
1

Reliable Distributed Storage
Gregory Chockler, Rachid Guerraoui, Idit Keidar, Marko Vukolić

Abstract— Storage is nowadays commonly provided as
a service, accessed by clients over a network. A distributed
storage service provides clients with the abstraction of
a single reliable shared storage device, using a collec-
tion of possibly unreliable computing units. Algorithms
that implement this abstraction vary according to many
dimensions, including their complexity, the consistency
semantics they provide, the number and types of failures
they tolerate, as well as the assumptions they make on
the underlying architecture. Certain tradeoffs have to be
addressed and the choices are tricky.

Index Terms— Distributed algorithms, storage, reliabil-
ity, failures.

MOTIVATION

Distributed storage systems are becoming increasingly
popular with the advent of Storage Area Network (SAN)
and Network Attached Storage (NAS) technologies, as
well as the increasing availability of cheap commodity
disks. These systems cope with the loss of data using
replication, whereby data is stored in multiple basic
storage units (disks or servers), called base objects.

An important goal for such systems is providing high
availability: the storage should remain available at least
whenever any single server (or disk) fails; sometimes
more failures are tolerated. The resilience of a distributed
storage system is defined as the number t out of n base
objects (servers or disks) that can fail without forgoing
availability and consistency. The resilience level dictates
the service’s availability. For example, if every server
has an uptime of 99%, then by storing the data on a
single server, one gets two nines of availability. If the
data is replicated on 3 servers (i.e., n = 3), and the
solution tolerates one server failure (t = 1), then the
service availability is close to four nines (99.97%).

A popular way to overcome disk failures is using
RAID (Redundant Array of Inexpensive Disks) tech-
nology [11]. RAID systems, in addition to boosting
performance (e.g., using striping), use redundancy (either
mirroring or erasure codes) to prevent the loss of data
following a disk crash. However, a RAID system is gen-
erally a single box, residing at a single physical location,
accessed via a single disk controller, and connected to
clients via a single network interface. Hence, it is still a
single-point-of-failure.

In contrast, a distributed storage system emulates (i.e.,
provides the abstraction of) a robust shared storage
object by keeping copies of it in several places, in order
to have data survive complete site disasters. This can
be achieved using cheap commodity disks or low-end
PCs for storing base objects. It is typical to focus on the
abstraction of a storage object, that supports only basic
read and write operations by clients, providing provable
guarantees. The study of these objects is fundamental,
for these are the building blocks for more complex
storage systems. Moreover, such objects can be used, for
example, to store files, which makes them interesting in
their own right.

CHALLENGES

An important challenge one faces when designing a
distributed storage system is asynchrony. Since clients
access the storage over a network (e.g., the Internet, or
a mobile network), access delays may be unpredictable.
This makes it impossible to distinguish slow processes
from faulty ones and forces clients to take further steps
possibly before accessing all non-faulty base objects.
Whilst a distributed storage algorithm can make use of
common-case synchrony bounds to boost performance
when these bounds are satisfied, it should not rely on
them for its correctness. If chosen aggressively, such
bounds might be violated when the system is overloaded
or the network is broken. If chosen conservatively, such
bounds might lead to slow reactions to failures.

A distributed storage algorithm implements read and
write operations in a distributed fashion; that is, by
accessing a collection of base objects and processing
their responses. Communication can be intermittent and
clients may be transient (i.e., they may come and go).
Implementing such a storage is however not trivial.
Suppose we are implementing a read/write object x that
has to remain available as long as at most one base
object crashes. Consider a client Alice performing a
write operation, writing “I love Bob” to x. If Bob later
performs a read operation on x, then Bob must access
at least one base object to which Alice wrote in order to
read the text. Due to our availability requirement, Bob
must be able to find such an object even if one base
object fails. The difficulty is that, due to asynchrony, a
client can never know for sure whether a base object



2

has really failed, or only appears to have failed due to
excessive communication delays. Assume, for example,
that Alice writes the text to only one base object, and
skips a second base object that appears to her to be faulty
albeit it is not (see Fig. 1(a)). Then the base object Alice
does write to may eventually fail, removing any record of
the text, thus preventing Bob from completing his read.
Clearly, Alice must access at least two base objects in
order to complete the write. In order to allow Alice to do
so when one base object fails, the system should include
at least three base objects (assuming two are correct).

Matters become even more complicated if clients or
base objects can be corrupted; such corruption can hap-
pen for various reasons, ranging from hardware defects
in disks, through software bugs, to malicious intrusions
by hackers (possible when storage is provided as a
service over a network). In these cases, it is typical
to talk about arbitrary (sometimes called Byzantine,
or malicious) faults: An entity (client or base object)
incurring an arbitrary fault can deviate from the behavior
prescribed by its implementation in an arbitrary (uncon-
strained) manner.

