Dynamics systems vs. optimal control a unifying view

In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

Published in:
Progress in Brain Research, 165, 425-445

Note: The status of this file is: Involved Laboratories Only

 Record created 2008-03-14, last modified 2019-05-16

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)