the guarantee is theoretical at best.

We first have the following result for mixed-RSO algorithm as an immediate
result from the Markov chain theory:

Theorem 3.2. The RSO algorithm is PAC for any p < 1 .

Proof. The corresponding Markov chain Vt of the RSO algorithm is an ergodic
Markov chain as the transition probability from one state to any other state is
positive if p < 1. Thus starting from any assignment, the algorithm will eventually
reach the optimal assignment if the algorithm is run long enough. ¥

We can consider the subclass of decomposable COP:

Definition 3.3. Let v∗ = (v∗1, v
∗
2, ..., v

∗
n) be an optimal assignment to the variables

X of a COP. We call the COP decomposable if and only if for every subset of
variables Y ⊆ X and any consistent assignment of values to variables in X − Y ,
there is some subset of relations S ⊂ R such that v∗Y , the subset of v∗ restricted
to variables in Y , is an optimal assignment for Y , given the values of the other
variables.

and we can show:

Theorem 3.4. The RSO algorithm is PAC for decomposable COP.

Proof. We give a constructive proof by showing a sequence of moves that constructs
the optimal assignment v∗ starting from any initial state and has a non-zero prob-
ability. The sequence starts with Y = {x1} and chooses to change x1 by optimizing
the subset of soft constraints that results in x1 = v∗1. In the following steps, it chooses
xk and the subset of soft constraints that makes x1 = v∗1, ..., xk = v∗k optimal. After n
moves, the entire assignment is constructed. The sequence has non-zero probability
as each move is among those randomly considered at each step, so it will eventually
be carried out if the algorithm is run long enough. ¥

42 3. Random Subset Local Search Optimization

An example of a decomposable constraint optimization problem is MAX-CSP,
where the objective is to find a variable assignment that satisfies a maximum number
of constraints. Let Q ⊆ R be the constraints that are satisfied in the optimal solution
v∗. For a subset Y of variables, let S ⊆ Q be a subset that only refers to variables
in Y . The values that variables in Y take in the optimal solution v∗Y satisfy all
constraints in S, so this assignment is optimal for this subproblem.

As a consequence, MAX-SAT and Soft-coloring are also decomposable problems,
and Theorem 3.4 is in line with the completeness results for the GWSAT algorithm
reported in [Hoos 1999]).

However, not all optimization problems are decomposable, for example Graph
Coloring Optimization - coloring a graph with a minimal number of colors - is not
decomposable.

This can be seen on the following example: consider a graph of 4 nodes x1 through
x4 and three edges (x1, x2), (x2, x3), (x3, x4). An optimal coloring is x1 = blue,
x2 = red, x3 = blue, x4 = red. Consider the set Y = {x1, x4} and let x2 = green
and x3 = blue. Then, x1 = blue, x4 = red is no longer an optimal coloring for Y
under any subset of the relations, since it can be colored with just one color.

In decomposable problems, optimization can be localized and they can thus be
solved by solving a set of smaller subproblems, provided that the right subprob-
lems are identified. Several researchers have proposed techniques for distributed
optimization that work well for decomposable problems. For example, the DCOP
algorithm [Mailler and Lesser 2004] composes an optimal solution from solutions
that are optimal for subproblems. In general, we can expect non-decomposable
problems to be hard for local search algorithms.

3.2. Extensions of RSO

The RSO algorithm can be improved by changing the way its parameters are set
and by combining with other local search algorithms.

Adaptive RSO (ARSO)

In each step of the RSO algorithm, we choose randomly a variable, a subset of
constraints and optimize it for the chosen random subset. Thus the later steps can
break the local optimized region constructed in the previous steps. The idea of
the adaptive choice of the subset is to continue to optimize for the local optimized
regions constructed in the previous steps. In this approach, we continue to choose
the subset to optimize in later steps in such a way that the chosen subset is a
subset of the subset chosen in the previous steps for several steps or until there is
no improvement for the subset for several steps.

3.2. Extensions of RSO 43

The Adaptive RSO (ARSO) algorithm is shown in the algorithm 3.3. The dif-
ference between the ARSO and RSO algorithms is the loop FOR in whenever the
search stucks at a local minimum. The ARSO then will perform several RSO steps
with the subset chosen by the function ChooseRandomSet. This strategy results
in a stronger informative way to guide the search to escape from the current local
optimum.

Algorithm 3.3: Adaptive RSO algorithm

procedure ARSO(X,D,C,R,p,d)

1: v ← SelectInitialSolution()
2: v∗ ← v
3: repeat
4: vold ← v
5: xk ← ChooseRandom(X)
6: N ← ChooseNeighbors(xk, v

old, X,D, C, R)
7: R̃ ← ChooseRandomSet(R, d)
8: if LocalOptimum(v) then
9: R̃ ← R

10: for i = 1 : MAXTRIES do
11: R̃′ ← ChooseRandomSet(R̃, d)
12: xk ← ChooseRandom(X)
13: N ← ChooseNeighbors(xk, v

old, X, D, C, R̃′)
14: v ⇐ LocalChoice(N, R̃′)
15: if f(v) > f(v∗) then
16: v∗ ← v
17: end if
18: end for
19: else
20: v ⇐ LocalChoice(N, R)
21: if f(v) > f(v∗) then
22: v∗ ← v
23: end if
24: end if
25: until termination condition met
26: return v∗

end procedure

44 3. Random Subset Local Search Optimization

Annealing-RSO (SA-RSO)

Our experiments shown that it is interesting to combine RSO with the simulated
annealing heuristics. In the SA-RSO, a cooling strategy is used to adaptively change
the number d of soft constraints to leave out when attempting to escape from local
minima. We let the parameter d start with a high value d0 and decrease it over
time until it reaches zero. At each value of d, the algorithm SA-RSO accept a
degrading move with a probability given by the Boltzman probability distribution
in the equation 2.4:

paccept(d, v, v′) =

{
1 if f(v) ≥ f(v′)
exp(f(v)−f(v′)

d
) otherwise.

(3.1)

The SA-RSO algorithm is depicted in the algorithm 3.4.

Algorithm 3.4: Annealing RSO algorithm

procedure SA-RSO(X,D,C,R,p,d0)

1: v ← SelectInitialSolution()
2: v∗ ← v
3: d ← d0

4: repeat
5: vold ← v
6: xk ← ChooseRandom(X)
7: N ← ChooseNeighbors(xk, v

old, X,D,C,R)
8: R̃ ← ChooseRandomSet(R, d)
9: v′ ← LocalChoive(N, R̃)

10: v ← v′ with probability paccept(d, v, v′)
11: if f(v) > f(v∗) then
12: v∗ ← v
13: end if
14: UpdateTemperature(d)
15: until termination condition met
16: return v∗

end procedure

RSO-tabu

Tabu search technique can combine with RSO in several ways: we can use tabu lists
to avoid recent visited solutions or recent selected subsets during the search. The
tabu list length can be chosen randomly from an interval as proposed in [Taillard
1991].

3.3. Distributed, asynchronous implementation 45

In the RSO-tabu algorithm depicted in the algorithm 3.5, the function
ChooseRandomSet is replaced by ChooseRandomSet tabu with the tabu tenure
parameter tt.

Algorithm 3.5: RSO-tabu algorithm

procedure RSO(X,D,C,R,p,d)

1: v ← SelectInitialSolution(X, D, C)
2: repeat
3: vold ← v
4: xk ← ChooseRandom(X)
5: N ← ChooseNeighbors(xk, v

old, X,D, C, R)
6: if LocalOptimum(v) then
7: if random(0..1) ≤ p then
8: R̃ ← ChooseRandomSet tabu(R, d, tt)
9: v ⇐ LocalChoice(N, R̃)

10: else
11: v ⇐ ChooseRandom(N)
12: end if
13: else
14: v ⇐ LocalChoice(N, R)
15: end if
16: until termination condition met
17: return v

end procedure

3.3. Distributed, asynchronous implementation

We define the distributed constraint optimization problem as a constraint optimiza-
tion problem where each variable is controlled by an agent that is responsible for
setting its value. We further define the neighborhood of a variable xi to consist
of all other variables that share a constraint with xi. We assume that the agent
controlling a variable knows all soft and hard constraints that involve the variable,
and communicates with the agents controlling all variables in the neighborhood so
that it always knows the values currently assigned to these neighboring variables.

Since the impact of a variable on the total utility or cost is completely determined
by the set of soft constraints it participates in, it can be evaluated based only
on the neighborhood. Consequently, a local search algorithm can be implemented
in parallel where each agent decides whether to change its variable based only on

46 3. Random Subset Local Search Optimization

Luton

London

Nottingham

Leeds

Manchester
Liverpool

Birmingham

Oxford

Southampton Brighton
Bristol

Figure 3.1. Network of transputers and the structure of individual processes

communication with the agents controlling its neighbors. Such an algorithm is given
for example by Zhang ([Zhang et al. 2005]).

Changes to different variables that are not neighbors of each other can take
place in parallel and even asynchronously, as their impact is independent of each
other. In order to ensure that neighbors do not change at the same time and thus
invalidate the local choice rule, a synchronization mechanism is needed. We use
a mechanism where each variable compares the utility improvement that can be
obtained by changing it with the potential improvement for each of its neighbors.
Only the variable with the highest improvement is allowed to change value.