A distributed storage system typically uses access
control, so that only legitimate clients access the service.
Yet it is desirable for the system to function properly
even in the face of password leaks and compromised
clients. In this context, it is important to differentiate
between clients who are only allowed to read the data
(called readers), and clients who are allowed to modify it
(writers). Storage systems usually have many readers but
only a few writers (possibly a single writer). Therefore,
protection from arbitrary failures of the readers is more
important. Moreover, a faulty writer can always write
“garbage” into the storage, rendering it useless. Hence,
one typically attempts to overcome arbitrary client fail-
ures only by readers and not by writers. The latter are
assumed to be authenticated and trusted; still, any writer
may fail by crashing.

In short, distributed storage algorithms face the chal-
lenge of overcoming asynchrony and a range of fail-
ures, without deviating significantly from the consistency
guarantees and performance of traditional (centralized)
storage. Such algorithms vary in several dimensions: in
the consistency semantics they provide; in their resilience
(number and types of failures tolerated); in their archi-
tecture (whether the base objects are simple disks or
more complex servers); and in their complexity (e.g.,
latency). Clearly, there are many tradeoffs: for example,
providing stronger consistency or additional resilience
impacts complexity.

A SIMPLE STORAGE ALGORITHM

The classical algorithm of Attiya, Bar-Noy and Dolev
(ABD) [3] illustrates the typical modus operandi of
distributed storage algorithms. This algorithm overcomes
only crash failures, of both clients and base objects.
ABD implements a single-writer multi-reader storage
abstraction. That is, only one client, Alice for instance,
is allowed to write to the storage. Other clients only
read. ABD implements atomic objects; that is, it gives
clients the illusion that accesses to the shared storage are
sequential (occurring one client at a time), although in
practice many clients are concurrent. In general, ABD
tolerates t crash failures out of n = 2t + 1 base objects
(which is optimal).

The algorithm is invoked by a client wishing to per-
form a read or write operation, and it proceeds in rounds.
In each round, the client sends a message to all base
objects and awaits responses. Since t base objects may
crash, a client should be able to complete its operation
upon communicating with n − t base objects. Due to
asynchrony, the client may “skip” a correct albeit slow
object when there are actually no failures.

Consider a system with three base objects, of which
one may fail (t = 1, n = 3). Say Alice attempts to write
“I love Bob” to all base objects, but her message to
one of them is delayed, and she completes her operation
after having written to two. Now Bob performs a read
operation, and he also accesses only two base objects.
Of these two, at least one was written by Alice. Thus,
Bob obtains the text “I love Bob” from at least one
base object. However, the second object Bob accesses
may be the one Alice skipped, which still holds the
old text “I love cheese”. How can Bob know which
value is the up-to-date one in this case? To this end, Al-
ice generates monotonically increasing timestamps, and
stores each value along with the appropriate timestamp.
For example, the text “I love cheese” is associated with
the timestamp 4, and the later text, “I love Bob”, with
timestamp 7. Thus, Bob returns the text associated with
the higher timestamp of the two (see Fig. 1(b)).

More specifically, in ABD, the write(v) operation is
implemented as follows: the writer increases its local
timestamp ts, and then writes the pair 〈v, ts〉 to the base
objects. Writing is implemented by sending write-request
messages containing 〈v, ts〉 to the base objects. Upon
receiving such a message, a base object checks if ts is
higher than the timestamp stored locally. If it is, the base
object updates its local copies to hold v and ts. In all
cases, the object replies with an acknowledgment to the
writer. When the writer receives acknowledgments from
n − t base objects, the write operation completes.



3

The read operation invokes two rounds: a read round,
and a write-back round. In the read round, a reader sends
a read-request message to all base objects. A base object
that receives such a request responds with a read-reply
message including its local copies of v and ts. When the
reader receives n− t replies, it selects a value v ′ and the
corresponding timestamp ts′, such that ts′ is the highest
timestamp in the replies. In the write-back round, the
reader writes the pair 〈v′, ts′〉 to the base objects, as in
the write operation described above.

The write-back round is required to ensure atomicity
(i.e., that the emulated object is atomic): it guarantees
that, once a read returns v′, every subsequent reader will
read either v′ or some later value. Without this round,
ABD ensures only weaker semantics, called regularity
(see Consistency Semantics sidebar).

