Learning to move in modular robots
using central pattern generators and online optimization

Alexander Sproewitz, Rico Moeckel, Jérome Maye, Auke Jan Ijspeert*
School of Computer and Communication Science
EPFL - Ecole Polytechnique Fédérale de Lausanne

Station 14, CH-1015 Lausanne, Switzerland
{Alexander.Sproewitz, Jerome.Maye, Auke.Ijspeert}@epfl.ch, moeckel@ini.phys.ethz.ch

Abstract

This article addresses the problem of how modular robotics
systems, i.e. systems composed of multiple modules that can
be configured into different robotic structures, can learn to
locomote. In particular, we tackle the problems of online
learning, that is, learning while moving, and the problem of
dealing with unknown arbitrary robotic structures.

We propose a framework for learning locomotion con-
trollers based on two components: a central pattern genera-
tor (CPG) and a gradient-free optimization algorithm: Pow-
ell’s method. The CPG is implemented as a system of cou-
pled nonlinear oscillators in our YaMoR modular robotic
system, with one oscillator per module. The nonlinear oscil-
lators are coupled together across modules using Bluetooth
communication to obtain specific gaits, i.e.synchronized
patterns of oscillations among modules. Online learning is
done by running the Powell optimization algorithm in par-
allel to the CPG model, with the speed of locomotion being
the criterion to be optimized. Interesting aspects of the op-
timization are: it is carried out online, it does not require
stopping or resetting the robots, and it is fast.

We present results showing the interesting properties of
this framework for a modular robotic system. In particu-
lar, our CPG model can readily be implemented in a dis-
tributed system, it is cheap computationally, it exhibits limit
cycle behavior (temporary perturbations are rapidly forgot-
ten), it produces smooth trajectories even when control pa-
rameters are abruptly changed, and it is robust against im-
perfect communication among modules. We also present
results of learning to move with three different robot struc-
tures. Interesting locomotion modes are obtained after run-
ning the optimization for less than 60 minutes.

1 Introduction

As for any mobile robot, one of the key features that a
self-reconfigurable modular robot should exhibit is robust
locomotion. Designing efficient locomotion controllers for
modular robotic systems is however a difficult and unsolved

*To whom correspondence should be addressed.

problem. Their locomotion control suffers from all the tradi-
tional difficulties of locomotion control in robots with mul-
tiple degrees of freedom, with in addition difficulties related
to their specific modular structure. Indeed, the control of
locomotion requires multi-dimensional coordinated rhyth-
mic patterns that need to be correctly tuned such as to sat-
isfy multiple constraints: the capacity to generate forward
motion, with low energy, without falling over, while adapt-
ing to possibly complex terrain (uneven ground, obstacles),
and while allowing the modulation of speed and direction.
These difficult problems are not yet satisfactorily solved
for monolithic robots (e.g. quadruped or biped robots with
a fixed structure), in particular for locomotion in complex
terrains. Controlling a self-reconfigurable modular robot is
even more difficult because of a mechanical structure that
might evolve over time due to (self-)reconfiguration, un-
certainties in the state of the mechanical structure due to
imperfect connection mechanisms, and possibly imperfect
communication between different modules, to name a few.
Model-based approaches that are successfully used for some
monolithic robots (e.g. humanoid robots) are therefore in
many cases not suitable for modular robotic systems be-
cause of the difficulty to maintain accurate and up-to-date
models.

In this article, we propose a framework for learning loco-
motion controllers based on two components: a central pat-
tern generator and a gradient-free optimization algorithm:
Powell’s method (Press et al., 1994). Our approach is in-
spired by a control mechanism that nature has found to deal
with the redundancies in animal bodies and the requirement
to easily modulate locomotion: central pattern generators.
Central pattern generators (CPGs) are neural networks ca-
pable of producing coordinated patterns of rhythmic activ-
ity without any rhythmic inputs from sensory feedback or
from higher control centers (Delcomyn, 1980). A similar
approach has been taken by Kamimura et al. (2003, 2004).

Even completely isolated CPGs in a Petri dish can pro-
duce patterns of activity, called fictive locomotion, that are
very similar to intact locomotion when activated by sim-
ple electrical or chemical stimulation (Grillner, 1985). But,
while sensory feedback is not needed for generating the
rhythms, it plays a very important role for shaping the rhyth-

mic patterns and for keeping CPGs and body movements
coordinated. Typically, varying simple stimulation allows
modulation of both the speed and direction of locomotion.
From a control point of view, CPGs therefore implement
some kind of internal model, i.e. a controller that “knows”
which torques need to be rhythmically applied to obtain
a given speed of locomotion. Interestingly, CPGs com-
bine notions of stereotypy (steady state locomotion tends
to show little variability) and of flexibility (speed, direction
and types of gait can continuously be adjusted).

In this article we will argue that CPGs are ideal build-
ing blocks for constructing locomotion controllers for a self-
reconfigurable modular robot and for running online learn-
ing algorithms. We present a CPG based on a system of
coupled amplitude-controlled phase oscillators. Our CPG
is implemented and tested on our YaMoR modular robotic
system. A YaMoR module has one actuated degree of free-
dom, can be mechanically attached up to 5 other modules,
and communicates wirelessly with other modules via Blue-
tooth (Moeckel et al., 2006). Each module is programmed
to run one nonlinear oscillator to control the oscillations of
its servomotor. The nonlinear oscillators are coupled to-
gether across modules using Bluetooth communication to
obtain specific gaits, i.e.synchronized patterns of oscilla-
tions among modules. Different stable gaits can be obtained
by adjusting the parameters of the CPG that determine the
frequency, amplitude and phase lag of oscillations.

CPGs as systems of coupled nonlinear oscillators are
useful for locomotion control in any type of articulated
robot: they exhibit limit cycle behavior (temporary per-
turbations are rapidly forgotten), they ensure good coor-
dination between different degrees of freedom, they pro-
duce smooth trajectories even when control parameters are
abruptly changed, and they can readily integrate sensory
feedback signals for online modulation. A review of the use
of CPG models in robotics can be found in Ijspeert (2008).

In addition, they are particularly useful for modular
robotics: they are ideally suited for a distributed implemen-
tation (e.g. with one or more oscillator per module), they are
cheap computationally, they produce robust synchronization
even if CPUs have different clock frequencies, and they
are robust against imperfect communication among modules
(time delays, packets loss, noise, ...).

Finally CPGs are also a good substrate for online opti-
mization, a property that is used in this article. Indeed an
optimization algorithm, in our case Powell’s method, can
run in parallel to the CPG and regularly update its param-
eters. Despite abrupt parameter changes, the produced tra-
jectories will smoothly converge towards the new limit cycle
after a short transient period. This means that the robot does
not need to be stopped or reset between iterations.

This possibility to do online optimization, i.e.learning
while moving, is one of the main contributions of this ar-
ticle.! Being able to learn gaits online, as opposed to offfine
with a simulator or a model, is of great importance for self-

n this article, we will use learning, optimization, and adaptation as
synonyms.

reconfigurable modular robotics. First of all, since the op-
timization does not rely on a simulation or a model, it will
avoid the problem of having to transfer the locomotion con-
troller from a simulation/model to the real world. This trans-
fer is often very problematic due to the difficulty of properly
modeling complex environments (e.g. friction and contact
models with an uneven floor). Second, it allows learning
a locomotion gait for a new, previously unknown configura-
tion. This may be the case after self-reconfiguration or self-
assembly. Third, the locomotion gait may be continuously
adapted to changes in the robotic structure (e.g. because of
the addition, removal, or failure of modules). Fourth, loco-
motion can be adapted to changes in the environment. To
the best of our knowledge, there has been no previous re-
search in online optimization of chain-type modular robot
locomotion.

This works follows preliminary results in simulation with
a slightly different type of CPG that had shown the potential
of the approach for modular robotics (Marbach and Ijspeert,
2005). In the next sections, we first make a brief overview
of related work (Section 2). We then present the mechan-
ical and electronic design of our robot YaMoR, as well as
the Bluetooth protocol that we designed for communication
between modules (Section 3). In Section 4, we present the
CPG model and the optimization algorithm. Experiments
demonstrating the activity of the CPG and the online learn-
ing with different robot structures are presented in Section 5.
Our approach is discussed in Section 6.

2 Related work

Locomotion control in modular robots Modular robots
are generally classified as being lattice-type or chain-type.
Lattice modular robotic systems use cluster-flow locomo-
tion and reconfiguration: in order to move, the robot contin-
uously reconfigures (modules attaching and detaching over
a lattice of other modules), thereby giving the impression
that the module cluster “flows” on the ground and around
obstacles. The Crystalline robot (Vona and Rus, 2000), Tele-
cube (Vassilvitskii et al., 2002), and the ATRON (Oster-
gaard and Lund, 2003) are examples of such robots. Chain-
type robots normally locomote in a static configuration
(i.e. without using reconfiguration), using powered joints.
See, for example, the M-TRAN II (Murata et al., 2002), the
CONRO robot (Shen et al., 2004) and Polybot (Duff et al.,
2001). Although reconfiguration can also be used for mo-
tion, it is normally used only in order to adapt to a new envi-
ronment or function. For example, a robot could climb over
an obstacle in a quadruped configuration and then reconfig-
ure to a snake in order to slide through a small hole.?

In this article, we do not address locomotion through self-
reconfiguration and only address the problem of locomotion
in chain-like robots, that is locomotion that requires the pe-
riodic activation of articulated joints. Different locomotion

2See the URL http://unit.aist.go.jp/is/dsysd/mtran/English/experimentE.htm

for videos of the M-TRAN II performing such reconfigurations.

control algorithms have been developed for those types of
robots; these include centralized gait tables, role-based con-
trol, hormone-based control, constraint-based control, and
CPG-based control. The most common and obvious ap-
proach to control locomotion of a chain-type robot in a spe-
cific configuration is a centralized gait control table (Yim,
1994; Bongard et al., 2006). The gait control tables cor-
respond to simplified finite state machines with a sequence
of actions for each module. Actions are generally simple
motor commands that set the desired angle. This is the sim-
plest and probably most rigid way of generating a gait. The
sequence is usually predefined (Yim, 1994), but can be ad-
justed during runtime (Bongard et al., 2006).

Role-based control has been proposed by Stoy et al.
(2003), for locomotion of chain-type robots. It is an asyn-
chronous distributed approach. Each module plays a role,
which consists of a periodic function A(t) (e.g. a harmonic
oscillator) that specifies the joint angle(s) of the module.
Additionally, a delay for every child connector is given.
Role-based control is an interesting approach to synchronize
the system in a distributed manner but the algorithm has two
major limitations: (1) it is assumed that modules have one
and only one parent connector, and (2) the synchronization
procedure can lead to discrete jumps in the generated trajec-
tories A(t).