We implemented distributed random subset optimization using this mechanism
and compared its performance with that of the centralized version. As agents need to
compare the improvements for different variables, we ensured that for all variables,
the same soft constraints are left out by randomly choosing for each soft constraint
whether it should be left out or not.

We observed that such distribution does not seem to affect the quality of the
final solution that can be obtained with random subset optimization. This shows
that it can be applied to distributed scenarios without difficulty.

3.4. Applications

3.4.1. Network Resource Allocation

The network resource allocation problem consists of allocating tracks in the train
network shown in Figure 3.1 to different operators. To avoid collisions, each arc
in the graph can only be allocated to one operator who can then run trains on it.
Operators transport goods between nodes in the network. Each transportation task
can take one of 3 feasible routes and generates one variable whose domain is the agent
and route assigned to it. For example, if task 3 (London,Manchester) is assigned to
agent a1 on the route (London → Birmingham → Manchester), the corresponding

3.4. Applications 47

380

385

390

395

400

405

410

415

420

425

430

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

probability p

A
ve

ra
g

e
u

ti
lit

y

Figure 3.2. Variation of the average cost of the random subset optimization algorithm
on network resource allocation problem, for different values of p.

variable x3 is assigned the value (a1, London → Birmingham → Manchester). The
problem is representative of a large class of resource allocation problems, for example
in communication networks or in chemical plants.

The network capacity is modelled by binary constraints between any pair of tasks
whose routes share at least one arc. The constraint rules out assigning it to such
overlapping routes but different agents. Each operator has a different and randomly
generated profit margin for being assigned a demand/route combination, and de-
clares these through its relations. These relations are modelled as soft constraints,
and the objective is to maximize their sum.

We randomly generated tasks and routes and simulated the problem starting
from a situation where no task is assigned to any agent. The number of agents is
30. A set of 100 tasks is generated randomly; for each task, we generate up to 3
different paths for carrying it. We always report the average performance over 100
runs.

In the first experiment, we want to see how the level of randomness affects
the performance of the RSO algorithms. Figure 3.2 shows the average total profit
obtained as we varied parameter p from 0 to 1 and kept the number of relations to be
left out d always at 1. The shape of this curve does not seem to depend significantly
on the value of d. It clearly shows that the performance is best with p close to 1.
Thus, in the following experiments, we always set p close to 1.

Next, we are interested in what the best value of parameter d would be for
the network resource allocation problem. We run the RSO algorithms with the
parameter p set to 1 and with different number of relations to leave out at a local
minimum. Figure 3.3 shows the average solution quality reached in 100 runs. The

48 3. Random Subset Local Search Optimization

570

580

590

600

610

620

630

0 1 2 3 4 5 6 7 8 9 10
parameter d

A
ve

ra
g

e
u

ti
lit

y

Figure 3.3. Variation of the average cost of the random subset optimization algorithm
on network resource allocation problem, for different values of d.

results show that the best results are obtained for small d. Thus in the following
experiments, we always set the parameter p to 1 and d to 2.

To determine whether the RSO algorithms would be efficient for the network
resource allocation problems, we compare the performance of two versions of the
RSO algorithms, RSO for Algorithm 3.2 with p = 1, d = 2 and ARSO for Adaptive
RSO, with the following known local search techniques:

• HC: hill-climbing without randomization (or iterative improvement),included
as a baseline comparison. To achieve better results for hill-climbing algorithm,
we allow equal moves in the hill-climbing process: the algorithm stops when
there is no further improvement for several iterations.

• RHC: hill-climbing with random restarts, similar to the GSAT algorithm [Sel-
man et al. 1992]. For a fair comparison, we set the parameters so that the
total number of iterations is similar to the other algorithms. The hill-climbing
stops when there is no improvement for several iterations or the number of
iterations exceeds 5 times of the number of variables and is then followed by
a restart. The total number of iterations is limited to 2000 as for the other
algorithms.

• SA: simulated annealing [Kirkpatrick et al. 1983]. The temperature is ini-
tialized such that the acceptance rate at the beginning if 97%, and updated
according to a geometric cooling schedule with α = 0.97; for each temperature
value, n(n−1) search steps are performed, where n is the number of variables.
The search is terminated when there is no improvement of the evaluation func-
tion for five consecutive temperature values, and the acceptance rate of new
solutions falls below 1%.

3.4. Applications 49

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

U
til

ity

Iterations

RSO
ARSO

RII
HC

RHC
SA

Figure 3.4. Average utility gain of different local search algorithms on the networks
resource allocation problem as a function of the number of steps.

• RII: Randomized Iterative Improvement ([Zhang et al. 2005]). We tested dif-
ferent versions of the RII algorithm on the network resource allocation problem
and took the best one (corresponding to DSA-B in [Zhang et al. 2005]) with
probability p set to 0.3.

All the algorithms start from an empty assignment, i.e., all the tasks are unas-
signed. In Figure 3.4, we show the gain in utility as a function of the number of
steps. We observe that ARSO clearly outperforms the other algorithms, while the
SA algorithm is slightly better than RSO. However, RSO converges much faster
than all other algorithms, and seems to be a clear winner for this application.

3.4.2. Soft Graph Coloring Problem

In a soft graph coloring problem, a weighted graph G = (V,E) is given where V is
the set of vertexes, E is the set of weighted edges. Each edge (u, v) ∈ E is associated
with a real value weight w(u, v). Each vertex of the graph can be colored by one of
K different colors, let c(u) be the color assigned to the vertex u. An edge (u, v) is
violated if u and v have the same color. Given a number K, the goal is to minimize

50 3. Random Subset Local Search Optimization

the total weight of violated edges:

∑

(u,v)∈E:c(u)=c(v)

w(u, v) → min

Modeling soft graph coloring in MCOP

A soft graph coloring can be modeled as a MCOP as follows. Each vertex is repre-
sented as a variable whose domain is the set of available colors. The set of constraints
is empty. One agent ai is associated with one variable xi so that it competes with
other agents for the values of variables. Agent ai’s relation is defined by:

rai
=

∑

(xi,xj)∈E:c(xi)6=c(xj)

w(xi, xj)

In other words, each agent ai’s utility is proportional with the sum of all satisfied
edges associated with xi. In this way, maximizing the sum of agent utilities equals
to minimizing the total weight of violated edges because:

∑
ai

rai
= 2

∑

(u,v)∈E:c(u)6=c(v)

w(u, v) = 2(
∑

(u,v)∈E

w(u, v)−
∑

(u,v)∈E:c(u)=c(v)

w(u, v))

In this MCOP the agents do not have to declare their relations, as they depend
only on the assignment of values.

As an example, let G is the graph in figure 3.5 with 7 vertices and 2 colors
available. The corresponding CMOP will has 7 variables, 7 agents, and the relations
are given in the tables 3.1. The example in figure 3.5 shows a local minimum that
the SLS can be easily trapped into local minima: variables 2 to 7 will not change
their values because that will increase the total violated weight. The only variable
that can change value is variable 1, which will not improve the solution quality. On
the other hand, the RSO scheme can eventually escape from this local minima if
variable 3 is left out of the optimization. In this case, variables 6 and 7 can change
their values. However, it is very likely happened that in the next iteration it will
go back to the same local minima unless the variable 3 is left out and variable 7 is
considered.

Another example is given in the figure 3.6

Experimental results

We run experiments on randomly generated k-coloring problems with 100 vertices
and the degree of connectivity ≈ k + 1 where k is the number of colors used. We
let the algorithms run for a large number of steps until either the overall quality
does not improve for 10 ∗ n steps, or a timeout limit of l steps is reached, where

3.4. Applications 51

10101010

5

4

5

765

32

1

Figure 3.5. A satisfiable graph with 2 color

(x1, x2) utility (x1, x3) utility
(0,0) 0 (0,0) 0
(1,1) 0 (1,1) 0
(0,1) 5 (0,1) 5
(1,0) 5 (1,0) 5

Table 3.1. Utility of agent 1

(x2, x1) utility (x2, x4) utility (x2, x5) utility
(0,0) 0 (0,0) 0 (0,0) 0
(1,1) 0 (1,1) 0 (1,1) 0
(0,1) 5 (0,1) 10 (0,1) 10
(1,0) 5 (1,0) 10 (1,0) 10

Table 3.2. Utility of agent 2

(x3, x1) utility (x3, x6) utility (x3, x7) utility
(0,0) 0 (0,0) 0 (0,0) 0
(1,1) 0 (1,1) 0 (1,1) 0
(0,1) 5 (0,1) 10 (0,1) 10
(1,0) 5 (1,0) 10 (1,0) 10

Table 3.3. Utility of agent 3

52 3. Random Subset Local Search Optimization

(x4, x2) utility
(0,0) 0
(1,1) 0
(0,1) 10
(1,0) 10

(x5, x2) utility
(0,0) 0
(1,1) 0
(0,1) 10
(1,0) 10

(x6, x3) utility
(0,0) 0
(1,1) 0
(0,1) 10
(1,0) 10

(x7, x3) utility
(0,0) 0
(1,1) 0
(0,1) 10
(1,0) 10

Table 3.4. Utility of agents 4, 5, 6, and 7

10101010

5

5

4

5

765

32

1

Figure 3.6. A non-satisfiable graph with 2 color

3.4. Applications 53

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ol

ut
io

n
co

st

Iterations

RSO
ARSO

RII
HC

RHC
SA

Figure 3.7. Average solution cost of various optimization algorithms on the soft-k-
coloring problem as a function of the number of steps.

l is variable to indicate the performance of the algorithms. We always report the
average performance over 100 runs.