For example, assume Alice begins a write operation,
but after she manages to update one base object, her
network stalls for a while, and her messages to the
remaining base objects are delayed. In the interim, Bob
invokes a read operation. Since Alice’s operation has
been initiated but is incomplete, it can be serialized either
before or after Bob’s read operation. If Bob encounters
the single object Alice updated, then Bob returns the
new value, with the highest timestamp. Assume that
after Bob completes its operation, another reader, Carol,
invokes a read. Carol may skip the single base object that
Alice already wrote to. If Bob writes back, then Carol
encounters the new value in another base object (since
Bob writes to n− t), and returns it. But if write-back is
not employed, Carol returns the old value. This behavior
violates atomicity, because Carol’s operation returns an
older value than the preceding operation by Bob (see
Fig. 1(c)).

In order to support multiple writers, the write opera-
tions can be extended to two rounds. In the first round,
a writer collects the latest timestamps from all base
objects, selects the highest timestamp, which the writer
then increments in the second round. The first round is
required to ensure that a new write uses a timestamp
higher than every previous write, and is only needed
when there are multiple writers. The second round is
identical to the original, single-writer, write operation.

Due to the use of monotonically increasing timestamps
that may grow indefinitely, ABD’s storage requirements
are potentially unbounded. However, timestamps typi-
cally grow very slowly, and are therefore considered
acceptable in practice.

ABD is simple, and yet it achieves many desirable
properties: atomicity, unconditional progress to all clients
(called wait-freedom), and resilience to the maximum
possible number of crash failures. However, it does not

(a) Bob returns an outdated value as it accesses only one base
object.

(b) With an additional base object, Bob is able to return the
latest written value.

(c) A write-back is needed if multiple readers are involved.

Fig. 1. Illustrating a simple distributed storage algorithm.

cope with arbitrary failures.

COPING WITH ARBITRARY BASE-OBJECT FAILURES

There are two principal models in which arbitrary
failures are considered, differing in the cryptographic
mechanisms employed. The first, called the authenti-
cated model, employs unforgeable digital signatures. The
second model, called unauthenticated, makes no use of
signatures, and assumes only that the immediate message
source may be verified. Arbitrary client failures are much



4

CONSISTENCY SEMANTICS

Lamport [8] defines three universally accepted consis-
tency guarantees for a read/write storage abstraction:
safe, regular and atomic.
Safe storage ensures that a read that is not concurrent
with any write returns the last value written. Unfor-
tunately, safety is insufficient for most applications of
distributed storage, since a read concurrent with some
write may return an arbitrary value. Regular storage
strengthens safety by ensuring that read always returns
a value that was actually written, and is not older than
the value written by the last preceding write.
Although regular storage provides sufficient guaran-
tees for many distributed storage applications, it still
fails to match the guarantees of the traditional, se-
quential storage. The latter is captured by the notion
of atomicity, which ensures the linearizability [7]
of read/write operations, providing the illusion that
the storage is accessed sequentially. Regular storage
may fail to achieve such a level of consistency when
two reads overlap the same write. This drawback of
regular storage is known as new-old read inversion
(Figure 1(c) depicts an example). Atomic storage
overcomes this drawback, by ensuring that a read does
not return an older value than returned by a preceding
read (in addition to regularity).

easier to deal with in the former: the techniques used are
not very different from those used in the simple crash-
failure model (see Arbitrary Failures with Authentication
sidebar), aside for the lower resilience. Namely, in both
models, n = 2t+1 servers no longer suffice to overcome
t arbitrary base object failures (see Optimal Resilience
sidebar). However, an important drawback of the au-
thenticated model is in the high overhead for computing
unforgeable signatures.

In the unauthenticated model, where signatures are
unavailable, in order for a read to return a value v, v

must appear in at least t + 1 responses. This makes
achieving optimal resilience (i.e., n = 3t+1) quite tricky.
Consider the following scenario with n = 4, t = 1.
Alice invokes write(“I love Bob”), which completes after
accessing three of the base objects; the fourth appears to
be faulty. But of the three base objects that respond, one
is really faulty, whereas the one that has not responded is
simply slow. In this case, only two correct base objects
have stored “I love Bob”. Next, Bob invokes a read
operation. Bob receives “I love Bob” from one of these,
“I love cheese” from the out-of-date object, and “I hate

OPTIMAL RESILIENCE

A storage implementation is called optimally resilient
if it requires the minimal number n of base ob-
jects in order to tolerate t base object failures (in
the given failure model). In case of arbitrary fail-
ures, at least n ≥ 3t + 1 base objects are re-
quired in order to tolerate t failures [10]. To illus-
trate the lower bound, consider the following ex-
ample for the case that t = 1 and n = 3:

(1) A shared object is initialized to v0.
(2) Alice invokes write(v1), which reaches two of the
base objects, but her message to the third base object
is delayed due to asynchrony. Alice falsely perceives
the third object to be crashed, and the write completes
without waiting for this object.
(3) The second base object incurs an arbitrary failure
by “losing memory”, and reverting to v0. (Note that
this is possible even in the authenticated model, since
v0 was once a valid value). This leaves only the first
base object with information about v1.
(4) Bob invokes a read. Due to asynchrony, Bob
perceives the first base object as crashed, and reads v0

from the other two base objects (the faulty one and the
one that Alice skipped). Bob cannot wait for the first
base object, since this might have crashed. Therefore,
Bob returns an outdated value v0, violating safety.