Shen et al. (2002) from the CONRO project took inspi-
ration from hormones to design reliable, distributed control
hormone-based algorithms that can deal with dynamic con-
figuration changes. A digital hormone is, as its biological
counterpart, a message that propagates in the network and
triggers different actions from different receivers. In con-
trast to message broadcasting, a hormone may have a life-
time and can be modified or deleted by cells as it travels
through the network. The hormones are used for several
tasks such as distributed task negotiation, synchronization,
and topology discovery (Salemi and Shen, 2004). For in-
stance, they are used for discovering the current robot con-
figuration and potentially trying to map it to a known con-
figuration in a database (i.e.one for which a controller is
available).

Zhang et al. (2002) have developed a constraint-based
control framework to program modular robots. The idea
is to see locomotion as a constraint-based problem and to
use solvers to find satisfactory solutions in a given parame-
ter space (typically parameters for a sine-based controller).
Zhang et al. have successfully applied constraint-based
control to modular self-reconfigurable robots in simulation.
However, the authors mainly focus on scalability rather than
on reliability.

The last type of locomotion control is based on the con-
cept of CPGs. The goal is to produce oscillations as the limit
cycle behavior in a system of coupled nonlinear oscillators.
As discussed above, this approach benefits from many inter-
esting properties such as synchronization between multiple
oscillators and robustness against perturbations. In partic-
ular CPGs allow much more freedom in modulating gaits
than sine-based controllers since changes in the control pa-

rameters lead to smooth changes in the produced oscilla-
tions. CPG-based control has been used by Kamimura et al.
(2003, 2004), who use two-neuron Matsuoka oscillators as
a CPG model for M-TRAN in their recent work. A genetic
algorithm (GA) is applied to optimize the free CPG param-
eters offline (i.e.in simulation) for specific configurations.
In Kamimura et al. (2004) the authors extend the CPG with
a drift detection mechanism and demonstrate adaptive loco-
motion with M-TRAN in the face of external perturbations
and varying environmental conditions. Input from the sen-
sors affects the state and shapes the oscillatory output of the
system. There is no long-term memory or learning effect.
In contrast, we investigate in this article online adaptation,
i.e. learning while moving without needing offline optimiza-
tion with a simulator.

Note that CPGs are also increasingly used in mono-
lithic robots, see for instance Kimura et al. (1999); Arena
et al. (2004); Conradt and Varshavskaya (2003); Endo et al.
(2005); Aoi and Tsuchiya (2006) for a few examples, and
Ijspeert (2008) for a review. In our own work, we have
used CPG models similar to the one presented here in
snake-like robots (Ijspeert and Crespi, 2007), salamander-
like robots (Ijspeert et al., 2007), quadruped robots (Buchli
et al., 2006a), and humanoid robots (Righetti and Ijspeert,
2006).

Learning and locomotion As discussed above, locomo-
tion control in robots with multiple degrees of freedom is
a complex problem. It presents big challenges for learning
algorithms for at least three reasons: (1) it is a highly nonlin-
ear problem, (2) it involves large multi-dimensional search
spaces, and (3) it is a problem for which the gradient of the
functions to optimize is generally not available (the speed
of locomotion, for instance, cannot be expressed as an ana-
Iytical function of the open controller parameters because it
intrinsically depends on the robot-environment dynamics).
Different learning/optimization techniques have been used
to improve locomotion controllers over time including evo-
lutionary algorithms, reinforcement learning, and heuristic
optimization.

Evolutionary algorithms are stochastic population-based
optimization algorithms that can optimize a large class of
cost functions (for instance, the cost functions do not need
to be continuous as required for gradient-descent algo-
rithms). That makes them well-suited to optimize perfor-
mance measurements of a robot, for instance, the speed.
They have been extensively used to design locomotion con-
trollers (Beer and Gallagher, 1992; Lewis et al., 1993; Gruau
and Quatramaran, 1997; Ijspeert and Kodjabachian, 1999;
Paul and Bongard, 2001; Ijspeert, 2001), including for mod-
ular systems (Sims, 1994; Kamimura et al., 2003; Mar-
bach and Ijspeert, 2005). But except for a few exceptions
(e.g. Lewis et al. (1993)), the very large majority of these
projects have optimized the controllers in a simulator. Sim-
ulators are used because of the large number of required
evaluations (typically in order of thousands or higher, which
would be excessive for a real robot) before converging to

an optimum. This reliance on the simulator is however a
problem in locomotion control. In many cases, the transfer
of controllers from simulation to the real robot is poor, be-
cause many types of locomotion depend on complex phys-
ical interactions between the robot and its environment that
are extremely hard to simulate properly. One possible solu-
tion to this problem is to combine evaluations in simulation
and on the real robot (Bongard et al., 2006).

Reinforcement learning algorithms (Sutton and Barto,
1998) have also been used to train locomotion controllers.
They usually have difficulties tackling problems with highly
multidimensional search spaces and with continuous (as op-
posed to discrete) states and actions. But they were recently
used with good success for online learning of biped loco-
motion (Collins et al., 2005; Geng et al., 2006; Matsubara
et al., 2006; Nakamura et al., 2007) as well as quadruped
locomotion (Kohl and Stone, 2004). It remains to be seen
whether these tailored approaches can be adapted for learn-
ing locomotion in arbitrary structures as in modular robotic
systems.

Finally, another approach is to use heuristic (gradient-
free) optimization algorithms like variants of the Simplex
method as used on quadruped robots (Weingarten et al.,
2004) or Powell’s method as used here and in preliminary
experiments (Marbach and Ijspeert, 2005). As discussed
later in this article, the advantage of these algorithms is that
they are fast, but the disadvantage is that they present more
risk to converge to a local optimum (as opposed to a global
optimum) compared to stochastic methods.

3 The modular
YaMoR

robotic system

In this section we will briefly describe the robotic system
that we use for experimentation in this article, in particular
the mechanical and electronic design, as well as the Blue-
tooth communication protocol that we implemented.

3.1 Mechanical and electronic design

YaMoR consists of mechanically homogeneous modules. A
module weights 0.25 kg and has a length of 94 mm (includ-
ing the lever) with a cross section of 45x50 mm. YaMoR
modules have a single degree of freedom: the hinge of the
U-shaped lever has a working range of a little bit more than
180°. It is driven by a powerful RC servomotor with max-
imum rotation speed of 60°/0.16s and a maximum torque
of 0.73 Nm, which is sufficient for one module to lift three
others. The casing of a module consists of printed circuit
boards (PCB) that also serve as support for the electronics
(Figure 1). Modules can be attached to each other at spe-
cific locations on each module face. A screw and pin mech-
anism allows fixations with angles at every 15 degrees. In
its current state, YaMoR modules do therefore not support
self-reconfiguration and the modules can only be connected
together by hand.

Figure 1: YaMoR module.

A module is powered by an onboard Li-Ion battery and
includes the necessary electronics for power management,
motor control, communication and execution of algorithms.
To achieve more flexibility and modularity in terms of con-
trol each YaMoR module contains five separated control
boards: (1) one board for handling the Bluetooth communi-
cation; (2) one board carrying an ARM microcontroller, (3)
one board carrying a Spartan-3 FPGA; (4) one sensor-board
with an infrared distance sensor and a 3D accelerometer;
and (5) a service board containing power supply and bat-
tery management. YaMoR was constructed as a framework
for a variety of different projects. For instance, a user may
choose between using an ARM7TDMI microcontroller—
used in a variety of industrial and research projects—an
FPGA or a combination of both for implementing the de-
sired control algorithm. Configuring the FPGA to contain a
MicroBlaze softprocessor (Xilinx Corp.), allows exploiting
the hardware-software co-design capabilities offered by the
platform, taking also advantage of the flexibility provided
by the FPGAs partial reconfiguration feature (Upegui et al.,
2005). The YaMoR architecture with distributed electronic
components gives a flexible solution for connecting the elec-
tronic boards: the FPGA board can be left out if it is not
needed to save energy; or it can be replaced by a board with
specific sensors if useful. The new sensor board can still
take advantage of the electronics mounted on the remaining
boards. So a designer for an additional sensor board does not
have to worry about power supply or battery management.
In this article, we only use the power board, the Bluetooth
board and the microcontroller board. For more details about
the YaMoR modules see Moeckel et al. (2006).

3.2 Bluetooth communication protocol

Designing the communication network for robots can be a
great challenge, especially when the mechanical connec-
tions are changing during the operation of the robot and
when the robot consists of different modules that might pro-
vide different services like different sensors, computational
units and actuators that should work together. Within the
field of self-reconfiguring modular robots it is a strong ad-

vantage to have a communication infrastructure that is inde-
pendent of the mechanical structure of the robot and that af-
ter it is set up once is continuously working also during the
reconfiguration of the mechanical system. For this reason
we decided to use a wireless communications network for
our modular robot YaMoR that allows us to provide a stable
exchange of information between the modules also during
periods of (manual) reconfiguration. The CPG model that
will be presented in Section 4 requires modules to communi-
cate their states to each other such as to implement a system
of coupled oscillators. Furthermore, a wireless communica-
tion is advantageous when commands have to be sent to the
robot e.g. from a PC or data should be tracked and analyzed.
In this case the robot can operate without being disturbed by
a tether.

3.2.1 Advantages of Bluetooth

We decided to use Bluetooth for our modular robot as it is
a powerful standard for robust wireless networks that has
several benefits: (1) Implementations of the latest Bluetooth
standard 2.0 reported power consumptions of more than 10
times less than for WLAN. That is why Bluetooth is very in-
teresting for embedded systems that are battery powered and
there for have limited energy resources. (2) Bluetooth is us-
ing a very robust communication protocol called Frequency
Hopping. (3) In contrast to infrared, Bluetooth devices do
not have to be in the visual range of each other to sup-
port a wireless link. (4) Bluetooth is a standard that makes
sure that every certified Bluetooth device regardless which
company was developing it can communicate with every
other certified Bluetooth device from any other company.
(5) Bluetooth is supported and continuously improved by a
group of companies organizing themselves in the so-called
Bluetooth interest group. (6) Because Bluetooth devices
are manufactured in high numbers and due to the fact that
Bluetooth is operating in the license-free frequency band the
price for Bluetooth devices is very low. (7) Many Bluetooth
software stacks are available; some of them even for free.
That is why the time for the development of new Bluetooth
software and protocols is dramatically reduced.