Figure 3.7 shows the results after 2000 iterations. We can observe that SA
and RSO eventually reach about the same solution quality, and again ARSO is
significantly better than the others. However, RSO converges more than 10 times
faster than the RII and simulated annealing algorithms.

3.4.3. Graph Coloring

In a graph coloring problem we are given a weighted graph G = (V, E) where V is
the set of vertexes and E the set of edges. The goal is to find a minimum number
of colors to color the vertices of the graph so that no two vertices connected by an
edge have the same color.

This problem can be modeled as a MCOP where each vertex is represented by
a variable whose domain is the set of available colors, and there is an extra variable
xc that represents a bound on the number of colors used. The hard constraints are
such that value of every variable must be smaller than xc; There are two types of
soft constraints:

• Soft constraint on xc: the smaller value the better (cost = xc)

54 3. Random Subset Local Search Optimization

• Soft constraints on edges: two adjacent vertices must have different colors
or else there is a penalty of (cost = 10 ∗ w). These are modelled as a soft
constraint so that local moves that change only one variable can easily move
between consistent assignments.

The graph classes we examined in this paper are the following:

• Random graph Gn,p or fixed density graph: has n vertices and for each possible
pair of vertices, an edge is created independently with probability p. Random
graphs are difficult to color optimally. No a priori result on the chromatic
number or on lower bounds is given for this type of graph except for the case
p = 0.5 [Johri and Matula 1982].

• DIMACS benchmark suite of graphs 1: Leighton graphs, k-partite graphs, and
class scheduling graphs. These are structured graphs generated with a known
chromatic number.

Neighborhood structure

We use the one-exchange neighborhood for comparing all the algorithms in this
paper. This neighborhood is used in state-of-the-art algorithms for graph coloring
such as Tabu search [Hertz and de Werra 1987] and the hybrid genetic local search
in [Fleurent and Ferland 1996]. Two colorings are said to be neighbors if they differ
only in the color of a single vertex. In our implementation for COP, a neighboring
assignment is generated by randomly selecting a variable involved in a conflict and
assigning a random value to it.

Initial solution

In our experiments, all the algorithms begin with the same initial solution which
is constructed similar to the procedure used in [Hertz and de Werra 1987]: Given
an initial number of colors k and a parameter q, we construct consecutively color
sets by greedily computing maximal independent sets C1, C2, ...Ck until there are at
most q vertices left. The remaining vertices are assigned random values from 1 to
k. In the experiments we set the parameter q to |V |/2.

In our experiments, we will compare the following algorithms:

• RSO algorithms: our RSO algorithms for graph coloring are based on Algo-
rithm 3.2 and have the following variants:

1M. Trick. ”COLOR02/03/04: Graph Coloring and its Generalizations” August 2001.
http://mat.gsia.cmu.edu/COLOR04

3.4. Applications 55

– RSO-1ex : the ChooseNeighbors function in the algorithm 3.2 is imple-
mented using a one-exchange neighborhood. First, a random variable xk

is chosen among variables involved in conflicts. Then the set of neigh-
bors is the set of assignments which differ with the current assignment
in only the value of the variable xk. The ChooseRandomSubset() func-
tion chooses a single random variable xj to leave out of the optimization
among the variables sharing a soft constraint with the variable xk (i.e.
xk and xj are two adjacent vertices in the graph).

– RSO-tabu : This algorithm is a combination of RSO-1ex and tabu
search. We use two tabu lists to avoid past choices in both value of
the variable and the choice of the soft constraint to leave out. The tabu
tenures are chosen randomly with a uniform distribution in [3..10].

– ARSO-1ex : This algorithm uses one-exchange neighborhod to imple-
ment the ChooseNeighbors function in the ARSO algorithm described
in the previous section. The decrease of the parameter d during search
follows a standard geometric cooling schedule: di+1 = ρ.di. In our exper-
iment we set ρ = 0.9.

– ARSO-tabu : in this variant, we combine ARSO with tabu search as
described above. Two tabu lists are used to avoid past choices in value
of variables and the choice of the subset of soft constraints to leave out.
The tabu tenures are set as in RSO-tabu agorithm.

• Tabu search (Tabu): The first algorithm we want to compare with our algo-
rithms is the well-known tabu search algorithm ([Glover 1989], [Glover 1990]),
([Hansen and Jaumard 1990]), which is successfully applied to graph coloring
by Hertz and de Werra ([Hertz and de Werra 1987]). Some improvements of
tabu search with one-exchange neighborhood is still among the state-of-the-art
algorithms for graph coloring ([Fleurent and Ferland 1996], [Galinier and Hao
1999]).

The tabu search algorithm works similar to the framework given in Algo-
rithm 3.1, where the set of neighbors is generated using a one-exchange neigh-
borhood. In each local choice step, the neighbor with fewest conflicts is chosen
to be the new solution. The last tt moves are kept in a tabu list to prevent the
search from cycling through a small set of suboptimal points. The tabu tenure
tt is set proportional to the size of the neighborhood as α + δ|N | where α is a
random number in [0, 10], δ is set to 1 and N is the set of neighbors, similar
to the dynamic tabu tenure used in [Taillard 1991]. In our implementation,
we use some improvements as proposed in [Hertz and de Werra 1987]: an as-
piration function where a tabu move can be allowed if it improves the best

56 3. Random Subset Local Search Optimization

solution found; and use a type of brute force when the number of conflicts is
small, checking for a solution with zero-cost with a maximum of three moves.

• Min-conflict heuristic: The second algorithm we compare is the min-conflict
heuristic [Minton et al. 1992], implemented within the generic framework given
of Algorithm 1, called MC. In each local choice step, a random variable is
chosen among the conflicting ones and assigned the value having the best im-
provement of the objective function; ties are broken randomly. The algorithm
stops when there are no improvements for a number of consecutive iterations.

• Randomized Iterative Improvement (so called Stochastic local search (SLS)
in [Zhang et al. 2005]): This algorithm is basically similar to the algorithm
3.1 where in each local choice step a random variable is chosen among the
conflicting ones and is assigned a random value. The local move is stochastic
in that it is always accepted if the objective function is strictly improved, and
is accepted with probability p if the objective function is not improved. We
tested different versions of the SLS algorithm on graph coloring problems and
took the best one (corresponding to DSA-B in [Zhang et al. 2005]) with the
probability p set to 0.35.

• Simulated annealing (SA) [Kirkpatrick et al. 1983]: We also implement a
simulated annealing algorithm for graph coloring using one-exchange neigh-
borhood. The temperature is initialized such that the acceptance rate at the
beginning is 97%, and updated according to a geometric cooling schedule with
α = 0.97; for each temperature value, γn search steps are performed, where
n is the number of variables. In our implementation γ is set to n/2 where n
is number of variables. The search is terminated when there is no improve-
ment of the evaluation function for five consecutive temperature values, and
the acceptance rate of new solutions falls below 1%.

Results

Our experiments have been carried out on a normal Pentium IV PC with 512Mb
RAM. For a fair comparison, we let all the algorithms terminate after the same
number of iterations. In order to compare the convergence speed of the algorithms,
we limit the searches to a relatively small number of iterations for each problem
instance.

Random graphs Gn,p

Tables 3.5 through 3.8 compare the performance of various algorithms on the
random graph instances. We see that hill-climbing using the min-conflict heuristic
converges quickly but to a solution of low quality as shown in figure 3.8. Tabu search
and simulated-annealing eventually converge to optimal or close to optimal quality,

3.4. Applications 57

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 200 400 600 800 1000 1200

S
ol

ut
io

n
co

st

Iterations

RSO_1ex
ARSO_tabu

Tabu
MC

SLS
SA

Figure 3.8. Convergence over time of different heuristics on G250,0.5 graph

iterations RSO-1ex ARSO-1ex RSO-tabu ARSO-tabu Tabu MC
200 24 23 23 22 29 29
500 22 21 21 20 22 29

Table 3.5. Coloring results for G125,0.5 graph

but takes quite long to do so. On the large instances of 500 and 1000 nodes (Tables
3.7 and 3.8), RSO reaches a close to optimal solution within 2000-5000 iterations
while the other heuristics have made little progress beyond the initial state. Figures
3.8 and 3.9 show the convergence over time of different heuristics, both in the cost
of constraint violations (Figure 3.8) and the number of colors used. It illustrates the
faster convergence of RSO to results close to the optimal solution.

