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Abstract

This paper introduces the notion of Voronoi diagrams and Delaunay triangulations generated
by the vertices of a piecewise #at, triangulated surface. Based on properties of such structures,
a generalized #ip algorithm to construct the Delaunay triangulation and Voronoi diagram is
presented. An application to biological membrane growth modeling is then given. A Voronoi
partition of the membrane into cells is maintained during the growth process, which is driven by
the creation of new cells and by restitutive forces of the elastic membrane. c© 2001 Published
by Elsevier Science B.V.
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1. Introduction

The Delaunay triangulation of the convex hull of a 7nite set V ⊂R2 can be com-
puted with the well-known )ip algorithm. The goal of this paper is to generalize this
algorithm to the case of a piecewise #at surface where the set of singular points V is
also the set of vertices of the triangulation. We will also show how to construct the
associated Voronoi partition.
In the last section of this paper, we give a short description of a model of biological

membrane growth and show the role of the Voronoi diagram therein.

2. Review of the planar case

Let V be a 7nite set in the plane. The Voronoi cell associated with a point v∈V is
the subset {x∈R2 |dist(x; v)6dist(x; v′) ∀v′ ∈V} of R2 and the Voronoi diagram is
the complex de7ned by all Voronoi cells.
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Fig. 1. The hinge of an edge.

If the set V is in general position (no three points are aligned and no four points
lie on a circle) then the Voronoi diagram is the dual of a triangulation of the convex
hull of V called the Delaunay triangulation.
It is known that the Delaunay triangulation is characterized by the condition that each

edge is legal, i.e. either it belongs to the boundary of Conv(V ) or the circumscribing
circle to one of the two triangles incident with that edge contains no other point of V .
See [1] or [3] for more on these notions.

Locality of the circle test. Any interior edge e is incident with two triangles. This
pair of triangles will be called the hinge of edge e and denoted by �e′ (Fig. 1).
To verify the legality of an interior edge e, it suBces to look at the hinge �e and
check whether the opposite vertex of one triangle is not contained in the circumscrib-
ing circle of the other. If this condition is satis7ed, we say that two triangles are
con7ned.
A )ip is a local modi7cation of a triangulation that consists in replacing the diagonal

e in �e by the other diagonal e′ and thus creating a new hinge �e′ , provided the
associated quadrilateron is convex.

The )ip algorithm: Starting with any initial triangulation of Conv(V ), a sequence of
#ips is performed on its illegal edges until there are none such left. At the end of this
algorithm, all edges are legal and the resulting triangulation is a Delaunay triangulation.
This algorithm stops after at most O(|V |2) #ips [6].

3. Piecewise �at surfaces

Consider a surface S which is the boundary of a compact polyhedron in R3. The
intrinsic or geodesic distance between two points x; y∈S is the length of the shortest
path joining them. For the intrinsic geometry, a point lying on an edge of the poly-
hedron is not singular (because a neighbourhood of this point can be unfolded like a
hinge). Thus, every point of S which is not a vertex admits a neighbourhood which
is isometric to a disk in the euclidean plane. On the other hand, a vertex admits a
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Fig. 2. A point with cone angle greater than 2�.

neighbourhood which is isometric to a piece of an Euclidean cone (the total angle of
which may be greater than 2�, see Fig. 2).

De�nition 1 (Piecewise )at surface). A compact metric space S is a Euclidean sur-
face with conical singularities, or piecewise #at surface for short, if every point admits
a neighbourhood which is isometric to a disk in the Euclidean plane or in a Euclidean
cone.

These surfaces have been classi7ed from the point of view of Riemannian geometry
in [7].
Let us 7x a compact euclidean surface with conical singularities S. We will denote

by V =VS the set of singular points of S. This is a 7nite set. A geodesic on S is a
curve � : [0; 1]→ S which locally minimizes the distances. We will call a clean arc a
geodesic which is simple (i.e. has no self-intersection) and does not meet the singular
set V away from its end points.

Proposition 1. For any pair of points p; q∈S and any L¿0; the number of geodesic
arcs of length 6L joining p and q is 7nite.

Proof. Since S is a #at surface (away from its singularities), two geodesic arcs con-
necting p to q either must be nonhomotopic or they must together bound a region con-
taining at least one singularity (see also the proof of Corollary 2 in [7]). In particular,
if � is a geodesic arc joining p to q, we can 7nd a simply connected neighbourhood
U of � in S such that � is the only geodesic segment from p to q contained in U:
Now let Apq(L) be the collection of all geodesic arcs � : [0; 1]→S parametrized at

constant speed joining p to q and of length 6L. In particular, the family Apq(L) is
uniformly Lipschitz (with Lipschitz constant L) and by Arzela–Ascoli theorem, it is a
compact set (in the uniform topology). But the previous argument shows that each �
is an isolated point in Apq(L), hence Apq(L) is 7nite.