3.2.2 Drawbacks of Bluetooth

Although free Bluetooth software stacks are available, the
development of software based on Bluetooth can be difficult.
This has two main reasons: (1) For interfacing the Bluetooth
stack, the user still needs quite a lot of knowledge about
the wireless standard. (2) Because Bluetooth was originally
designed as a cable replacement with a central host device
Bluetooth networks have some major restrictions: As shown
in Figure 2a up to 8 Bluetooth devices can be connected
to form a so-called Piconet. In this Piconet one Bluetooth
device acts as the central host device called master while
the other 7 devices act as slaves. The master is controlling
the whole communication in the Piconet. Only the master
device knows about all slaves and can send data to them but
the slaves do not know which other slave devices the Piconet

g@ oFo
oflo d @@

(@
Figure 2: (a) Piconet with master device number 8 and 7 slaves
(number 1-7). (b) To form a Bluetooth network with more than 8
actively connected devices, a Scatternet has to be created. There
for device number 3 becomes a master/slave device. It acts like
a slave for the original Piconet with master number 8 and like a
master device for the devices number 9-12.

contains neither they are able to communicate directly with
each other. If a slave device wants to send data to another
slave it has to pass that data to the master device first which
has to forward the data to the receiver. The network structure
becomes even more difficult if more than 8 devices shall
be connected. In this case as shown in Figure 2b a slave
device has to act as a master in another Piconet. By acting
as a slave device in one Piconet and as a master in another
Piconet a so-called Scatternet is formed. In this Scatternet
only directly connected devices know about each other and
can directly send data to each other.

3.2.3 Scatternet Protocol

To overcome both problem (1) and (2) we developed a
new Scatternet protocol (SNP) layer that extends the origi-
nal Bluetooth communication, e.g. makes it usable for more
than 8 Bluetooth devices in a transparent manner. A user
who wants to send data to any other device in a Bluetooth
network simply sends a packet with the address of the re-
ceiver into the network. The Scatternet protocol is respon-
sible for finding the shortest path through the network and
for guaranteeing that the packet is received by the target de-
vice. When the network is changed the Scatternet proto-
col is adapting and learning new paths. Only local infor-
mation that the Scatternet protocol extracts from the data
packets that are passing the Bluetooth device it is running
on are used to find the shortest path. The Scatternet proto-
col also supports broadcasts and gives full remote control
for all connected Bluetooth devices. This allows a user to
control all Bluetooth devices in a Scatternet from a single
device. The user of our powerful Bluetooth-on-chip system
only needs to know three commands: (1) How to send data.
(2) How to connect devices. (3) How to disconnect devices.
For a full description of our additional implemented features
see Moeckel et al. (2007).

3.2.4 Implementation of the Scatternet protocol

We implemented and tested our Scatternet protocol on the
embedded Bluetooth device ZV4002 which was developed

and distributed by Zeevo Inc. The ZV4002 contains both
the analog Bluetooth components as well as an ARM mi-
crocontroller and only needs a small amount of external
components including an antenna, SRAM and flash mem-
ory. Zeevo provides an embedded Bluetooth stack that is
directly running on the ARM. We implemented our Scatter-
net protocol layer on top of the serial port profile. With this
strategy we are able to provide a full Bluetooth Scatternet
protocol encapsulated in a single chip. The embedded Blue-
tooth stack is certified for the Bluetooth standard 1.2 and
provides data rates of up to 721 kBit/s.

Data and commands can be sent to the ZV4002 via a se-
rial interface with a rate of up to 921600 Baud. However,
since most UART's of PCs and microcontrollers do not sup-
port such a high data rate we had to reduce the baud rate
to 115200 for the embedded microcontroller that is running
the CPGs and controlling the servomotors. We tried to re-
duce the overhead of our SNP layer to a minimum. The
additional header for SNP packets comprises 5 bytes for the
communication between Bluetooth devices and 3 bytes for
sending a packet to a Bluetooth device via UART. Addi-
tional transmission of internal packets that do not include
user defined data but are necessary to provide a transpar-
ent Bluetooth communication are reduced to a minimum
and normally only come into play when a new communi-
cation network has to be set up or if a communication net-
work is changed. Furthermore, we implemented friend ta-
bles that store 15 Bytes of data for each Bluetooth device
that is known. Up to 255 Bluetooth devices can be stored.

Bluetooth traffic for experiments We tested our SNP
with modular robot configurations of up to eight Bluetooth
(BT) nodes/YaMoR modules, plus one additional node for
the connection to the serial port of the PC. We are using
a ZV4002 BT chip providing data rates up to 75 kByte/s
(Bluetooth 1.2). It can be assumed that the actual possi-
ble data rate is smaller, message delay tests are described
in Moeckel et al. (2007).

Constant communication messages between oscillators
are synchronization messages based on sparse communi-
cation (see Section 5.1.1). Each message has 23 Byte and
is sent four times a second to each of the direct neighbors
in the CPG network (Figure 18).> Our biggest modular
robot assembly, the quadruped robot, features outer modules
with one neighbor and inner modules with three neighbors.
The traffic going through a single inner BT node is there-
fore 6 x 4/ s x 23 Byte & 0.5 kByte/s, for the overall net-
work ~ 1.5kByte/s.* Additional traffic is produced when
new CPG parameters are sent via the BT node at the PC
(e.g. parameter message: 77 Bytes) or commands are sent
to switch on/off the RC motors. However in comparison
to the communication due to the synchronization messages
these are small peaks in the BT traffic. The biggest reduction

3This corresponds to a communication time step of 25, see Sec-
tion 5.1.1.

4Assuming direct communication. In case the messages are sent in-
directly the load is higher than 1.5 kByte/s, but still lower than the max.
possible 75 kByte/s.

®
o
DA
O
©

Figure 3: Example of a CPG architecture.

for BT traffic is clearly provided by sparse communication:
only each 25" synchronization message is actually sent. A
simple computation for synchronization messages, but with-
out sparse communication, reveals that the serial line be-
tween microcontroller and BT node (based on 115200 baud
rate, approximately 11.5kByte/s) would actually overload
(13.2 kByte/s load) without this feature.

4 Locomotion control

The locomotion controller is composed of a CPG model for
producing coordinated oscillations and of an optimization
algorithm, Powell’s method, for optimizing the speed of lo-
comotion.

4.1 CPG model

The CPG model is implemented as a system of N cou-
pled amplitude-controlled phase oscillators, one per module
(Figure 3). An oscillator ¢ is implemented as follows:

bi = w 9]
+ Z wij T 8in(P; — di — @ij)

. ’ (078 .

Ty = ar(Z(Ri — 1) —7T4) ()

F = ap(TH(Xi—)~) 3)

0; = x;+r;cos(d;))

where 6; is the oscillating set-point (in radians) extracted
from the oscillator, and ¢;, r;, and x; are state variables that
encode respectively the phase, the amplitude, and the off-
set of the oscillations (in radians). The parameters w;, R;,
and X; are control parameters for the desired frequency, am-
plitude and offset of the oscillations. The parameters w;;
and ;; are respectively coupling weights and phase biases

which determine how oscillator j influences oscillator 7. An
oscillator 4 receives the value of state variables ¢; and r; of
neighbor modules j via the Bluetooth communication pro-
tocol (see the next Sections). The parameters a, and a,, are
constant positive gains (a, = a, = 20 [rad/s]). The ref-
erence position (i.e. corresponding to a zero offset) is the
position in which the lever of the YaMoR module is aligned
with the module (i.e. in the middle of its working range).

These equations were designed such that the output of the
oscillator 6; exhibits limit cycle behavior, i.e. produces a sta-
ble periodic output. Equation 1 determines the time evolu-
tion of the phases of the oscillators. In this article, we use
the same frequency parameter w; = w for all oscillators,
and bidirectional couplings between oscillators such that
@ij = —@j;. We also ensure that, in case of a closed loop
of interoscillator couplings, all phase biases in the loop are
consistent (i.e. sum up to a multiple of 27). With these pa-
rameters, the phases will converge to a regime in which they
grow linearly with a common rate w and with a phase dif-
ference between oscillators determined by ¢;;. Equations 2
and 3 are critically damped second order linear differential
equations which have respectively R; and X; as stable fixed
points. From any initial conditions, the state variables r;
and z; will asymptotically and monotonically converge to
R; and X;. This allows one to smoothly modulate the am-
plitude and offset of oscillations.

With these settings, two oscillators ¢ and j that are cou-
pled with non-zero weights w;; asymptotically converge to
limit cycles 67°(t) and 63°(t) that are defined by the follow-
ing closed form solutions:

0(1) =
(1) =

X + R; - cos(wt + pi; + ¢o) 5)
Xj + Rj . COS(wt + @i + (,25()) (6)

where ¢ depends on the initial conditions of the system.’
This means that the system stabilizes into oscillations that
are phase-locked for all degrees of freedom that are con-
nected together. These oscillations can be modulated by
several control parameters, namely w for setting the com-
mon frequency, ¢;; for setting the phase lags between two
connected oscillators, R; (¢ = 1,2, ..., N) for setting the in-
dividual amplitudes, and X; (: = 1,2, ..., N) for setting the
individual offsets. Figure 4 illustrates how the system con-
verges to the stable oscillations starting from random initial
conditions and after a random perturbation.

Similar CPG models have been developed, for instance
to simulate the lamprey swimming network (Cohen et al.,
1982; Williams et al., 1990; Kopell et al., 1991; Nishii et al.,
1994; Sigvardt and Williams, 1996). The closest model used
to control a robot is the one developed by Conradt and Var-
shavskaya (2003), an important difference being that our
model has differential equations controlling the amplitudes
of each oscillator (not only the phase). We used (almost)

SNote that, because of the common frequency and the consistency of
phase lags in a loop, this limit cycle does not depend on the coupling
weights w;;. The coupling weights only affect how quickly the system
converges to the limit cycle: the larger the weight, the faster the conver-
gence.

Y
adhagl

x~ 0
-2k 4
2pi T T T T
£ o _ *
0 1 1 1 1
0 2 4 8 10 12

Time [s]

Figure 4: Limit cycle behavior of the CPG. An arbitrary chain
structure of 5 oscillators is chosen for demonstration. Output sig-
nals 6; of the 5 oscillators (top). Amplitude state variables r; (sec-
ond from top). Offset state variables z; (third from top). Phase
differences A¢; = ¢i+1 — ¢; between neighbor oscillators (bot-
tom). Starting from random initial conditions, the system quickly
stabilizes in synchronous oscillations with controlled amplitude.
At t = 6s, random perturbations are applied to the state variables
¢;, ri and x;, and the system rapidly returns to the steady state
oscillations.

the same model to control a snake-like robot (Ijspeert and
Crespi, 2007) and a salamander-like robot (Ijspeert et al.,
2007).

Each oscillator is implemented locally in the microcon-
troller of each module. The differential equations are solved
using Euler integration with a 10 ms time steps. The set-
points 6; are sent to the servomotors using pulse-width
modulation (PWM).® Oscillators that are coupled together
(i.e. that have non-zero weights w;,;) will regularly exchange
their state variables ¢; and r; via Bluetooth for implement-
ing the system of coupled oscillators. As will be analyzed
in Section 5, the communication of state variables can take
place at a slower time scale than every integration step.