Structured graphs
Tables 3.9, 3.10, and 3.11 compare the performance of various search algorithms

for the different instances of Leighton graphs, k-partite graphs and a scheduling

iterations RSO-1ex ARSO-1ex RSO-tabu ARSO-tabu Tabu MC
500 38 37 38 37 37 40
1000 35 35 36 36 35 39

Table 3.6. Coloring results for G250,0.5 graph

58 3. Random Subset Local Search Optimization

 34

 35

 36

 37

 38

 39

 40

 0 200 400 600 800 1000 1200

N
um

be
r

of
 c

ol
or

s

Iterations

RSO_1ex
ARSO_tabu

Tabu
MC

SLS
SA

Figure 3.9. Convergence over time of different heuristics on G250,0.5 graph

iterations RSO-1ex ARSO-1ex RSO-tabu ARSO-tabu Tabu MC
1000 65 64 65 63 70 70
3000 62 62 63 61 68 69

Table 3.7. Coloring results for G500,0.5 graph

iterations RSO-1ex ARSO-1ex RSO-tabu ARSO-tabu Tabu MC
5000 107 107 108 106 116 118

Table 3.8. Coloring results for G1000,0.5 graph

3.4. Applications 59

Graph iter. RSO-1ex ARSO-1ex RSO-tabu ARSO-tabu Tabu MC
le450 15a.col 2000 19 19 19 18 21 24
le450 15b.col 2000 20 19 19 19 22 24
le450 15c.col 2000 21 21 20 18 25 28
le450 15d.col 2000 21 22 19 19 26 29
le450 25a.col 2000 29 28 27 27 30 37
le450 25b.col 2000 32 31 30 29 31 38
le450 25c.col 2000 33 33 32 31 33 39
le450 25d.col 2000 33 34 32 32 34 39

Table 3.9. Coloring results for Leighton graphs

Graph iter. RSO-1ex ARSO-1ex RSO-tabu ARSO-tabu Tabu MC
flat300 20 0.col.b 2000 23 22 22 21 26 35
flat300 26 0.col.b 2000 35 35 35 34 36 39
flat300 28 0.col.b 2000 35 36 35 34 36 39
flat1000 50 0.col.b 5000 101 101 100 99 102 110

Table 3.10. Coloring results for k-partite graphs

graph from the DIMACS benchmark collection. Again, we can see that RSO con-
sistently converges faster than Tabu search.

Recovery Performance

In this section, we want to compare the recovery ability of local search algorithms
when only a small part of the current solution is corrupted. We performed the test
in the following way: a small part (with given ratio) the solution will be randomly
initialized whenever a good solution is found. The convergence speed and and
solution quality of the algorithms when the ratio is set to 0.1 are shown in figure
3.10. It can be seen that RSO algorithm clearly outperforms other algorithms in the
recovery ability. The only comparable algorithm with respect to RSO is the Tabu
search.

Graph iter. RSO-1ex ARSO-1ex RSO-tabu ARSO-tabu Tabu MC
school.col 1000 17 16 16 15 21 26

Table 3.11. Coloring results for class scheduling graphs

60 3. Random Subset Local Search Optimization

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800

S
ol

ut
io

n
co

st

Iterations

RSO
Tabu

LS
SLS
SA

Figure 3.10. Recovery performance results on G500,0.5 graphs

Chapter 4

Size-limited Incentive
Compatibility

This chapter introduces the concept of size-limited incentive-compatibility, in which
the manipulation is made impossible with high probability through computational
complexity. Randomization schemes in a local search algorithm can make the pre-
diction of outcomes hard and thus make the local search algorithm size-limited
incentive-compatible.

4.1. Definition

The local search procedure can only work correctly if agents accurately report their
utilities R. Using side payments, we can create an incentive-compatible mechanism
where agents are motivated to truthfully report these valuations. Well-known re-
sults in game theory ([Green and Laffont 1977]) have shown that all mechanisms
for MCOP that are incentive-compatible, individually rational and select the op-
timal solution must be a kind of VCG mechanism. Thus, there is no mechanism
that makes local search incentive-compatible while maintaining individual rational-
ity. Furthermore, Nisan and Ronen [Nisan and Ronen 1999] have shown that a
VCG mechanism requires a provably optimal solution. However many practical set-
tings of optimization problems are too large for complete optimization algorithms.
Local search algorithms can quickly find a good approximation to an optimal so-
lution. Unfortunately VCG mechanisms cannot be used directly with local search
algorithms.

In this thesis I introduce a weaker concept of size-limited incentive-compatibility
where manipulation is hard through computational complexity. We first introduced
a similar solution concept in [Faltings and Nguyen 2005a]. The uncertainty created
by randomized local search makes it computationally intractable to evaluate the
outcome of an untruthful behavior, thus rendering it uninteresting to agents.

61

62 4. Size-limited Incentive Compatibility

The term bounded-rationality is first introduced by Herbert Simon ([Simon 1957,
1982]). He pointed out that in reality, bounded rational agents experience limits in
formulating and solving complex problems and in processing information.

We define the concept of a bounded-rational agent as follows:

Definition 4.1. (Bounded-rational agent) An agent is called bounded rational if
it can examine at most C states of the local search before declaring its utilities Ri.

In other words, a bounded-rational agent has only limited computational capac-
ity and it can only compute a limited polynomial number of states of the local search
before participating and declaring its utilities to the algorithm.

With this concept we can define the a size-limited incentive-compatible algo-
rithm. The equilibrium concept undefined in the general definition.

Definition 4.2. (Size-limited incentive-compatibility)Let pk be a bound on the
probability that a bounded rational agent can predict whether it has an expected
utility gain sufficiently large to offset the expected loss from this misdeclaration.
A mechanism is size-limited incentive-compatibile if for any bound b, there is a kb

such that pk < b for every k > kb.

In other words, in a size-limited incentive-compatible algorithm, the probability
that a bounded-rational agent can predict a beneficial manipulation can be made
arbitrarily low given that the problem size is sufficiently large.

Earlier work, such as ([Conitzer and Sandholm 2003]), has proposed using NP-
hardness as a protection against manipulation. However, our definition goes further
as it requires in almost all cases, manipulation requires an amount of computation
that is beyond the means of a bounded-rational agent. Any real computational
agent is bounded rational for a sufficiently high C.

To apply this concept to local search, we consider both the local search steps
(function LocalChoice) and the sequence of choices. For local choices, we assume that
the space is small enough so that a complete optimization method can be applied.
Thus, we ensure incentive-compatibility using a VCG mechanism. This leaves the
possibility to use the outcome of a local choice to influence the situation for later
choices. Such a manipulation would require the agent to predict the outcome of
the search when a manipulation is applied. When search is randomized, we show
that with high probability it is computationally hard to predict the outcome of any
manipulation of the local search step. we show that when the optimization problem
itself is sufficiently complex, we can guarantee an exponential lower bound on the
amount of computation required to predict a beneficial manipulation outcome, with
probability arbitrarily close to 1. Consequently, the local search mechanism is size-
limited incentive compatible.

4.2. Payment budget balance and individual rationality 63

4.2. Payment budget balance and individual ra-

tionality

One problem with the VCG mechanism is that agents generate a surplus of taxes that
cannot be returned to them without violating the incentive-compatibility properties.
This not only reduces their net utility gain, but also creates incentives for whatever
third party receives this gain.

The randomization allows us to make the VCG payment scheme budget balanced
by simply paying the payment surplus to the agent ae that was excluded from the
optimization step. Let V CGtax(ai) be the tax that agent ai has to pay to the
mechanism. Each agent ai other than ae pays to ae the following tax:

V CGtax−ae(ai) =
∑

r∈R\(ri∪re)

[
r(vA\(ai∪ae))− r(vA\ae)

]

where vA\(ai∪ae) is the solution when agents ai and ae are left out, vA\ae is the
solution when agent ae is left out.

This can be seen as compensating the agent for the loss of utility it is likely to
incur as a consequence of having been left out of the optimization, and does not
affect the incentive-compatibility properties:

• for agents other than ae, it is still best to report their utilities truthfully since
they follow a VCG mechanism in a world where ae does not exist.

• for ae, its declarations have no effect on the outcome or payments so any
declaration is equally good. However, it does not know in advance that it will
be excluded, so it still has an interest to make a truthful declaration.

This mechanism is similar to the proposal in [Ephrati and Rosenschein 1991],
who proposed giving the surplus to agents that have no interest in the variable being
considered. We call such agents uninterested agents. The mechanism proposed here
applies even when no uninterested agent exists. When there are uninterested agents,
optimization can be improved by selecting these to be chosen as excluded agents.
More details on the mechanism can be found in [Faltings 2004].

In certain cases the sum of the taxes could be less than the utility loss of the
excluded agent, and thus it would not be individually rational for the agent to
participate. In fact, no matter what payment scheme is used, whenever the local
search step leads to a reduction in total agent utility, there must be at least one agent
for which individual rationality is violated. Any randomized local search algorithm
will occasionally make such moves, for otherwise it would be susceptible to getting
stuck in local optima. Thus, no scheme can guarantee individual rationality at every
randomized local choice step.

64 4. Size-limited Incentive Compatibility

As the algorithm on the whole improves utility for the community of agents,
this does not mean that the local search process as a whole is not individually
rational. No agent is systematically disadvantaged by the randomization, and so
in expectation the scheme is individually rational for all agents. This is confirmed
in our simulations, where individual rationality was almost always satisfied for all
agents over the entire optimization. However, no hard guarantee can be given for
this.