Observe that this argument provides no bound on the number of arcs of length 6L
joining p and q.

Corollary 1. The set of lengths of all geodesics joining pairs of points in V is a
discrete subset of R.
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De�nition 2. By a geodesic triangulation of the piecewise #at surface S, we mean a
7nite collection of subsets Ti⊂S called triangles such that
1. the interiors of the Ti are pairwise disjoint and S=

⋃
iTi,

2. the interior of each triangle is isometric to a triangle in R2,
3. all vertices belong to VS ,
4. VS does not meet a triangle Ti oI its vertices.

Observe that in a geodesic triangulation, each edge is a clean arc.
This de7nition is a slight abuse of language, for instance, two triangles are allowed

to share more than one edge or a triangle may be glued to itself along an edge (such
events are classically forbidden, see [4]). However, such triangulations are projections
of genuine triangulations on some branch covering of the surface. Existence of geodesic
triangulations is proved in [7].
In practice, surface S is usually given as a collection of triangles in R3 and is thus

naturally equipped with a geodesic triangulation. However, we will have to consider
many geodesic triangulations on S. The edges of these triangulations will appear as
polygonal lines in R3 even though they are clean arcs.

De�nition 3. The hinge �e of an edge e of a geodesic triangulation of S is the
unique pair of triangles incident with e. In case e belongs to only one triangle Ti,
the hinge �e is the quadrilateron obtained by two isometric copies of Ti glued along
the edge e.

Proposition 2. In an arbitrary geodesic triangulation; every hinge is isometric to a
quadrilateron in R2.

Proof. A hinge is formed by two triangles T1 and T2 with a common edge e.
By de7nition, there exists an isometric embedding ’i :Ti→R2 (i=1; 2). By com-
posing ’2 with an isometry of R2, we may construct an isometric embedding
’ :T1 ∪T2→R2.

The image ’(T1 ∪T2)⊂R2 is called an unfolding or a development of the hinge
(see Fig. 1).

De�nition 4. An edge of a triangulation is legal if its unfolded hinge has two con7ned
triangles (in the sense de7ned for the plane case).

De�nition 5 (Delaunay triangulation). A geodesic triangulation of S is a Delaunay
triangulation if all its edges are legal.

As in the planar case, one can show using the notion of universal branch covering,
that this local de7nition implies that no other point of VS is in the circumscribing circle
of a given triangle when folded back to S.
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Fig. 3. An edge in a non-convex hinge is always legal. In this case, edge e will not #ip.

4. The �ip algorithm on piecewise �at surfaces

Let e be an edge of a geodesic triangulation T of the piecewise #at surface S.
Suppose that e is incident with two diIerent triangles of T and that the development
of the hinge �e, results in a convex quadrilateron ABCD. Edge e is a diagonal of
ABCD and by replacing it with the other diagonal, one de7nes a new triangulation T′

of S.
Observe that a #ip replace an edge e by another edge e′ which is still a clean arc

and two triangles ABC and CDA by two other triangles ABC and BCD which are still
isometric to triangles in the plane. In short, a #ip transforms a geodesic triangulation
into a new geodesic triangulation.

De�nition 6. This transformation is called the #ip of T at the edge e and we write
T′ := #ip(T; e).

Remark. It would be geometrically problematic to try and #ip a triangulation at
an edge e whose hinge �e is not convex (see Fig. 3). However, we need not worry
about such edges as we can prove, as in the planar case, that they are always legal (see
also [5]).

The following algorithm takes as input any geodesic triangulation on a piece wise
#at surface S and produces a Delaunay triangulation.

Algorithm (The �ip algorithm).
Input: A geodesic triangulation T0 on S.
Output: A Delaunay triangulation D of S.
=∗ Initialisation ∗=

Set D=T0.
Create a heap H containing the set of edges of D.

While H 
= ∅
Take e∈H
If e is legal

Remove e from H



268 C. Indermitte et al. / Theoretical Computer Science 263 (2001) 263–274

Else
Replace D by )ip(D; e).
Update H .

End.