In this article, we will carry out experiments in which
the frequency w and the connectivity between oscillators
(i.e. the weights w;;) are fixed in advance. The phase lags
4, the amplitudes R; and the offsets X; will be set by the
optimization algorithm in order to explore different locomo-
tor gaits. These parameters are changed at each iteration
(every 23 s) of the optimization algorithm.

Such a CPG model has several nice properties. The first
interesting property is that the system exhibits limit cycle
behavior, i.e. oscillations rapidly return to the steady-state
oscillations after any transient perturbation of the state vari-
ables (Figure 4). The second interesting property is that this
limit cycle has a closed form solution. Most types of os-
cillators used do build CPGs (e.g. Matsuoka, Van der Pol,

5The set-points 6; are being directly interpreted as angular positions by
the RC servomotors. We use digital position-controlled RC servomotors
(hobby type). The internal PID controller of the RC servomotors is encap-
sulated and not available from the outside, that is we have no influence on
the gain of the control loop.

Stein, FitzHugh-Nagumo, Raleigh oscillators) do not have a
closed form solution for their limit cycle, see Buchli et al.
(2006b) for a discussion of the pros and cons of different
oscillator models. The limit cycle has a harmonic shape and
has control parameters (w, R;, and X;) that are explicit and
are directly related to relevant features of the oscillations.
This facilitates the design and analysis of locomotion con-
trollers. A third interesting property is that these control pa-
rameters can be abruptly and/or continuously varied while
inducing only smooth modulations of the set-point oscilla-
tions (i.e. there are no discontinuities nor jerks). This prop-
erty is important to avoid damage in the motors and gear-
boxes, and will extensively be used in the Results section
for the online optimization of the locomotor behaviors (Sec-
tion 5). Finally, a fifth interesting feature is that feedback
terms can be added to Equations 1—3 in order to maintain
entrainment between control oscillations and mechanical os-
cillations (however this will not be explored in this article).

4.2 Optimization algorithm

We shall now explain how the CPG is optimized in order to
produce fast locomotion. The function to optimize, the cost
function f(x), is the average speed of the modular robot as
estimated from an external camera. The vector contains
all the control parameters of the CPG. We measure the speed
of one specific module, by measuring the distance traveled
in a given period (see the description of the experimental
setup in the next Section).

To do the optimization, we require an algorithm that can
compute optima of a function without gradient information
(which is not available here). Since time to convergence is
critical in online optimization we decided to avoid stochastic
optimization methods such as simulated annealing, genetic
algorithms and particle swarm optimization and to use Pow-
ell’s method, a fast heuristic optimization algorithm (Press
et al., 1994). Powell’s method is easily available and well
documented and is therefore simple to use and compare. It
is recommended (Press et al., 1994) in comparison to other
gradient-free methods. The advantage of the algorithm is
that it is fast, the disadvantage is that it presents more risk
to converge to a local optimum (as opposed to a global opti-
mum) than stochastic methods.

The principle of the algorithm is to use Brent’s method,
a bracketing algorithm, for performing one-dimensional op-
timization and then to use a direction-set method for multi-
dimensional optimization. We briefly explain the algorithm
here. Our description is inspired from the one found in Press
et al. (1994).

One dimensional optimization The goal of function op-
timization is to find « such that f(z) is the highest or low-
est value in a finite neighborhood. From now on we just
consider the problem of function minimization. Note that
function maximization is trivially related because one can
minimize — f. The main idea of one-dimensional function
optimization is to bracket the minimum with three points

4 50
X =P, P

_______ 1
|
Pyr=>al X =P,
/l x2=P4
/s

7

7
/
7
7
Z
P5
1 2 3 4 5 6
X

Figure 5: Example of function optimized with Powell’s method.

1

o
o\

S

25
0

a < b < csuch that f(b) is less than both f(a) and f(c).
In this case and if f is nonsingular, f must have a minimum
between a and c. Now suppose that a new point x is chosen
between b and c. If f(b) < f(x), the minimum is bracketed
by the triplet (a, b, z). In the other case if f(z) < f(b), the
new bracketing points are (b, z, ¢). In both cases, the brack-
eting interval decreases and the function value of the middle
point is the minimum found so far. Bracketing continues
until the distance between the two outer points is tolera-
bly small (Press et al., 1994)”. The challenge is finding the
best strategy for choosing the new point x in the bracketing
interval at each iteration. Powell’s algorithm uses Brent’s
method, which is a clever combination of golden section
search and parabolic interpolation (Brent, 1973; Press et al.,
1994).

Multi-dimensional optimization Consider a line defined
by a starting point P and a direction n in N-dimensional
space. It is possible to find the minimum of a multidimen-
sional function f on this line using a one-dimensional opti-
mization algorithm (Press et al., 1994) (e.g. Brent’s method,
see above). Direction-set methods for multidimensional
function minimization consist of sequences of such line
minimizations. The methods differ by the strategies in
choosing a new direction for the next line minimization at
each stage. Powell’s method (Brent, 1973; Press et al., 1994)
is best explained with an example. Consider a function with
a ‘valley’ along x = y that descends to the origin:

f(x,y) =

Powell’s method starts with the unit vectors eq, es, ...,
en of the N-dimensional search space as a set of direc-
tions. One iteration of the algorithm does N line minimiza-
tions along the N directions in the set. The algorithm is il-
lustrated in Figure 5 for the two-dimensional function intro-
duced above (Eq. 7). Starting at the initial point Py = (2, 5),
the first line minimization along the direction given by the

4y + (z—y)? ©)

"Tolerance values used in all our experiments are set to tolgrent =
0.05 and tOZPOWeH = 0.02.

unit vector [1,0]7 takes us to the point Py. From this point
the second line minimization along [0, 1]7 takes us to P
and completes the first iteration. As you can see on Fig-
ure 5, repeated line minimizations along the unit vectors
would involve many iterations because the minimum would
be approached in small steps. After each iteration, Powell’s
method checks if it is beneficial to replace one of the direc-
tions in the set by v; = Py — Pn where Py was the starting
point at the current iteration and P the new point after
the IV line minimizations. In the example of Figure 5, vy
replaces [1,0]7 in the second iteration. The algorithm cor-
rectly decides not to include new directions in all other iter-
ations as this would actually slow down convergence. The
mechanisms for deciding whether or not to include the new
direction v; after each iteration and which direction in the
set should be replaced are described in (Brent, 1973; Press
et al., 1994). Note that there is no learning rate; the algo-
rithm simply always goes to the optimum in the next direc-
tion.

5 Results

In this Section, we will first evaluate the suitability of the
CPG model for a distributed implementation with possibly
unreliable communication between modules. We will then
present results of running the CPG and Powell’s method on
three different types of robot structures.

5.1 Suitability of CPGs for modular robots

In order to evaluate the suitability of the CPG model, we
tested it with Matlab on a PC. We tested one particular con-
figuration: a chain of N = 5 oscillators with bidirectional
couplings. Unless otherwise specified, the system was im-
plemented with the following parameter values for all oscil-
lators: w = m/2 [rad/s], a, = 20 [1/s], a; = 20 [1/s], and
w;; = 5. The system of equations was integrated using the
Euler method with 10 ms integration steps (like in the robot
experiments of the next sections).

Figure 6 illustrates how such a system reacts to abrupt
changes of the amplitude R;, offset X;, and phase lag ¢;;
parameters. The system starts with random initial condi-
tions and rapidly stabilizes in a traveling wave (p;; = 27/5
for all connections in one direction and ¢;; = —2x/5 for
all connections in the other direction). At time ¢ = 10s,
the signs of the phase lag parameters are changed and the
system stabilizes after a short transient period into a wave
traveling in the opposite direction. At time ¢ = 20s, the
amplitude parameters R; are modified, and the amplitudes
of oscillations change accordingly. At time ¢ = 30s, the
offsets X; are set to non-zero values. After all these abrupt
changes, the outputs 8, of the oscillators smoothly converge
to the new limit cycle. This is an important feature since
this limits the risk of damaging motors and or gears due to
abrupt changes in motor commands. This feature will allow
us in the next sections to run an optimization algorithm in
parallel to the CPG. The duration of the transient periods

oF : : :
-1 [
0 | | | | . . .
oF
X~ 1r q
—
0 T T T T T { | h
2 pi T T T
g i >
|
O L L L L L L L
0 5 10 15 20 25 30 35 40

Time [s]

Figure 6: Example of abrupt parameter changes in the CPG
model. Output signals 0; of the 5 oscillators (top). Amplitude
state variables 7; (second from top). Offset state variables x; (third
from top). Phase differences A¢p; = ¢;+1 — ¢; between neighbor
oscillators (bottom). See text for explanations.

0 5 10 15 20 25 30 35 40
Time [s]

Figure 7: Example of abrupt parameter changes in the CPG
model. Same experiment as in Figure 6, but with a, = 2 [1/s],
a, = 2 [1/s], and w;; = 2.

before convergence depend on the parameters a,, a,, and
w;;: the lower these values, the slower the convergence, see
Figure 7.

5.1.1 Sparse communication and temporary loss of
connection

The distributed implementation of the CPG in separate
YaMoR modules that communicate via Bluetooth implies
several potential problems in the communication between
oscillators. These potential problems include sparse com-
munication, that is, the fact that states of neighboring os-
cillators can not be communicated as fast as the numerical
integration, temporary loss of connection, and time delays
due to hops in the Scatternet.

We tested these different potential problems in Matlab to
evaluate how much they could affect the activity of the CPG.

A
5

Number of cycles
[N N w w Iy
(%2 o al o a1 o
: ; : ; : ;
.

=
o
T
L

(&)
T
L

0
10 15 20 25 30

Communication step size

35

Figure 8: Sparse communication in a system with an oscillation
period of 2s. Time to reach the limit cycle depending on the com-
munication time step size. The communication time step size is
given as multiples of the integration time step (10 ms). The time to
convergence is measured as the number of cycles needed for all os-
cillators to come within 0.1 rad of the desired phase lags between
each other. Data points and error bars correspond respectively to
the average and standard deviation of 5 trials with random initial
conditions.

The sparse communication is tested by communicating the
state variables of oscillators with a communication time step
that is larger than the integration step. At each communi-
cation time step, oscillator ¢ receives the state variables r;
and ¢; from oscillator j. There are several options in how
to deal with the coupling terms during the intervals between
each communication time step: (1) one can set r; to zero
when there is no communication, (2) one can keep the old
r; and ¢; values as constants during the interval, and (3)
one could try to interpolate these values based on past val-
ues. We tested options 1 and 2.