Let there be m agents and let ∆−i be the utility gain of the agents except i in an
optimization step where agent ai is left out, and δi the true utility loss for agent ai

through the choice of the new value vA\ai
over the current value ṽ. Then, the utility

loss for ai is equal to:
δi + (n− 2)∆−i

Then, there also exist n − 1 equally likely scenarios where the initial value is vA\ai

and another agent j is excluded from the optimization. In this case, the utility gain
for ai will be at least δi. Now, there are two cases:

• δi ≥ ∆−i: in this case, agent ai’s loss is ≤ (n − 1)δi more than compensated
by the expected gain (n− 1)δi from the other scenarios.

• δi < ∆−i: in this case, if overall ∆−i = ∆−j = ∆, i.e. the surplus is the same
no matter what agent is excluded, then agent ai gets more than compensated
by its expected gain of (n− 1)∆ = (n− 1)∆i > δi + (n− 2)∆−i

Thus, there is no systematic bias in losses and gains, a fact which is also shown in
the simulations.

4.3. Computing VCG taxes

Up to this point, we have assumed that our protocol uses RSO local search algorithm
to compute outcome of the mechanism and agents’ payments are based on the VCG
taxes scheme. The VCG payments in RSO algorithm are computed as follows: each
agent pays the utility difference it creates for each relation whenever a variable
involved in that relation being optimized. Payments for each relation are only with
respect to the values chosen for the last variable involved that relation.

Whenever a variable xk is chosen for optimizing in a Localchoice step, each agent
pays for all their relations involved in this variable. Moreover, for each relation, the
agent pays only the last time that a variable in the relation being optimized. The
excluded agent and its relations are not taken into account in the computation of
taxes for the current iteration.

Let tax0 be a data structure to store local payments and updated every time
whenever a variable is optimized, cold and cnew are respectively old and new value

4.4. Hardness of manipulation 65

assignment for a relation c that involved in the variable xk. The local payments for
agent ai are computed as follows

tax0(ai, c) =
∑

aj 6=ai

raj
(cold)−

∑

aj 6=ai

raj
(cnew) (4.1)

The VCG taxes are applied in the last round

V CGtax(ai) =
∑
c∈v

tax0(ai, c) (4.2)

where v is the solution in the last round of RSO algorithm.
We have the following result:

Proposition 4.3. If RSO algorithm found the optimal solution and all relations
have been considered during the search, then the taxes computed are Groves taxes.

Proof. If RSO algorithm found the optimal solution v∗ and all relations have been
considered during the search, then the second part of the Groves taxes in equation
2.6 is computed as

∑

aj 6=ai

raj
(v∗) ≈

∑

aj 6=ai

raj
(cnew)

We define the function h−i(.) in the Groves taxes is

h−i(.) =
∑

aj 6=ai

raj
(cold)

h−i(.) is clearly not depend on the valuations of agent ai ¥

Obviously the optimality assumption in proposition 4.3 is not always hold. How-
ever the solution of local search algorithms is often close to the optimal solution
(without any guarantee, though). Deviation from RSO protocol is hard to predict:
any agent want to manipulate the protocol must estimate how much is the expected
gain from the deviation. Thus the computation needed for a possible beneficial
manipulation will exceed the computational capacity of a bounded-rational agent.

4.4. Hardness of manipulation

A local search algorithm is in general incomplete and not guaranteed to find a
particular optimal solution. Thus, as pointed out by [Nisan and Ronen 2000], non-
truthful declarations can drive the local search algorithm to a solution that gives a

66 4. Size-limited Incentive Compatibility

manipulating agent a better utility than the truthful declaration. However, effec-
tively using such manipulation requires that the manipulating agent is capable of
correctly predicting the effect of a non-truthful utility declaration on the outcome,
and compare it against the utility loss it incurs by carrying out the manipulation in
one or several local choice steps. We now show that in a randomized local search
algorithm and a sufficiently large problem, with high probability (arbitrarily close
to 1), such prediction would require an amount of computation that is beyond the
capabilities of a bounded-rational agent.

We have the following proposition

Proposition 4.4. Let agent a be a bounded rational agent whose best algorithm
for computing the average utility of a set of states with a confidence p requires
sampling at least a polynomial fraction of the final states, and let the set of states
grow exponentially with the size as observed in the experiments. Then random
subset optimization with the VCG tax scheme is a size-limited incentive compatible
algorithm for this agent.

Proof. The size of the space of final states grows exponentially with the size of the
problem. Thus, the number of final states that the agent has to examine also grows
exponentially with the size of the problem. Thus, for any probability p there will
be a size k such that this fraction exceeds the agents’ computation capacity, and
the agent can no longer predict the outcome of a manipulation with sufficient a
probability greater than p. ¥

To obtain a worst-case result, we assume that a manipulating agent has complete
and accurate knowledge of the relations declared by all other agents. Furthermore,
we assume that is has access to an oracle that provides it with the most promising
manipulation.

The remaining task of the manipulating agent is then to show that the manipu-
lation actually produces a better utility than truthful behavior. As the local search
algorithm is randomized, the manipulating agent can only predict an expected util-
ity, obtained by considering the probability of certain states and the utilities that
the agent would obtain in each of them. The key idea of our argument is that with
high probability, the number of states that need to be considered in this calculation
will grow exponentially with the size of the problem. Thus, for a certain problem
size it will exceed the computational capacity of a bounded rational agent.

To show this result, we first argue that the manipulating agent has to examine
a significant fraction of the probability mass of the states to ensure success of the
manipulation. This fraction depends on two factors:

• the utility distribution of the problem: if only few states give a significant
utility, or if there are strong symmetries so that the state space can be factored,
it could be sufficient to sample only a small subset of the states, and

4.5. Average case analysis 67

• the desired confidence of the prediction: since a manipulation will mean a
certain utility loss to the agent in the search step where it is applied, the
manipulation needs to succeed with a certain minimal probability in order to
give an increase in expected utility. Depending on the utility distribution, this
translates to a certain fraction of the state probability mass that will need to
be examined.

Note that both parameters are independent of the size of the search space. Thus,
we can assume that the manipulating agent will have to examine a minimal number
of states that corresponds to some fraction α of the probability mass of the entire
search space.

Next, we show that with high probability, this probability mass is distributed
over a number of states that grows exponentially with problem size.

4.5. Average case analysis

In the LocalChoice process (Algorithm 3.2), the utilities associated with each choice
of a variable xi depend on the current assignment vold to the remaining variables.
Certain assignments vold could be more favorable to an agent aj in that it can obtain
its favored value with a lower payment. aj thus has an incentive to manipulate this
assignment by making non-truthful utility declarations in earlier search steps.

In order to carry out such manipulation, aj has to predict the outcome of the
local search computation given a manipulation and compare it with the outcome
that would be obtained otherwise. We assume that it has perfect knowledge of the
utility declarations of all other agents. Obviously, this is the best possible situation
for a manipulator so it gives us worst-case guarantees.

To determine whether a certain manipulation is profitable, an agent needs to
determine the expected utility it obtains from the entire local search process when
it applies the manipulation. To do this, it can either adopt a steady-state view, where
it considers the search as a stationary Markov process and determines its optimal
policy, or it can explicitly simulate the behavior from the current step forward. We
assume that the optimization problem is sufficiently complex that the number of
reachable states and transitions is well beyond the capacity C of a bounded rational
agent, so that only the simulation of the solving process remains as an option. This
is made difficult by the fact that for each random decision, every branch should be
considered.

We assume that the utility that an agent can get from any one state is bounded
to an interval [0, D]. We further assume that a manipulator can bound the utility
of the states that have not been simulated to the interval [0, βD], with 0 ≤ β ≤ 1.
Let α be the total probability mass of the states that the agent has simulated,
i.e. with probability α the actual course of the search is part of simulation. Then

68 4. Size-limited Incentive Compatibility

the manipulator can can guarantee success of the manipulation in the best case
if all simulated states have utility D for the manipulated case and 0 for the non-
manipulated case, and αD > (1 − α)βD ⇒ α > β

1+β
so that α > α0 = β

1+β
. In

well-behaved domains without extreme utility variations, we can assume that β does
not have an extremely small value. For example, β = 0.1 would lead to a threshold
of α0 = 0.1.

The local search algorithm contains several possibilities for randomization that
make manipulation hard:

• random choice of neighbourhood,

• random choice of excluded agent ae,

• random choice of one among several equivalent local choices.

To make the effect of randomization easy to analyze, I consider only randomiza-
tions whose outcomes can be regarded as independent. This is not the case of the
random choice of neighbourhood, as it will often be the case that choosing n1 and
then n2 will lead to the same states as choosing n2 and then n1, thus cancelling the
randomization effect. Also, local search has to ensure that all neighbourhoods are
considered, placing limits on the amount of randomization that can be allowed.

Fortunately, for the choice of excluded agent as well as the choice among equiv-
alent solutions, it does appear reasonable to assume independence of subsequent
random choices. We thus make the simplifying assumption that the state space is
a tree, i.e. we do not reach the same state through several paths in the simulation.
A good local search algorithm that discovers the global optimum with significant
probability must be able to access a large fraction of the possible state space. When
the problem is sufficiently large so that this total space is big, the algorithm thus
can only rarely revisit the same states.