The geometric data needed to run the algorithm is the length of all the edges of the
initial triangulation T′, whereas the combinatorial data is the list of vertices, edges and
faces.
Given these data, we can actually compute the development of a hinge �e. If this

edge must be #ipped, the length of the new edge e′ is easily computed and the data
are modi7ed accordingly.
The algorithm stops when H is the empty set.

Theorem 1. This algorithm stops in a 7nite number of iterations.

Proof. Let T be a geodesic triangulation of S. For each triangle T of T, we note
A(T ) the area of the circumscribing circle of an isometric copy of T in the plane R2.
We can compute A(T ) from the three sides a; b; c of T with the classical formula

16� A =
(abc)2

s(s− a)(s− b)(s− c) ;

where s= 1
2(a+ b+ c) is the semiperimeter of T . Next we de7ne a function F on the

set of all geodesic triangulation by

F(T) =
∑

T

A(T):

By Corollary 1, the range of the function F is a discrete subset of R. Now, we
can prove as in [5, Theorem 6:1] that if T′;T∞;T∈; : : : is a sequence triangulations
produced by the #ip algorithm, then F(T〉) is a strictly decreasing sequence. Hence it
will reach its minimum value in 7nitely many steps.

In the planar case, there exists a quadratic bound for this algorithm, see [6]. Here,
there is no polynomial bound, since exponentially many clean arcs can exist between
two given points and any of them could a priori be legal, hence at some point it may
have to be tested by the algorithm.

5. Computing the Delaunay edges and Voronoi cells

To draw the Delaunay triangulation on S, we need to keep track of the ordered
list of triangles from the initial triangulation T′ crossed by an edge. For instance in
Fig. 4, the list of triangles crossed by e′ is {T1; : : : ; T5}.
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Fig. 4. An edge e crosses a triangle of S if this triangle crosses the hinge �e.

This list may be computed from the informations contained in the list of the other
edges of �e′ . Indeed it is enough to compare the concatenation CABC of lists of edges
AB and BC with CADC of lists of edges AD and DC.
We study the diIerent situations where a triangle crosses an edge e′. Any triangle

appearing twice in a list will be considered at its 7rst occurrence only. An edge e′

crosses a triangle Ti of T′ if:
1. (Ti ∈CABC or B∈Ti) and (Ti ∈CADC or D∈Ti),
2. AB⊂Ti and AC ⊂Ti,
3. BC ⊂Ti and DC ⊂Ti.
Note that if e′ is an edge of T′, its list is empty.
Along with the list of triangles transvered by a Delaunay edge, it is useful to de-

termine the points where these edges enter and leave each triangle. This enables us to
actually draw the Delaunay triangulation on S and will also be useful to construct the
Voronoi diagram. Each intersection is computed on the development of �e′ and the
intersection points are then mapped on the surface.

De�nition 7 (Voronoi cell). The Voronoi cell of the surface S associated with the
vertex v∈Vs is the set {x∈ S | d(x; v)6d(x; v′) ∀v′ ∈V} where d(x; v) is the geodesic
distance between x and v.

Finally let us see how to construct the Voronoi cell associated with a vertex v∈V .
For each Delaunay edge e incident with v, construct the corresponding Voronoi
edge ev
First unfold the hinge �e and then 7nd the intersection I1 of the perpendicular

bisectors of AB, AC and the intersection I2 of the perpendicular bisectors AC and
AD. The line segment I1I2 is the Voronoi edge ev (Fig. 5). By 7nding the set of all
triangles of the original triangulation T crossed by ev, we can map ev on S as we
did before to draw the Delaunay edges.
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Fig. 5. Voronoi edge I1I2 of Delaunay edge AC.

Fig. 6. Voronoi diagram on a piecewise #at surface. (a) Non-smoothed surface. (b) Smoothed surface.

6. Application to biological growth

The following section is meant as an illustration of possible modeling applications
of the material introduced in this paper. Readers in quest of a more detailed description
are invited to consult [2].
We begin by giving a very succinct description of a particular type of biological

membrane growth process, namely that of hyphal walls of some mycelia (Fig. 6). It
is followed by a brief presentation of the associated mathematical model, which was
built using the structures of the preceding sections.
The biological tissues that constitute the hyphal walls of some mycelia are very thin

surfaces that can be thought of as being made up of individual cell-like patches. Such
cells are created whenever one of the numerous wall material vesicles #oating within
the hypha hits the membrane and makes room for itself there. All along this process,
not unlike an in#ating balloon, the expanding membrane is subject to surface tension
and internal pressure with a convexifying eIect, the fundamental diIerence being that
a balloon has to do it with a constant amount of mass whereas membrane mass can
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Fig. 7. Insertion of new cells in a wall modeled by a chain of cell and motion of all the cells to keep the
convexity. (a) A new cell c is added between two other members of the chain. (b) Internal pressure pushes
outside the two neighbours of c. (c) By recurrence, all the cells move away and the wall becomes convex
again.