Figure 8 illustrates the time needed to reach convergence
with option 1 as a function of the communication time step
size. The communication time step size is given as multi-
ples of the integration time step. The time to convergence
is measured as the number of cycles needed for all oscil-
lators to come within 0.1 radians of the desired phase lags
between each other. The test shows that time to convergence
increases more or less linearly with the communication time
step size. This means that the system will converge to the de-
sired oscillatory pattern even if the communication between
modules takes place only every so often. Note that the cycle
duration of the illustrated system is 2s, which means that
the maximum communication step of 30 times the integra-
tion step corresponds to a communication only every 300 ms
(i.e.less than 7 times per cycle).

With option 2, the system will converge to a steady state
regime much faster than with option 1 (data not shown), but
with the problem that the steady regime does not exactly
correspond to the desired oscillatory pattern. Indeed the
phases in the steady state regime do not increase linearly,

10

0.8,
o Maximal error
0.7/—=—Average error R

0.6

Error [rad]

150 200 250 300 350
Delay [ms]

100

Figure 9: Delayed communication. Average and maximal differ-
ence between the desired phase lags between oscillators and the
actual ones after running the system for 50 s as function of the time
delay of the communication. Data points and error bars correspond
respectively to the average and standard deviation of 5 trials with
random initial conditions.

which means that the phase differences between oscillators
vary over time and that the oscillation signals are not pure
sinusoids. In practice this becomes noticeable only for large
communication steps (30 integration steps or above, we are
using option 2 with 25 integrations steps in our hardware
experiments).

5.1.2 Communication delays

The Scatternet underlying the communication between dif-
ferent modules introduces time delays in the transmission of
the state variables between coupled oscillators. We tested
the same network as above (a chain of 5 oscillators with
bidirectional couplings) with a 10 ms integration step and a
50 ms communication step. In addition to the sparse com-
munication, we added delays in the transmission by sending
state variables that are old by some time duration.

Figure 9 shows that time delays deform the patterns of
oscillation but in a gradual fashion (using option 1 from
the previous Subsection). To measure the deformation, we
measure the average and maximal difference between the
desired phase lags between oscillators and the actual ones
after running the system for 50s.

The results show that the error slowly increases with time
delays up to the very large delays tested (300 ms). Time
delays in the Scatternet with multiple hops are typically
smaller. The time delays due to the Bluetooth communica-
tion should therefore lead to negligible effects on the CPG
activity.

5.2 Experimental setup with the YaMoR
robots

We tested our approach on the actual YaMoR modules with
three different robot structures. The experimental setup is

N
ey

Video camera

O
ud,

LED tracking

Robot control Optimization

o |

'YaMoR robot

YaMoR transceiver

Figure 10: Experimental setup. The YaMoR robot configuration
is moving in a 2m by 2m area, an attached LED is being tracked by
a camera on the ceiling. X and y positions are extracted both for
the starting and finishing point of the evaluation. The optimization
is running on a PC, sending a new set of CPG parameters to the
robot configuration after each re-evaluation.

shown in Figure 10. The robots are tested in a square arena
of 2m by 2m. The speed of the robot is measured by tracking
a red LED fixed to one of the robot modules by a camera
fixed to the ceiling. The x and y positions of the LED are
measured in real-time, and provided to a PC that runs the
Powell’s method. The evaluation of the speed of the robot
is done as follows. Each time the parameters of the CPG
are updated and sent from the PC to the modules (this takes
8 seconds e.g. in case of the quadruped robot), we wait for
7 seconds to give the oscillators and the robot time to go
into steady-state locomotion, and then let the system move
for 8 seconds (evaluation window). The estimated speed is
the distance between the end and beginning positions during
the evaluation window divided by 8 seconds. In other words,
we optimize the capability to move as far as possible from
the start of the measure but without specifying a preferred
direction. If needed, the robot is manually moved towards
the center of the arena at the end of the evaluation in order
to maintain it in the field of view of the camera.

The different relevant time step sizes are the following:
the integration time step is 10 ms, the communication time
step is 250 ms, and the optimization time step is 23s. Ex-
perience showed that the evaluation is quite noisy and that
it is not beneficial to use a precision of more than 0.05 radi-
ans for Brent’s method (Powell: 0.02). Using this precision,
a line minimization over an interval of 27 (largest possible
bracketing interval for a phase difference) involves less than
15 speed evaluations (generally between 5 and 10). An iter-
ation of Powell’s method consists of /N line minimizations,
where NV is the number of parameters. Therefore, it takes
in the order of 10 [V fitness evaluations for one iteration of
Powell’s method (/V is between 2 and 6 for the configura-
tions that we tested, see next sections).?

In this article, a PC runs the optimization algorithm. In

8We tested structures with up to N=30 in simulation, see Marbach and
Ijspeert (2005)

11

Figure 11: Structure of the snake robot (top) and its CPG (bot-
tom). Oscillators are coupled bidirectionally between each other
(thick solid line).

contrast to locomotion control, a distributed approach is not
essential because the optimization algorithm has negligible
computational cost (compared to integration of the nonlinear
oscillators) and involves little communication (sending new
parameter values to all modules every 23 seconds).

5.3 Snake robot

The first robot structure in which we tested our approach is
a snake robot made of five active modules, plus one inactive
module, with all axes of rotations in parallel (Figure 11).
The CPG network is a chain of 5 coupled oscillators with
bidirectional couplings. The couplings between oscillators
correspond to the mechanical connections. The choice of
this robot structure was motivated by the fact that it has sev-
eral symmetries, which helps to reduce the number of pa-
rameters to optimize and allows us to do a comparison with
a systematic search over two parameters. In our case, we set
all offset parameters X; to zero and all frequency parame-
ters w; to 0.6m. We assume all modules to have the same
amplitude and phase lag parameters I?; = R and ¢;; = .
In other words, the CPG is constrained to produce traveling
waves whose amplitude and phase lag are determined by R
and ¢ respectively. The following parameters ranges are ex-
plored R € [0,0.6] and ¢ € [0,). Higher values for the
amplitude parameter can lead to self-collision between the
modules.

Figure 12 shows the exploration of the two-dimensional
parameter space by the Powell algorithm. Within less than
18 minutes, interesting gaits are found allowing the robot to
progress at 2.1 cm/second on average. Note that due to the
bracketing method of the optimization algorithms, parame-
ters sometimes jump to sub-optimal solutions and hence the
evolution of the speed measurements shows frequent drops.
Because this particular problem is relatively simple, only
three Powell iterations (first iteration from ¢ = 0 min to
t = 8 min, second iteration from ¢ = 8 min to ¢ = 16 min,
third until end: ¢ = 23 min) were needed before conver-
gence.

Snapshots of a learned gait are shown in Figure 13 (see
also Extension 2; Extension 1 shows an initial parameter
configuration for the snake robot). The gait is a caterpillar-

Figure 13: Snapshots of a learned gait in the snake robot. The robot is propelled by a traveling wave going from tail (left end with LED

marker) to head.

Speed [cm/s]

i
i
i
'
'
'
'
'
'
'
'
.
8

L L | L L L
12 14 16 18 20 22

10
Time [min]

Figure 12: Optimization with the snake robot. Top: variations
of the R and ¢ parameters, line with markers represents the phase
lag values (i), the single solid line the shared amplitude R. Bot-
tom: evolution of the measured speed. Iterations are divided by
vertical dashed lines, the thick solid line presents the values for the
line minimization using the last available speed value of a param-
eter optimization. Thin lines represent actual speed measurement
points.

like gait in which an undulation of body deformation travels
from the robots tail to head. The amplitude of the fastest gait
described in (Figure 12) of the oscillations is approximately
34 degrees (0.59 rad), and the phase lag between modules is
46 degrees (0.81 rad). The total phase lag between head and
tail is (N — 1)0.81 = 4.05rad. This corresponds to a wave-
length of 27/4.05 = 1.55 body lengths. By increasing the
upper limit for R further increases of the speed are possible,
however for certain R-p parameter combinations the snake
structure can self-collide.’

Since the number of parameters is only two, we can com-
pare the results of the optimization with a systematic ex-
ploration of the parameter space. We carried out 81 speed
measurements in the same ranges as for Powell’s optimiza-
tion, with 9 different equally spaced values for both param-
eters. As can be observed in Figure 14, the speed function
is relatively smooth for this robot, with an optimum around
R = 34 degrees and ¢ = 50 degrees. Six repetitive runs
of Powell’s method on the two-parameter snake-robot show
parameter combinations and speed results in the same region

9Self-collision happens if the snake robot is bent by half a period of its
own length, describing a circle.

12

as the maximum of the systematic search (see optimization
results in Table 1 and Figure 14).

We regard therefore Powell’s method as being equivalent
or better than a fine-grid systematic search in the case of a
two-parameter search.!” However unlike Powell’s method a
systematic search is not scalable when using up to 6 param-
eters (95 = 531441 evaluations would be necessary in this
case).

As can be seen in Figure 12 and in Table 1 the algorithm
may find intermediary speed measurements that are higher
than the final value after convergence of the Powell algo-
rithm. This is because of the intrinsic noise in the measure
of speed and due to the small time window we use to esti-
mate speed (see also the variance in speed measurement for
two gaits: Figure 21). We found out that converged solu-
tions tend to be more robust than intermediary fastest-speed
(Umazval) parameter results.

Table 1: Results for 6 experiments, snake robot with 2 parameters.
tmazval 1S the time until first maximal speed values show up, ¢ finai
the time of convergence of the algorithm.

€XPp. Umazval tmazval Ufinal tfinal

1 2.3[cm/s] 19[min] 1.9[cm/s] 36 [min]
2 2.1[cm/s] 11[min] 1.9[cm/s] 23 [min]
3 2.1[cm/s] 27 [min] 2.1[cm/s] 27 [min]
4 2.1[cm/s] 19[min] 2.1[cm/s] 19 [min]
5 2.1[cm/s] 11[min] 2.1[cm/s] 31 [min]
6 23[cm/s] 8[min] 2.2[cm/s] 19 [min]

5.4 Tripod robot

We tested the approach on a robot structure with three limbs
(Figure 15). The tripod robot is made of 7 modules, one
of them being a non-actuated extension of the leg. Simi-
larly to the snake robot, the couplings in the CPG network
match the mechanical connections between modules. We
assumed a left-right asymmetry, as well as symmetries be-
tween limbs. The number of parameters to be optimized is
six (see Table 2). The value range for R; was chosen to pre-
vent the robot from self-collision, X, covers the range from
0 to 90 degrees. Higher values would make the motors run
continuously into their mechanical blocks (RC servomotors
are restricted to a 180 degrees range), or the outer modules

10We are using relatively fine and general tolerance values for Powell
and Brent. If needed they can be adapted to a specific structure and opti-
mization, what would reduce the amount of necessary evaluations.