Consider now a simulation of a sequence of states s1, ..., si, where s1 is the starting
state of the search. Because of the random decisions each local choice step are
independent, the probability of reaching si is equal to:

p(si) = p(si|si−1) · · · p(s2|s1)

Let e be the event that in a local choice step, the most common outcome will be
chosen at most 1/m of the time, i.e. p(sj|sj−1) ≤ 1/m. Let pm be the probability
that this event happens at a local search step, and let k be the number of times e
happens in a local search of i steps. Then we can give the following bound ki as a
function of the depth i such that k < ki with probability at most pt:

4.5. Average case analysis 69

p(k < ki) =

ki−1∑
j=0

(
i
j

)
pj

m(1− pm)i−j

≤ (1− pm)i

ki−1∑
j=0

ij
(

pm

1− pm

)j

= (1− pm)i

ki−1∑
j=0

(
ipm

1− pm

)j

Assuming that i is sufficiently large so that ipm

1−pm
> 2:

p(k < ki) ≤ (1− pm)i

(
ipm

1− pm

)ki

< pt

so that

ki ≤ log pt − i log(1− pm)

log i + log pm − log(1− pm)

Thus, ki is O(i/logi) and we can make it arbitrarily large for a sufficiently large
i. For example, for pm = 0.5, i = 1000 and pt = 10−9, we have

k1000 ≤ −30 + i

log2i
=

970

10
= 97

In our experiments later in the next section, we have observed p4 ' 0.8 (see
below) so that 0.5 is a conservative estimate for this example. Note that the size of
the problem must be sufficiently large to allow a sufficiently high value for i.

Then we can bound p(si) by replacing all k factors that satisfy this bound by
1/m, and all others by 1:

p(si) ≤ m−k

Assume now that we can guarantee that for any state si at depth i in the simulation,
k ≥ ki, the number of states that would have to be generated to obtain at least a
probability mass of α would be:

n(i) ≥ αmki

Note that even if the simulation runs beyond depth i, it needs to examine at least
this number of states at depth i in order to generate the states corresponding to at
least α probability mass at the next time instant.

70 4. Size-limited Incentive Compatibility

Assuming that at each step, the probability of satisfying the termination con-
dition and stopping is ps, the probability of a run that reaches depth at least i is
(1 − ps)

i−1. We assume, again as a simplification to obtain a bound, that for all
searches that stop in less than i steps, the outcome can be examined without com-
putational cost. Then, in a local search with timeout T , a manipulator would have
to examine at least t(T) states:

t(T) = maxT
i=0

[
max(α− (1− ps)

i−1, 0)mki
]

For example, if m = 4, ps = 0.0001 (expected number of cycles = 10’000) and
α = 0.1 and T = 1000, we have ki = 97 and t(1000) ≥ 1054 which is certainly out of
reach of any computational agent today. Thus, the probability that an agent would
have to examine less than 1054 states is bounded by pt < 10−9. This is certainly
well beyond the capability of any computational agent today.

The key condition to make the manipulation hard is that the problem is suffi-
ciently large. Only in a large problem can we expect the stopping probability ps to
be sufficiently small and the timeout T to be sufficiently large to allow a large i.

4.6. Experiments

To find the global optimum, a local search algorithm has to be able to reach the entire
search space. However, eventually it will come close to the global optimum and then
remain within a much smaller subspace of nearly optimal states. While it is possible
to give a theoretical analysis that shows that with arbitrarily high probability, the
probability of reaching any given state is bounded by an exponentially decreasing
value, such an analysis requires many independence assumptions that may not hold
in practice. In this section, I present the following experimental measurements,
obtained from experiments on the network resource allocation problem.

4.6.1. States space of RSO algorithm

Figure 4.1 shows the number of new states discovered in successive cycles of a simu-
lated randomized local search. It initially grows exponentially, but eventually search
stabilizes on certain optimal outcomes and thus fails to discover new states. Im-
portantly, however, the total number of states discovered, shown in Figure 4.2, still
grows exponentially with problem size: in this example, it muliplies with a factor
of about 3 whenever the size increases by 1. Thus, the total number of states has
exponential growth with problem size, even though it does not reach the total state
space because of the convergence of the algorithm.

4.6. Experiments 71

0

10000

20000

30000

40000

50000

60000

70000

80000

1 3 5 7 9 11 13 15 17 19

#rounds

#s
ta

te
s

n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

n=11

Figure 4.1. New states discovered in successive cycles of a simulation of local search, for
several problem sizes

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9 10 11
#variables

#s
ta

te
s

Figure 4.2. Growth of the total number of states involved in a local search simulation as
a function of the problem size

72 4. Size-limited Incentive Compatibility

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n=
1

n=
3

n=
5

n=
7

n=
9

n=
11

n=
13

n=
15

n=
17

n=
19

Figure 4.3. Maximum repetition probability of states in the local search algorithm with
RSO scheme

4.6.2. Branching factors

Another aspect that needs to be shown is that the manipulating agent cannot limit
its consideration to only certain states in this space, i.e. that the probability mass
is distributed over a large subset of the states. We show this by considering the
probabilities of the resulting states at each randomized step. Let pm denote the
probability that at a random branch, each of the branches is taken with probability
at most 1/m. I have measured pm experimentally (see later section) and have
obtained for example for p4 ' 0.908, showing that the search process has a significant
branching factor. Thus, with high probability the probability mass is distributed
among a large number of states.

Next, we want see how often a state is repeated during a local search path.
Intuitively if every state is not repeated much in the local search, then the protocol
is hard to predict and manipulate. We run experiments on the network resource
allocation problem to compute the maximum repetition probability of states during
search. Figure 4.3 shows the maximum repetition probability of a state when the
number of agents is fixed (5 in this case) and the problem size varies. It can be seen
that the repetition probability decreases exponentially stabilizes when the problem
size increases.

I also run simulations to estimate the average probability pm that a Localchoice
generates no branch with probability mass larger than 1/m. We took a histogram
over 1000 iterations of the number r(m) that this condition is satisfied for m. Table
4.1 shows the result for m ≤ 10. From the table, we can estimate for example
p4 ' 0.9.

4.6. Experiments 73

m 1 2 3 4 5 6 7 8 9 ≥ 10
r(m) 0 0 12 88 123 134 138 105 104 296

Table 4.1. Computational results for pm

-200

0

200

400

600

800

1000

1200

1400

1600

1 101 201 301 401 501 601 701 801 901

rounds

U
til

iti
es

U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U total

Figure 4.4. Utilities of agents during local search

4.6.3. Individual rationality

We are now interested in the actual utilities for each agent, and in particular whether
we can guarantee individual rationality. Figure 4.4 shows the utilities of agents
during the local search process. In this experiment, we run the local search on
random problems with 10 agents and 100 tasks for 1000 rounds. It can be seen that
the agents’ net utilities are positive and stable when the number of rounds increases.
We may want to see that in average, the algorithm is indeed individually rational.
We thus run the algorithm for a large number of times and count the number of
times that an agent ends up with negative utility. Table 4.2 shows the results after
100 runs. Figure 4.5 shows the final utilities of agents in 100 runs. We can see that
there is only 1 time in 100 runs agent 4 had small negative utility. Thus the agents
are individually rational with high probability.

While we have so far only analyzed relatively simple models, it seems clear that
in general the probability mass is very likely to be spread among a large set of
states as the size of the problem increases, and thus the method will be size-limited
incentive compatible with the parameter being the problem size.

agent 1 2 3 4 5 6 7 8 9 10
times 0 0 0 1 0 0 0 0 0 0

Table 4.2. Number of negative utilities in 100 runs

74 4. Size-limited Incentive Compatibility

-50

0

50

100

150

200

250

1 11 21 31 41 51 61 71 81 91

U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

Figure 4.5. Utilities of agents in 100 runs

Chapter 5

Conclusions

This thesis deals with Multi-agent Constraint Optimization Problems, in particular,
we aim at designing local search algorithms that take into account both optimization
and incentives aspects. Our work focuses on satisfactory and sub-optimal outcomes
rather than an optimal outcome.

Local search algorithms are often the only possibility to solve large optimization
problems. In earlier work, analysis has often focussed only on the quality of the final
solution that can be obtained. However, in our experience for some of the benchmark
problems, the best algorithms take days of computation to converge. For general
optimization problems, simulated annealing often achieves the best results, but has
the drawback that it converges very slowly. There are many applications where
the low quality of simple hill-climbing may not be acceptable, but the such slow
convergence is not acceptable either. We attribute this slow convergence to the fact
that the randomization techniques used ”throw out the baby with the bathwater”:
they impose steps that most often lead away from the optimal solution rather than
varying the direction of search in a more measured way.

Randomization has been shown to be key to obtaining results that are close
to the optimal solution. This strategy has been particularly successful for SAT
problems. By drawing an analogy with techniques that have been successful for
SAT problems, we developed a new technique of random subset optimization that
empirically converges much faster than known algorithms while obtaining solutions
of equal or better quality.