increase. An important element of hyphal growth the Spitzenk=orper, which apparently
plays a role in attracting the vesicles to the hyphal tip. In fact, hyphal branching
coincides with the creation of a new Spitzenk=orper. The process has been modeled in
the plane [2], where the hyphal wall is a (closed) broken line. When a new vesicle
arrives, it places itself between two existing ones and the membrane deforms itself
under the eIect of the forces mentioned before, expanding to take on a locally convex
shape (Fig. 7). Our model generalizes this to three dimensions.
At any given time, the membrane is thought of as a piecewise #at closed surface,

with triangular facets and homeomorphic to the sphere. Its cells are identi7ed with
those of the Voronoi partition of the surface induced by its vertices. The surface area
is locally minimal, a property that is brought about, if necessary, by a number of
#ip operations of the triangular facets. These operations change the topography of the
surface, as well as the associated Voronoi partition, which therefore has to be kept
being updated. This property maintains a rather “smooth” surface and thus a closer
representation of its biological model (Figs. 6(a) and (b)). When a new vesicle hits
the membrane at some triangular facet, a new vertex of the surface is created along
with four new facets and a new Voronoi cell, and the process continues. What remains
to be given is a description of the motion of the vertices of the surface.

6.1. Surface deformation, motion of cells

The cells move and deform themselves to minimize surface tension. A cell models
a physical surface element with a given area and an approximately circular shape. A
cell can be stretched in all directions but will always try to return to its previous
shape. Assuming that the “ideal” cell has a given shape (for example, circular) and
a given area, one can 7nd the corresponding “ideal” distance " between the “centers”
(i.e. the generators) of two cells. If the distance between two cells is smaller than ",
the cells will try to move away from each other. If the distance is longer, they will try
to move closer. To model the driving forces, one can imagine a set of edges behaving
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Fig. 8. Computation of a normal vector. (a) The weight of a “normal” vector ṽ depends on the angle � of
the two edges of the facet adjacent to P. (b) The “normal” vector of the surface at a point pi is computed
by adding the normal vector ṽi of every facet adjacent to pi .

like springs between the cells. The springs are given with their normal length ". Each
length modi7cation induces a force on the two extremities of a spring and the resultant
of the forces gives the motion direction of each cell.
Since a cell directly interacts only with its neighbours, it is reasonable to assume

our springs to follow the edges of the Delaunay triangulation. Using the #ip algorithm,
we are able to eBciently locate the springs (i.e. the local cell interactions). Motion of
these generators is split into two components:

• A “tangential” motion generated by tensions between the cells. The corresponding
driving force is the projection on a supporting plane of the resultant of the spring
forces acting on the generator. The normal vector to the supporting is a weighted
sum of normal vectors to the faces incident with the generator. The weighing takes
into account the angles at the generator of the various triangle (Fig. 8).

• A “normal” expansive motion, essentially due to inner pressure. The driving force
has the direction of the normal vector to the supporting plane described above and
is composed of the projection of the resultant of spring forces plus a contribution
from internal pressure.

The brief description did not get into any detail in how the vesicles are generated,
nor on branching, the creation of new Spitzenk=orper. All these elements were taken
into account in a model that was implemented using a Silicon Graphics work station.
It produces images like those in Figs. 6 and 10.
Note that, not surprisingly, the 7lament structures obtained with this model have a

very similar morphogenesis to that of the early development stages of real mycelia, as
can be seen by comparing Figs. 9(a) (Mucor spinosus) and (b) (simulation). A closer
look at the tip of a hypha tends to show a similar organization of the vesicles in both
the model (Fig. 10) and the real mycelium. That could be one of the factors in#uencing
morphogenesis, but further investigation on real mycelia is needed to con7rm this.
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Fig. 9. Real and modeled growth of a mycelium. (a) Picture of a real mycelium (size: 6:5mm× 4:5mm)
(b) Resultant of a membrance growth by insertion of new cells to several apices at regulated time interval.

Fig. 10. Representation of the extremitites of two hyphae. (a) This apex was generated by the insertion of
a set of new cells in the same region of the surface. (b) Modeling of the cellular membrane with Voronoi
cells applied on S.
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