0.02

Amplitude R [rad]

0.314

0.942 157 2.198

Phase lag ¢ [rad]

2.826

Figure 14: Systematic search with the snake robot. Overlaid
are the speed evaluations from experiments using Powell’s method
in the same parameter range. Final speed values using Powell’s
method (average over six experiments) is v = 2.05 cm/s, the sys-
tematic search (one experiment) finds v = 2.06 cm/s.

would wiggle continuously in the air. @15 = @34 = 56
describes the phase difference from the inner modules to-
wards the outer modules (e.g. in Figure 15 from module 1 to
2, vice versa —pa1), @13 and @35 phase lags in between the
inner modules. The tripod robot shows for its inner modules
a circular mechanical structure. By forming a closed loop
the interoscillator coupling rule must be applied:

Psum = P13 + P35 + Pmodulo (8)
Phase l1ag ¢pmoduio = 51 = —15 is therefore filled up
automatically by the controlling software to close the circle
(¢sum being a multiple of 27).

Table 2: Open parameter description and range for the tripod
robot.

Parameter Description Range
R; Amplitude inner modules [0, /4]
R, Amplitude outer modules [0,7/2]
X, Offset outer modules [0,7/2]

(p12=34=56 Phase lag inner-outer modules |0, 27
©13 Phase lag 1 inner modules 0,2m
35 Phase lag 2 inner modules [0, 27]

Figure 16 shows a typical evolution of the six parame-
ters and the corresponding speed measurements. The opti-
mization took three Powell iterations to converge (first iter-
ation from ¢ = Omin to ¢ = 17 min, second iteration from
t = 17min to ¢ = 36 min, dashed vertical lines). Already
within 25 minutes interesting gaits are found. The fastest
gaits move around 5.5 cm/s, final gaits around 5.1 cm/s. We
repeated the experiment six times, maximum speed values
are given in Table 3. As for the snake robot, intermedi-
ate speed measurements are sometimes higher than the final
ones because of the noise in speed measurement. The final

13

Figure 15: Structure of the tripod CPG (left) and the tripod robot
(right). Solid lines show the bidirectional couplings between os-
cillators. The inner nodes (1, 3 and 5) form a closed loop of in-
teroscillator couplings.

[rad]
o %o b o o o

Speed [cm/s]
F—F—

25 0
Time [min]

Figure 16: Optimization with the tripod robot. Top: variations
of the six network parameters. Bottom: evolution of the measured
speed.

parameter combination shows usually a more robust behav-
ior than the first found maximum.

Table 3: Best and final parameter combinations for 6 optimization
experiments, using the tripod robot.

€Xp. Umazval tmazval VUfinal tfinal

1 5.5[cm/s] 27[min] S5.1[cm/s] 56[min]
2 6.0[cm/s] 28[min] 4.0[cm/s] 43[min]
3 5.1[cm/s] 41[min] 5.1[cm/s] 41[min]
4 4.5[cm/s] 33[min] 2.8[cm/s] 55[min]
5 4.1[cm/s] 27[min] 5.6[cm/s] 64[min]
6 5.3[cm/s] 28[min] 4.0[cm/s] 93[min]

Snapshots of the best gaits, a crawling gait using the
whole body, is illustrated in Figure 17 (see also Extension
4). Tt uses two legs to pull forward, while the third leg slides
behind. At this position the outer modules of the pulling legs
points downwards, the third leg has a phase lag such that its
outer module points upwards, providing a low friction value.
As the two-leg-pulling phase is finished, the third leg points
its outer module downwards, fixing the tripod robot against
further movement. At the same time the synchronous work-

g i i l i - PP _-‘i_,rl ” inl

Figure 17: Snapshots of the learned gait in the tripod robot (see also Extension 4; Extension 3 shows an initial gait). The tripod uses two

legs in front, and pulls one leg behind.

Figure 18: Quadruped robot (right) and its CPG structure (left).
Solid lines show the bidirectional couplings between oscillators.
The inner nodes (1, 3, 5 and 7) form a closed loop of interoscillator
couplings.

ing two legs point their outer modules in the air. The final
parameter distribution is possible in several variations be-
cause of several possible symmetry lines for the tripod robot.

During the experiments the tripod robot often developed
a gait that was not going straight but slightly in circles, only
some gait patterns featured straight forward locomotion. For
both cases maximum speed values up to 6 cm/s are reached.
Because this gaits can derive from noisy measurements, we
normally use more robust parameter combinations provided
by the final values of an optimization. For Figure 16 this
would refer to gaits in the time range from 55 min until the
end of the experiment, rather than the very maximum point
at 26 min.

5.5 Quadruped robot

By using an empty YaMoR shell in the center we assembled
a quadruped robot (Figure 18) with the general orientation
of the degrees of freedom staying the same as in the tripod
robot configuration. The CPG structure for the quadruped
robot is very similar to the CPG-tripod structure, only the
inner circle of oscillators has four instead of three nodes.
Each inner node is connected to one outer oscillator via the
same phase lag (©12 = Y34 = P56 = P78)-

The quadruped robot configuration introduces one new
variable (57 (compared to the tripod configuration). How-
ever the symmetry of the quadruped structure gives us the
opportunity to actually decrease the amount of open param-
eters for the optimization as follows. We induce a sym-
metry for the inner phase relations by fixing the phase lag
(p13 between two neighboring modules (1 and 3, Figure 18).
The same for node 5 and node 7 (p57). This fixed value
now shows up twice, plus one open phase parameter (35),

14

M

Speed [cm/s]

R P <Y
L B e

°

30 0
Time [min]

Figure 19: Powell’s optimization for the quadruped robot, with
five open parameters.

and the computed fourth phase value (71 = ©moduio) fOr
the closed 100p (Ysum must be a multiple of 27): Ysum =
©13 + ©35 + P57 + Omodulo- We set 13 = 57 = Orad.
This “seeded” value for both phase lags makes the corre-
sponding legs move with a right angle in respect to each
other at all time.!! Because only ¢35 is left open in this
configuration, overall 5 open parameters remain to be opti-
mized. The choice for the above introduction of symmetries
and the seed value will likely restrict the amount of possible
solutions. However the implicit introduction of symmetry
for the inner cycle derived from experience with the tripod
robot, looking for a fast convergence towards straight gaits.
As we can show with the following results, it leads to fast
online learning of good gaits for a complex robot structure
such as the quadruped robot.

Figure 20 shows an evolved gait (see also Extension 6;
Extension 5 shows an initial configuration), where the am-
plitudes R; ([213,5,7) of the inner modules are relatively
small. This gait patterns propel the robot in an almost
straight line (looking at it over several oscillation cycles).
A simplified description of the particular gait looks at two
opposing legs: they work as a bridge, with the center of the
robot in the middle. By oscillating around their foot con-
tact points two opposing legs bend the rest of the body for-
ward, while the other two legs are mostly in the air. As

1T An abstraction of the quadruped robot can be two triangles, being con-
nected by one of their tips and moving around this connection point.

Figure 20: Snapshots of the learned gait in the quadruped robot. The center of the robot describes a zig-zag trajectory in the horizontal

layer (with two steps per cycle).

soon as this movement is finished (after half a cycle time),
the remaining two legs repeat exactly the same movement,
but in a perpendicular direction. What results is a zig-zag
gait (two steps over one cycle time) when looking at the
center of the robot. All of the evolved gaits during six ex-
periments showed derivations of the above simplified pat-
terns. However several nuances of gaits are found at conver-
gence time. Mainly gaits with higher values for R; tend to
slightly self-turn by small increments (with a global straight
motion), whereas gaits with small R;-values move as in the
snapshots.

Similar to the tripod robot the quadruped robot is using
not only the tip points of the outer modules for locomotion,
but the surface of single or several legs (this depends largely
on the values for the outer modules amplitudes, R, and their
offsets X,). Extreme maximum speed measurement points
show patterns that slide single or several legs rather then
precisely lifting a leg up, bringing it forward and putting it
down again. Complex movement patterns are not predefined
in this framework, but can evolve if several degrees of free-
dom are connected in series (as in case of a leg with two
joints) and the optimization method evaluates the derived
gait as successful.

In the case of the quadruped robot the mechanical degrees
of freedom are never all ideally positioned for straight loco-
motion because of the star structure. That is why a zig-zag
gait is possibly an optimal solution for a quasi-straight gait.
During half a cycle period two opposing legs co-work and
propel the robot forward, either along the axis colinear to
these legs or by an axis perpendicular through the center of
the body.

Table 4: Experimental results from six experiments using Pow-
ell’s method with the quadruped robot, optimization with five open
parameters. The first and the last experiment show at the conver-
gence of the algorithm relatively poor results. Good gaits have
average speed values of 3.5 cm/s.

€Xp. Umazval tmazval VUfinal tfinal
1 2.7[cm/s] 17[min] 2.6[cm/s] 30[min]
2 33[cm/s] 30[min] 3.2[cm/s] 40[min]
3 3.6[cm/s] 15[min] 3.5[cm/s] 32[min]
4 45[cm/s] 41[min] 3.5[cm/s] 65[min]
5 3.7[cm/s] 60[min] 3.7[cm/s] 60[min]
6 4.0[cm/s] 25[min] 2.0[cm/s] 95[min]

Table 4 shows a list of speed values resulting from the
fastest gait (usually an intermediate point) and the gait

6 6
5 5
o
E 4 4
2,
23 3
(]
joN
n
2 2
1 1
0 0
0 0.2 0.4 0 0.2 0.4
v [rad/s] v [rad/s]

Figure 21: Test of the speed control with the quadruped robot:
two of the fastest gaits are used. The frequency of the oscillators is
gradually increased from 0.1 [rad/s] to 0.5 [rad/s], the experiment
was repeated six times. Data points and error bars correspond re-
spectively to the average and standard deviation of six trials per
gait. (left) gait A (right) gait B.

at conversion time. The optimization process of optimal
gaits seemed more difficult e.g. comparing it to experiments
with the tripod robot. We observed that speed values from
evolved gaits are smaller than the ones of the tripod robot
(about 1.5 cm/s).

Although chosen with care, our restriction to five open
optimization parameters is likely one reason. By opening
further degrees of freedom to the optimization algorithm we
expect better results. The necessary precise coordination of
the four legs and a constantly shifting center of mass (our
quadruped robot has no “backbone”, hence no implemented
mechanical preferred locomotion direction) makes the opti-
mization of such a structure especially challenging.

5.6 Changing frequency

We were interested in exploring how the speed of locomo-
tion can be varied by changing the frequency v (v; = 5*).
Figure 21 shows the speed results obtained with two good
gaits selected out of the experiments with the quadruped
robot from the previous chapter when v is changed in the
range of [0.1, 0.5] rad/s. Both gaits have approximately
the same speed (3.5 cm/s) at v = 0.3 rad/s. For both gaits,
the speed can be adjusted monotonically with the frequency,

and interestingly the relation is almost linear in the given

frequency range. This means that the frequency is a useful
open parameter to control speed. Note that we could not
properly explore frequencies higher than 0.5 rad/s because
these frequencies draw a lot of power from the YaMoR mod-
ules, which regularly result in resetting the microcontrollers
of some modules. For higher frequencies, it is expected that
speed will at some point saturate and even decrease because
of slippage.