Finding an optimal coordination between multiple self-interested agents is a
problem that occurs frequently in practice. Incentive-compatibility is an essential
property to ensure meaningful results of such an optimization. Previous work has
shown the applicability of VCG mechanisms to such problems. However, it requires
provably optimal solutions to the NP-hard optimization problem and thus cannot
be applied to large problems.

Our work is based on the observation that in real life, the potential for manip-

75

76 5. Conclusions

ulation is limited by uncertainty and risk. This uncertainty makes it difficult for
a manipulator to predict the consequences of his manipulation and thus makes at-
tempts at manipulating it uninteresting. Similar uncertainty exists in local search
algorithms where randomization is necessary to escape local optima. We have an-
alyzed a scheme for randomization and shown that in sufficiently large problems,
it creates a large amount of uncertainty so that simulating a sufficient part of the
possible outcomes quickly surpasses the computational capacity of any real compu-
tational agent. Problems that are too small for this result to apply can likely be
addressed by VCG mechanisms with complete optimization.

In the following we present our major contributions of this dissertation, and we
conclude with some final remarks.

1. RSO algorithms (chapter 3): RSO is interesting for multi-agent problems, fast
convergence can be exploited for problems with time constraints. It can also be
corporated with other local search methods as a general metaheuristics. It is
surprising that this was not discovered before. Several extensions of the RSO
algorithm is proposed (section 3.2): Adaptive RSO , SA-RSO, and RSO-tabu.

2. Comparison of RSO algorithms with other local search methods on several
applications: Network Resource Allocation, Soft Graph Coloring, and Graph
Coloring (section 3.4). The comparison is performed with respect to perfor-
mance criteria, convergence time criteria, and solution recovery criteria.

3. Size-limited incentive compatibility (chapter 4): We define a new concept of
incentive compatibility for bounded rational agents settings that takes into ac-
count their limited computational capacities. We show that RSO algorithms
can be applied to have this property. Though we do not give a complete theo-
retical proof, the experimental analysis results can provide intuitive answers.

For further research, there are still lot of works need to be done. We are now
conducting further experiments to determine the influence of different parameters
and variations on the performance of the RSO algorithms.

Size-limited incentive-compatibility requires further work. Complexity theory
does not provide useful tools are there is little analysis of best- or average-case
complexity. The worst case is not helpful for protecting against manipulation. We
consider that experimental analysis as we have presented can be a reasonable alter-
native. However, we cannot guarantee that algorithms to manipulate such a scheme
do not exist. This situation is similar to that of NP-completeness and is not easy to
resolve.

While no randomized local search algorithm can guarantee individual rationality,
we found that it seems to be satisfied with high probability. It would be interesting
to analyze the individual rationality properties of local search schemes to obtain
probabilistic guarantees similar to those for non-manipulability.

5. Conclusions 77

The most important weakness of the current scheme is that the parameter that
needs to be varied to guarantee size-limited incentive-compatibility is the size of the
problem. It would be much better if we had a mechanism that could guarantee high
manipulation complexity even for small problems through suitable randomization
of this choice, similarly to certain cryptographic hash functions.

78 5. Conclusions

Bibliography

E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley & Sons, Inc., New York, NY, USA, 1997. pages 21

A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In IEEE
Symposium on Foundations of Computer Science, pages 482–491, 2001. pages 33

K. J. Arrow. Social Choice and Individual Values. New Haven, Yale University, 2nd
edition, 1963. pages 32

S. Barberà and M. O. Jackson. Strategy-proof exchange. Econometrica, 63(1):51–87,
1995. pages 32

R. Battiti and M. Protasi. Reactive local search for the maximum clique problem.
Algorithmica, 29(4):610 – 637, 2001. pages 26

U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, Inc.,
Orlando, FL, USA, 1972. ISBN 0120934507. pages 19

S. Bikhchandani, S. Chatterjee, and A. Sen. Incentive compatibility in multi-unit
auctions, 2003. pages 33

A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem.
Journal of Economic Theory, 100(2):295–328, October 2001. pages 33

V. Cerny. Thermodynamical Approach to the Traveling Salesman Problem: An Ef-
ficient Simulation Algorithm. Journal of Optimization, Theory and Applications,
45(1):41–51, 1985. pages 24

E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.
pages 31, 32, 33

W. Conen and T. Sandholm. Partial-revelation VCG mechanism for combinatorial
auctions. In Proceedings of AAAI-02, pages 367–372, Edmonton, Canada, 2002.
pages 31

79

80 Bibliography

V. Conitzer and T. Sandholm. Complexity of mechanism design. In Proceedings of
the 18th Conference on Uncertainty in Artificial Intelligence (UAI), Edmonton,
Canada, August 1-4 2002. pages 33

V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manipula-
tion hard, 2003. pages 62

C. d’Aspremont and L.-A. Gérard-Varet. Incentives and incomplete information. J.
of Public Economics, 11:25–45, 1979. pages 30

M. Dorigo. Optimization, learning and natural algorithms, 1992. pages 29

M. Dorigo, G. D. Caro, and L. Gambardella. Ant algorithms for discrete optimiza-
tion. Artificial Life, 5(2):137–172, 1999. pages 28

M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA,
USA, 2004. pages 29

R. Dorne and J.-K. Hao. A new genetic local search algorithm for graph coloring.
Lecture Notes in Computer Science, 1498:745–754, 1998. pages 28

E. Ephrati and J. Rosenschein. The clarke tax as a consensus mechanism among
automated agents. In Proceedings of the National Conference on Artificial Intel-
ligence, pages 173–178, San Jose, California, July 1991. pages 34, 63

B. Faltings. A budget-balanced, incentive-compatible scheme for social choice. In
Agent-mediated E-commerce (AMEC) VI, 2004. pages 63

B. Faltings and Q. H. Nguyen. Multi-agent coordination using local search. In
Proceedings of IJCAI05, pages 953–958, Edinburgh, Scotland, Aug 2005a. pages
61

B. Faltings and Q. H. Nguyen. Random subset optimization. In Proceedings of
Second International Workshop on Local Search Techniques in Constraint Satis-
faction LSCS-05, pages 32–45, Barcelona, Spain, Oct 2005b. pages 37

B. Faltings and Q. H. Nguyen. Random subset optimization. In Proceedings of
ECAI06, pages 88–92, 2006. pages 37

C. Fleurent and J. A. Ferland. Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research, 63:437–461, 1996. pages 26, 28, 54, 55

G. B. Fogel, W. V. Porto, D. G. Weekes, D. B. Fogel, R. H. Griffey, J. A. Mcneil,
E. Lesnik, D. J. Ecker, and R. Sampath. Discovery of RNA structural elements
using evolutionary computation. Nucl. Acids Res., 30(23):5310–5317, December
2002. pages 16

Bibliography 81

P. Galinier and J. K. Hao. Hybrid evolutionary algorithms for graph coloring. Jour-
nal of Combinatorial Optimization, (3):379–397, 1999. ISSN 0305-0548. pages 26,
28, 55

M. Gendreau, G. Laporte, and J.-Y. Potvin. The Vehicle Routing Problem, volume 9,
chapter Metaheuristics for the vehicle routing problem, pages 129—-154. SIAM
Series on Discrete Mathematics and Applications, 2001. pages 16

A. Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41
(4):587–601, July 1973. pages 31, 32

F. Glover. Tabu search—part I. ORSA Journal on Computing, 1(3):190–206, Sum-
mer 1989. pages 25, 55

F. Glover. Tabu search– part II. ORSA Journal on Computing, 2(1):4–32, 1990.
pages 25, 55

F. Glover and M. Laguna. Tabu Search. Kluwer, Norwell, MA., 1997. pages 26

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989. ISBN
0201157675. pages 27

J. Green and J.-J. Laffont. Characterization of satisfactory mechanisms for the
revelation of preferences for public goods. Econometrica, 45(2):427–38, March
1977. pages 30, 31, 32, 34, 61

J. Green and J.-J. Laffont. On coalition incentive compatibility. Review of Economic
Studies, 46(2):243–54, April 1979. pages 32

T. Groves. Incentives in teams. Econometrica, 41(4):617–31, July 1973. pages 31,
32, 33

P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem.
Computing, 44:279–303, 1990. pages 25, 55

A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Com-
puting, 39(4):345–351, 1987. pages 26, 54, 55

J. Holland. Adaptation in Nature and Artificial Systems. Univ. of Michigan Press,
reprinted by MIT Press, 1992. pages 27

H. H. Hoos. On the run-time behaviour of stochastic local search algorithms for
SAT. In Proceedings of the Sixteenth National Conference on Artificial Intelligence
(AAAI’99), pages 661–666, Orlando, Florida, 1999. pages 40, 42

82 Bibliography

L. Hurwicz. On Informationally Decentralized Systems, pages 297–336. 1972. pages
30

M. O. Jackson. Bayesian implementation. Econometrica, 59(2):461–77, March 1991.
pages 30

A. Johri and D. W. Matula. Probabilistic bounds and heuristic algorithms for
coloring large random graphs. Technical report, Southern Methodist University,
Dallas, Texas, 1982. pages 54