6 Discussion

We have developed a framework for learning to move with
modular robots using central pattern generators and online
optimization. The main contributions of this work are the
following: a distributed implementation of a CPG that of-
fers an ideal substrate for producing locomotion patterns and
for online learning, a Bluetooth communication protocol for
coordinating multiple modules, and an optimization frame-
work for fast learning.

As discussed in the introduction, the CPG model has sev-
eral interesting features that make it well suited for modular
robotics. First, it can readily be implemented in a distributed
fashion. As shown in the robotic experiments, each module
runs its own nonlinear oscillator. In the YaMoR module, a
single oscillator is sufficient because the module has only
one degree of freedom, but more could easily be added if
there were additional actuators. Second, the distributed net-
work of oscillators is robust against sparse communication
and time delays in the communication. Indeed, the transfer
from our tests in Matlab to the hardware implementation did
not present any difficulty. Furthermore, the synchronization
properties of system of coupled oscillators offer interesting
features such as robustness against differences in clock fre-
quencies of the multiple microcontrollers involved, as well
as the possibility to dynamically add or remove oscillators
in the network (e.g. through the addition or removal of mod-
ules, see below). Finally, the limit cycle behavior of the CPG
allows one to abruptly change parameters in the CPG while
the CPG is running. Despite the abrupt changes, the os-
cillating output signals smoothly converge towards the new
oscillation pattern (the new limit cycle) after a short tran-
sient period. This feature allowed us to run the optimization
algorithm in parallel to the CPG without needing to stop and
reset the robot. It is also a feature that is useful for modu-
lating the speed and direction of locomotion by changing
frequency and/or amplitude parameters (see Lachat et al.
(2006) for instance). Moreover, the smooth modulation of
set-point trajectories helped preventing damage in the motor
and gearbox of the servomotors. Indeed we did not have any
damaged servomotor during all our tests and experiments
(more than 40 hours of extensive use in total for some of the
modules).

The Bluetooth communication protocol used with the
YaMoR modules has greatly simplified the rapid construc-
tion and control of different robotic structures, since there
is no need to electrically connect modules together. With
the help of our Scatternet protocol, Bluetooth provides a

16

Phase lag inner-outer module [rad]

Figure 22: Example of a 2D slice of the search space for our
quadruped robot with the above CPG network. The fine-grid sys-
tematic search was done in simulation (64x64 data points, cubic
interpolation for the plot), work by Yerly (2007). White areas cor-
respond to higher speed, black areas to low speed.

transparent communication system that is easy to use. The
protocol automatically learns the shortest path through the
network and provides broadcast functionality. Via remote
control, every other Bluetooth device that belongs to a Scat-
ternet can be controlled from a single device. Wireless com-
munication networks have however the drawback that they
are normally less efficient than networks based on wires.
The latest Bluetooth 2.0 standard supports data rates up to
2.1 MBit/s which is much smaller than data rates that can be
achieved with a communication based on wires. However,
with our modular robot we can show that even data rates of
721 KkBit/s are sufficient for autonomous control strategies
based on CPGs. If higher data rates are needed we propose
to use a hybrid communication system. Wired communica-
tion can be used while the modules of the robot remain in
a fixed mechanical structure, while wireless communication
could be used when the robot is in the process of a reconfig-
uration, between the modules of different modular robots,
and/or between a control center like a PC and the modular
robots.

The optimization based on Powell’s method has led to in-
teresting gaits in a very short time. The approach is faster
than a genetic algorithm by at least one order of magnitude
(see comparative tests in simulation by Marbach and Ijspeert
(2005)). For all trials with the different robot structures,
it managed to significantly improve the speed of locomo-
tion compared to initial random values. The strength of the
algorithm is its rapid convergence to a local optimum. Its
weakness is that it can relatively easily miss global optima
(compared to stochastic methods such as genetic algorithms,
particle swarm optimization, or simulated annealing).

In our tests, we however had the good surprise that the
algorithm tended to evolve to gaits of the same high qual-
ity for different trials with the same robot, and only rarely

converged to bad solutions. The likely reason for this is that
although the search space presents multiple local optima,
the regions close to the global optima are rather large and
“flat” (rather than peaked). This is what we observed when
we made a very fine-grid systematic search in a 2D slice
of the search space of the quadruped robot using a simula-
tor (Figure 22). This means that finding near optimal solu-
tions was not too difficult for the optimization algorithm for
these three types of robots and their given search spaces. Of
course, it remains to be seen if this is valid for more complex
robots and/or larger search spaces, as discussed later.

We are currently extending this work in several direc-
tions. First of all we are repeating the experiments with a
larger variety of robot structures and more trials per struc-
ture. The goal is to better characterize the optimization and
to test whether the approach can deal with structures that
have more open parameters. While the tests presented here
are promising, they were obtained by restricting the size of
the search spaces using symmetries in the robot structures.
In order to be more generic, it is important to run the op-
timization algorithm in a larger search space (and to mon-
itor how much time is needed to find interesting solutions)
and/or to have the robot modules discovering their symme-
tries on their own by exploring the topology of the mechan-
ical couplings.

Another experiment that we are carrying out is learning
with dynamically changing robot structures, e.g. with the ad-
dition or removal of limbs. It is possible to add a mechanism
that monitors whether modules are added or removed and/or
whether the speed of locomotion drops, and that restarts the
optimization algorithm accordingly. We obtained promis-
ing results in preliminary experiments. This will provide
the robot with life-long learning and hence the capacity to
deal with changing structures and/or environments. This
is a very valuable feature for self-reconfigurable modular
robots. In this framework, it would be interesting to extend
the optimization algorithm with the possibility to search a
database of previously learned gaits in order to avoid re-
learning gaits for previously encountered structures or en-
vironments. The self-modeling approach proposed by Bon-
gard and colleagues (2006) could here be very useful for
monitoring changes and damages in robot structures, and
would nicely complete our online learning mechanism.

Note that one problem with online learning is the risk of
damaging the robots when testing bad locomotor patterns
(e.g. patterns that make the robot fall heavily or that pro-
duce and internal collisions). We did not address this prob-
lem here because the robot structures that we tested are not
capable of lifting themselves up far from the ground. But
this is certainly a problem that can occur in the more gen-
eral case. One solution that we could envision to limit this
risk is to run a simulator in parallel to the real robots, and
to test locomotor patterns in simulation before deciding to
send them to the real robot. The simulator would not be
used to quantitatively evaluate the locomotion (as discussed
earlier, we believe this should be done on the real robot in
its real environment), but only to filter out potentially dan-

17

gerous ones.

We are also exploring how to carry out optimization au-
tonomously on board of the robots. The optimization al-
gorithm could easily be implemented on a master module
(instead of the PC). The master module would estimate
its speed based on its own sensors (inertial sensors for in-
stance), and transmit CPG parameters to the other modules
at each evaluation step. More interesting, but also more dif-
ficult, would be to design an optimization algorithm that is
itself distributed among modules, and does not depend on a
master module.

Finally, locomotion is not useful if it cannot be modulated
by sensory information. We therefore intend to explore how
sensory information can be integrated in the CPGs for mod-
ulation of speed and direction of locomotion. See Kamimura
et al. (2004) for a nice example of entrainment between the
M-TRAN modules and a CPG model and of compensation
of drift phenomena. In related work, we demonstrated how
CPGs can continuously be modulated by sensory informa-
tion (Righetti and Ijspeert, 2008) for agile locomotion with
rapid changes of speed, direction and types of gait (Lachat
et al., 2006; Ijspeert, 2001), and also to adapt to the resonant
frequency of a compliant robot (Buchli et al., 2006a). The
challenge here is to do the same but with a distributed net-
work of sensors, and to learn how to best use and transmit
among modules the sensory information available in each
module.

Appendix A: Index to Multimedia Ex-
tensions

The multimedia extensions to this article can be found on-
line by following the hyperlinks from www.ijrr.org.

Table 5: Index to Multimedia Extensions

Ext. Media Description
type

1 Video Snake configuration, random gait

2 Video Snake configuration, efficient gait

3 Video Tripod configuration, random gait

4 Video Tripod configuration, efficient gait

5 Video Quadruped configuration, random gait

6 Video Quadruped configuration, efficient gait
Acknowledgment

We gratefully acknowledge the technical support of André
Guignard, Andres Upegui, André Badertscher and Philippe
Vosseler in the design and the construction of the robot mod-
ules. We also acknowledge Elmar Dittrich, Kevin Drapel,
Cyril Jaquier, Adamo Maddalena, Daniel Marbach, and
Michel Yerly for helping testing the modules and the algo-
rithms. This work was made possible thanks to the finan-

http://birg2.epfl.ch/movies/full/mpeg4/YaMoR/snake_bg.avi
http://birg2.epfl.ch/movies/full/mpeg4/YaMoR/snake_gg.avi
http://birg2.epfl.ch/movies/full/mpeg4/YaMoR/tripod_bg.avi
http://birg2.epfl.ch/movies/full/mpeg4/YaMoR/tripod_gg2.avi
http://birg2.epfl.ch/movies/full/mpeg4/YaMoR/quadruped_bg.avi
http://birg2.epfl.ch/movies/full/mpeg4/YaMoR/quadruped_gg.avi

cial support from the EPFL and the Swiss National Science
Foundation.

References

Aoi, S. and Tsuchiya, K. (2006). Stability analysis of
a simple walking model driven by an oscillator with a
phase reset using sensory feedback. IEEE Transactions
on Robotics, 22(2):391-397.

Arena, P., Fortuna, L., Frasca, M., and Sicurella, G. (2004).
An adaptive, self-organizing dynamical system for hi-
erarchical control of bio-inspired locomotion. I[EEE

Transactions on Systems, Man and Cybernetics, Part B,
34(4):1823-1837.

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamical
neural networks for adaptive behavior. Adaptive Behav-
ior, 1(1):91-122.

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient
machines through continuous self-modeling. Science,
314(5802):1118-1121.

Brent, R. (1973). Algorithms for Minimization without
Derivatives. NJ: Prentice-Hall.

Buchli, J., Iida, F., and Ijspeert, A. (2006a). Finding
resonance: Adaptive frequency oscillators for dynamic
legged locomotion. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS2006), pages 3903-3909. IEEE.

Buchli, J., Righetti, L., and Ijspeert, A. (2006b). Engineer-
ing entrainment and adaptation in limit cycle systems —
from biological inspiration to applications in robotics. Bi-
ological Cybernetics, 95(6):645—664.

Cohen, A. H., Holmes, P. J., and Rand, R. (1982). The na-
ture of coupling between segmented oscillations and the
lamprey spinal generator for locomotion: a mathematical
model. J. Math. Biol., 13:345-369.

Collins, S., Ruina, A., Tedrake, R., and Wisse, M. (2005).
Efficient Bipedal Robots Based on Passive-Dynamic
Walkers. Science, 307(5712):1082—-1085.

Conradt, J. and Varshavskaya, P. (2003). Distributed cen-
tral pattern generator control for a serpentine robot. In
International Conference on Artificial Neural Networks
(ICANN 2003).

Delcomyn, F. (1980). Neural basis for rhythmic behaviour
in animals. Science, 210:492—498.

Duff, D., Yim, M., and Roufas, K. (2001). Evolution of
polybot: A modular reconfigurable robot. In In Proc.
of the Harmonic Drive Intl. Symposium, Nagano, Japan,
Nov. 2001, and Proc. of COE/Super-Mechano-Systems
Workshop, Tokyo, Japan, Nov. 2001 .

18

Endo, G., Nakanishi, J., Morimoto, J., and Cheng, G.
(2005). Experimental studies of a neural oscillator for
biped locomotion with Q RIO. In Proceedings of the 2005
IEEE International Conference on Robotics and Automa-
tion (ICRA2005), pages 598-604, Barcelona, Spain.

Geng, T., Porr, B., and Worgétter, F. (2006). Fast biped
walking with a reflexive neuronal controller and real-time
online learning. International Journal of Robotics Re-
search, 3:243-261.

Grillner, S. (1985). Neural control of vertebrate locomotion
— central mechanisms and reflex interaction with special
reference to the cat. In Barnes, W. J. P. and Gladden,
M. H., editors, Feedback and motor control in inverte-
brates and vertebrates, pages 35-56. Croom Helm.

Gruau, F. and Quatramaran, K. (1997). Cellular encoding
for interactive evolutionary robotics. In Husbands, P. and
Harvey, 1., editors, Proceedings of the Fourth European
Conference on Artificial Life, ECAL97, pages 368-377.
MIT Press.

Ijspeert, A. (2001). A connectionist central pattern genera-
tor for the aquatic and terrestrial gaits of a simulated sala-
mander. Biological Cybernetics, 84(5):331-348.

Ijspeert, A. and Kodjabachian, J. (1999). Evolution and
development of a central pattern generator for the swim-
ming of a lamprey. Artificial Life, 5(3):247-269.

Ijspeert, A. J. (2008). Central pattern generators for loco-
motion control in animals and robots: a review. Neural
Networks, page In press.

Ijspeert, A. J. and Crespi, A. (2007). Online trajectory gen-
eration in an amphibious snake robot using a lamprey-like
central pattern generator model. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion (ICRA 2007).

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen,
J. M. (2007). From swimming to walking with a sala-
mander robot driven by a spinal cord model. Science,
315(5817):1416 — 1420.

Kamimura, A., Kurokawa, H., Toshida, E., Tomita, K., Mu-
rata, S., and Kokaji, S. (2003). Automatic locomotion pat-
tern generation for modular robots. In IEEFE International
Conference on Robotics and Automation (ICRA2003).

Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S.,
Tomita, K., and Kokaji, S. (2004). Distributed adap-
tive locomotion by a modular robotic system, M-TRAN
I. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS2004),
pages 2370-2377.

Kimura, H., Akiyama, S., and Sakurama, K. (1999). Real-
ization of dynamic walking and running of the quadruped
using neural oscillators. Autonomous Robots, 7(3):247—
258.

Kohl, N. and Stone, P. (2004). Policy gradient reinforcement
learning for fast quadrupedal locomotion. In Proceedings
of the 2004 IEEE International Conference on Robotics
& Automation, pages 2619-2624.

Kopell, N., Ermentrout, G. B., and Williams, T. L. (1991).
On chains of oscillators forced at one end. SIAM, Journal
of Applied Mathematics, 51(5):1397-1417.

Lachat, D., Crespi, A., and Ijspeert, A.J. (2006). Boxybot: a
swimming and crawling fish robot controlled by a central
pattern generator. In Proceedings of The first IEEE/RAS-
EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob 2006).

Lewis, M. A., Fagg, A. H., and Bekey, G. A. (1993). Ge-
netic algorithms for gait synthesis in a hexapod robot. In
Zheng, Y. E,, editor, Recent trends in mobile robots. World
Scientific.

Marbach, D. and Ijspeert, A. J. (2005). Online optimization
of modular robot locomotion. In Proceedings of the IEEE
Int. Conference on Mechatronics and Automation (ICMA
2005), pages 248-253.

Matsubara, T., Morimoto, J., Nakanishi, J., Sato, M., and
Doya, K. (2006). Learning CPG-based biped locomotion
with a policy gradient method. Robotics and Autonomous
Systems, 54:911-920.

Moeckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui,
A., and Ijspeert, A. J. (2006). Exploring adaptive loco-
motion with YaMoR, a novel autonomous modular robot
with Bluetooth interface. Industrial Robot, 33(4):285—
290.

Moeckel, R., Sproewitz, A., Maye, J., and Ijspeert, A. J.
(2007). An easy to use bluetooth scatternet protocol for
fast data exchange in wireless sensor networks and au-
tonomous robots. In Proceedings of the 2007 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pages 2801-2806.

Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H.,
Tomita, K., and Kokaji, S. (2002). M-tran: Self- reconfig-
urable modular robotic system. IEEE/ASME Transactions
on Mechatronics, 7(4):431-441.

Nakamura, Y., Mori, T., Sato, M., and Ishii, S. (2007). Re-
inforcement learning for a biped robot based on a cpg-
actor-critic method. Neural Networks, 20(6):723-735.

Nishii, J., Uno, Y., and Suzuki, R. (1994). Mathematical
models for the swimming pattern of a lamprey, i. analysis
of collective oscillators with time-delayed interaction and
multiple coupling. Biological Cybernetics, 72:1-9.

Ostergaard, E. H. and Lund, H. H. (2003). Evolving control
for modular robotic unit. In In Proceedings of CIRA’03,
IEEE International Symposium on Computational Intelli-
gence in Robotics and Automation, pages 886—892.

19

Paul, C. and Bongard, J. C. (2001). The road less travelled:
Morphology in the optimization of biped robot locomo-
tion. In Proceedings of The IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS2001).

Press, W., Teukolsky, S. A., Vetterling, W. T., and Flannery,
B. P. (1994). Numerical recipes in C : the art of scientific
computing, 2nd edition. Cambridge University Press.

Righetti, L. and Ijspeert, A. (2008). Pattern generators with
sensory feedback for the control of quadruped locomo-
tion. In Proceedings of the 2008 IEEE International Con-
ference on Robotics and Automation. Accepted for publi-
cation.

Righetti, L. and Ijspeert, A. J. (2006). Programmable central
pattern generators: an application to biped locomotion
control. In Proceedings of the 2006 IEEE International
Conference on Robotics and Automation (ICRA2006),
pages 1585-1590.

Salemi, B. and Shen, W. (2004). Distributed behavior col-
laboration for self-reconfigurable robots. In Proceed-
ings of the IEEE Conference on Robotics and Automation
(ICRA 2004).

Shen, W., Salemi, B., and Will, P. (2002). Hormone-inspired
adaptive communication and distributed control for self-
reconfigurable robots. [EEE Transactions on Robotics
and Automation, 18(5):1-12.

Shen, W., Will, P., Galstyan, A., and Chuong, C. (2004).
Hormone-inspired self-organization and distributed con-
trol of robotic swarms. Autonomous Robots, 17(4):93—
105.

Sigvardt, K. A. and Williams, T. L. (1996). Effects of local
oscillator frequency on intersegmental coordination in the
lamprey locomotor CPG: theory and experiment. J. of
Neurophysiology, 76(6):4094-4103.

Sims, K. (1994). Evolving 3d morphology and behavior by
competition. In Proceedings, Artificial Life IV, pages 28—
39. MIT Press.

Stoy, K., Shen, W., and Will, P. (2003). Implementing con-
figuration dependent gaits in a self-reconfigurable robot.
In Proceedings of the IEEE International conference on
Robotics and Automation (ICRA2003).

Sutton, R. and Barto, A. G. (1998). Reinforcement learning:
an introduction. MIT Press.

Upegui, A., Moeckel, R., Dittrich, E., Ijspeert, A. J., and
Sanchez, E. (2005). An fpga dynamically reconfigurable
framework for modular robotics. In Brinkschulte, U.,
editor, Workshop Procedings of the 18th International
Conference on Architecture of Computing Systems 2005
(ARCS’05). VDE Verlag, Berlin.

Vassilvitskii, S., Kubica, J., Rieffel, E., Suh, J., and Yim.,
M. (2002). On the general reconfiguration problem for
expanding cube style modular robots. In Proceedings of
the IEEE International Conference on Robotics and Au-
tomation (ICRA2002).

Vona, M. and Rus, D. (2000). Ta physical implementation
of the self-reconfigurable crystalline robot. In Proceed-
ings of the IEEE International Conference on Robotics
and Automation (ICRA2000), pages 1726—1733.

Weingarten, J. D., Lopes, G., Buehler, M., Groff, R. E., and
Koditschek, D. E. (2004). Automated gait adaptation for
legged robots. In Proceedings of the 2004 IEEE Inter-
national Conference on Robotics & Automation, pages
2153-2158.

Williams, T. L., Sigvardt, K. A., Kopell, N., Ermentrout,
G. B., and Rempler, M. P. (1990). Forcing of coupled
nonlinear oscillators: studies of intersegmental coordina-
tion in the lamprey locomotor central pattern generator. J.
of Neurophysiology, 64:862-871.

Yerly, M. (2007). Yamor lifelong learning. Master’s thesis,
EPFL.

Yim, M. (1994). Locomotion with a Unit Modular Reconfig-
urable Robot. PhD thesis, Stanford University Mechani-
cal Engineering Dept.

Zhang, Y., Fromherz, M., Crawford, L., and Shang, Y.
(2002). A general constraint-based control framework
with examples in modular self- reconfigurable robots. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS2002).

20

	Introduction
	Related work
	The modular robotic system YaMoR
	Mechanical and electronic design
	Bluetooth communication protocol
	Advantages of Bluetooth
	Drawbacks of Bluetooth
	Scatternet Protocol
	Implementation of the Scatternet protocol

	Locomotion control
	CPG model
	Optimization algorithm

	Results
	Suitability of CPGs for modular robots
	Sparse communication and temporary loss of connection
	Communication delays

	Experimental setup with the YaMoR robots
	Snake robot
	Tripod robot
	Quadruped robot
	Changing frequency

	Discussion