E. Kaplansky and A. Meisels. Distributed personnel scheduling - negotiation among
scheduling agents. Annals of Operations Research, 2005. pages 21

S. A. Kauffman and W. G. Macready. Technological evolution and adaptive orga-
nizations. Complexity, 26(2):26–43, March 1995. pages 24

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983. pages 24, 48, 56

D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approximately
efficient combinatorial auctions. J. ACM, 49(5):577–602, 2002. ISSN 0004-5411.
pages 32, 33

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498–516, 1973. pages 16

W. Macready, A. Siapas, and S. Kauffman. Criticality and parallelism in combina-
torial optimization. Science, 271:56, 1996. pages 24

R. Mailler and V. Lesser. Solving distributed constraint optimization problems using
cooperative mediation. In AAMAS ’04: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 438–445,
Washington, DC, USA, 2004. IEEE Computer Society. pages 42

R. P. McAfee. A dominant strategy double auction. Working Papers 734, California
Institute of Technology, Division of the Humanities and Social Sciences, May 1990.
pages 32

D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. In
In Proceedings of the 14th National Conference on Artificial Intelligence, pages
321–326. AAAI Press / The MIT Press, 1997. pages 16, 24

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The Journal of Chem-
ical Physics, 21(6):1087–1092, June 1953. pages 24

Bibliography 83

Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer,
December 2004. pages 27

P. Mills and E. Tsang. Guided local search for solving sat and weighted max-sat
problems. J. Autom. Reason., 24(1-2):205–223, 2000. ISSN 0168-7433. pages 27

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems. Artif.
Intell., 58(1-3):161–205, 1992. ISSN 0004-3702. pages 56

H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35:437–455,
1980. pages 33

A. Mu’alem and N. Nisan. Truthful approximation mechanisms for restricted com-
binatorial auctions: extended abstract. In Proceedings of the Eighteenth national
conference on Artificial intelligence, pages 379–384. American Association for Ar-
tificial Intelligence, 2002. ISBN 0-262-51129-0. pages 32, 33

R. B. Myerson. Incentive compatibility and the bargaining problem. Econometrica,
47(1):61–73, Jan. 1979. pages 31

R. B. Myerson and M. A. Satterthwaite. Efficient mechanisms for bilateral trading.
Journal of Economic Theory, 29(2):265–281, April 1983. pages 32

Q. H. Nguyen and B. Faltings. Randomization for multi-agent constraint optimiza-
tion. In Proceedings of CP2005, pages 864–864, Sitges, Spain, Oct 2005. pages
37

N. Nisan and A. Ronen. Algorithmic mechanism design (extended abstract). In
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 129–140. ACM Press, 1999. ISBN 1-58113-067-8. pages 34, 61

N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. In Proceedings
of the 2nd ACM conference on Electronic commerce, pages 242–252. ACM Press,
2000. ISBN 1-58113-272-7. pages 32, 33, 65

D. C. Parkes, J. Kalagnanam, and M. Eso. Achieving Budget-Balance with Vickrey-
Based Payment Schemes in Exchanges. In Proceedings of IJCAI-01, pages 1161–
1168, 2001. pages 32

D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions: Theory and prac-
tice. In Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 74–81. AAAI Press / The MIT Press, 2000. ISBN 0-262-51112-6. pages 31

84 Bibliography

T. Sandholm. Automated mechanism design: A new application area for search
algorithms. In Proceedings of the International Conference on Principles and
Practice of Constraint Programming (CP-2003), pages 19–36, 2003. pages 33

M. Satterthwaite. Strategy-proofness and arrow’s conditions: Existence and corre-
spondence theorems for voting procedures and social welfare functions. Journal
of Economic Theory, 10:187–217, 1975. pages 32

T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:
Hard and easy problems. In C. Mellish, editor, IJCAI’95: Proceedings Interna-
tional Joint Conference on Artificial Intelligence, Montreal, 1995. pages 19

J. Schummer. Almost-dominant strategy implementation. Discussion Papers 1278,
Northwestern University, Center for Mathematical Studies in Economics and Man-
agement Science, Nov 1999. pages 33

B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In
In Proceedings of the 12th National Conference on Artificial Intelligence, pages
337–343, Menlo Park, CA, USA, 1994. pages 16, 24, 37

B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfia-
bility problems. In In Proceedings of the 10th National Conference on Artificial
Intelligence, pages 440–446, Menlo Park, CA, USA, 1992. pages 16, 24, 48

H. A. Simon. Models of Man, Social and Rational: Mathematical Essays on Rational
Human Behavior in a Social Setting, chapter A Behavioral Model of Rational
Choice. New York: Wiley, 1957. pages 62

H. A. Simon. Models of Bounded Rationality, volume 1 and 2, chapter A Behavioral
Model of Rational Choice, pages 239—-258. Cambridge: MIT Press, 1982. pages
62

T. Stützle and H. Hoos. Max–min ant system. Future Generation Computer Systems,
16(8):889—-914, 2000. pages 29

E. Taillard. Robust taboo search for the quadratic assignment problem. Parallel
Computing, 17(4-5):443–455, 1991. pages 26, 44, 55

W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal
of Finance, 16(1):8–37, 1961. pages 31, 32, 33

W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed stochastic search
and distributed breakout: properties, comparison and applications to constraint
optimization problems in sensor networks. Artif. Intell., 161(1-2):55–87, 2005.
pages 24, 46, 49, 56

Curriculum Vitae

Quang-Huy Nguyen
Artificial Intelligence Laboratory (LIA)

School of Computer and Communication Sciences (IC)
Swiss Federal Institute of Technology in Lausanne (EPFL)

CH-1015, Ecublens, Lausanne, Switzerland
Email: quanghuy.nguyen@epfl.ch

Web: http://liawww.epfl.ch/∼huy/

Education

2004 – 05/2008 PhD Candidate at Artificial Intelligence Laboratory, School of
Computer and Communication Sciences, Swiss Federal Institute
of Technology in Lausanne (EPFL), Switzerland.

2003 – 2004 Doctoral School in Computer, Communication and Informa-
tion Sciences, EPFL, Switzerland.

1999 – 2001 M.S. in Computer Science, Francophone Institute of Computer
Science (IFI), Hanoi, Vietnam.

1994 – 1999 B.S. in Computer Science (minimum: 5 years), Hanoi University
of Technology (HUT), Hanoi, Vietnam.

Awards and Honors

2002 – 2003 Swiss Federal Scholarship for foreign students to do research
in Switzerland.

2001 2nd top graduate M.S. student, IFI, Vietnam.
1999 Award from the Young Researchers Symposium, HUT, Viet-

nam.
1999 3rd prize in the National Olympiad in Informatics for students,

Vietnam.
1993,1994 Prizes in the National Informatics Olympiads for high school

students, Vietnam.

85

quanghuy.nguyen@epfl.ch�
http://liawww.epfl.ch/~huy/�

86 Curriculum Vitae

Publications

Refereed Conference/Workshop Papers

1. B. Faltings and Q. H. Nguyen. Random Subset Optimization. Proceedings of
ECAI-06, Riva del Garda, Italy, August 2006, pp. 88-92.

2. Q. H. Nguyen and B. Faltings. Randomization for Multi-agent Constraint
Optimization. Proceedings of CP-2005, Sitges, Spain, October 2005, pp. 864
- 864.

3. B. Faltings and Q. H. Nguyen. Multi-agent Coordination using Local Search.
Proceedings of IJCAI-05, Edinburgh, Scotland, August 2005, pp. 953-958.

4. B. Faltings and Q. H. Nguyen. Random Subset Optimization. Proceedings of
LSCS-05, Barcelona, Oct, 2005, pp. 32-45.

5. T. T. Nguyen, Q. H. Nguyen and H. D. Nguyen. Counter-propagation neural
network and its application in color classifying in industry. Proceeding of the
Conference of Math Application, Hanoi, December 1999 (in Vietnamese).

6. T. T. Nguyen, H. D. Nguyen, Q. H. Nguyen, P. H. Cung and C. N. Mai.
ENDODIAG - Un experimental system for disease diagnosis base on images.
Proceeding of the International Symposium on Medical Informatics And Fuzzy
Technology, pp. 257-262, Hanoi, August 1999.

7. T. T. Nguyen, Q. H. Nguyen, D. H. Le. Fuzzy multilayer neural network
for Optical Character Recognition. Proceeding of the Vietnam-Japan Bilateral
Symposium on Fuzzy Systems and Applications (VJFUZZY’98), Halong bay,
1998.

Books & chapters

1. T. T. Nguyen and Q. H. Nguyen. Programming exercises in C. Science &
Technique Press, 1999 (in Vietnamese).

2. T. T. Nguyen, H. D. Nguyen, Q. H. Nguyen, D. L. Anh. Introduction to the
Linux operating system. Science & Technique Press, 2000 (in Vietnamese).

Curriculum Vitae 87

Personal Information

Date of birth: November, 29th 1975
Nationality: Vietnamese
Sex: Male
Marital Status: Married, 1 child

Languages

English: Very good knowledge (level C1 in the European Language Scale)
French: Very good knowledge (level C1 in the European Language Scale)
Vietnamese: Mother tongue

Lausanne, May 09, 2008

z