Bob” from the faulty object. In order to ensure progress,
Bob does not await the fourth object, which appears as
faulty albeit it is not. In this situation, Bob has no way
of knowing which of the three values to return. Three
recent algorithms address this challenge using different
techniques, each making different assumption on the
underlying storage.

The first such algorithm is SBQ-L (Small Byzan-
tine Quorums with Listeners) due to Martin, Alvisi
and Dahlin [10]. SBQ-L implements multi-writer multi-
reader atomic storage, tolerating arbitrary failures of base
objects. It uses full-fledged servers that can actively push
information to clients. It provides atomicity and optimal-
resilience. The basic algorithm can be extended to over-
come client failures by having the servers broadcast



5

ARBITRARY FAILURES WITH AUTHENTICATION

With signatures, the ABD algorithm (Fig. 1) can be
simply transformed to handle arbitrary failures of
readers and up to t base objects, provided at least
n = 3t+1 base objects [9]. The writer, before sending
value v and a timestamp ts, signs these with its
private key. As in ABD, a write returns upon receiving
replies from n − t base objects. All readers possess
the corresponding public key, with which they can
verify that the data was indeed generated and signed
by the writer. Readers collect n−t responses from base
objects, of which at least one is correct and up-to-date.
Thanks to the use of digital signatures, the faulty base
object cannot “cook up” a bogus value with a higher
timestamp than the latest used by the writer. Therefore,
as in ABD, the reader can safely return the highest-
timestamped value it sees. In the write-back (second
round) of a read operation, readers communicate to
base objects the value with the highest timestamp,
along with the signature of the writer that base objects
verify (to overcome arbitrary reader failures).

updates among them.
SBQ-L addresses the optimal resilience challenge out-

lined above using two main ideas: First, before a value
v is returned by a read operation, v must be confirmed
by a at least n − t different base objects. Since a write
operation may skip at most t servers, and at most t may
be faulty, a value reported n− t ≥ t +1 times is always
received from at least one correct and up-to-date base
object. This high confirmation level also eliminates the
need for a write-back phase as in ABD, since once v

appears in n − t base objects it cannot be missed by
later reads.

At first glance, it may seem impossible to obtain
n − t confirmations of the same value, because a write
operation must sometimes complete without receiving
an acknowledgment from all the correct base objects
(as explained above). However, observe that even in this
case, the write operation does send write requests to all
base objects before returning, even if it does not await
all acknowledgments. Since all writers are assumed to
be correct, some process on the writer’s machine can
remain active after the write operation returns. SBQ-L
uses such a process to ensure that every write request
eventually does reach all base objects. The remaining
difficulty is that a read operation that samples the base
objects before the latest written value reaches all of them,
may find them in different states, so the reader cannot

be sure to find a value with n − t confirmations.
This is addressed by SBQ-L’s second main idea— a

Listeners pattern, whereby base objects act as servers
that push data to listening clients. If a read by Bob
cannot obtain n − t confirmations of the same value
after one read round, then the base objects add Bob to
their Listeners list. Base objects send all the updates they
receive to all the readers in the Listeners list. Eventually,
every update is propagated to all n − t of the correct
base objects, which in turn, forward the updates to the
pending readers (Listeners), allowing read operations to
complete.

One drawback of SBQ-L is that in the writer synchro-
nization phase of a write operation, writers increment the
highest timestamp they receive from potentially faulty
base objects. Hence, the resulting timestamp might be
arbitrarily large and the adversary may exhaust the
value space for timestamps. This issue was addressed by
Bazzi and Ding [4], who provide an elegant solution to
this problem using Non-skipping timestamps, whereby
writers select the t + 1st highest timestamp instead of
simply the highest one. However, this solution sacrifices
the optimal resilience of SBQ-L, employing n = 4t + 1

base objects.

TOLERATING CLIENT FAILURES

Recall that SBQ-L provides optimal resilience by
obtaining n − t = 2t + 1 confirmations of a value
returned in a read operation. In order to achieve so
many confirmations, SBQ-L relies on the fact that every
written value is eventually propagated to all correct base
objects, either by the writer (which is supposed never to
fail), or by active propagation among the base objects.
However, in a setting where the writer may fail and base
objects are passive disks, there is no way to ensure that
the written value always propagates to all correct base
objects. Consider a scenario with n = 4, t = 1, where
Alice writes “I love Bob” to three base objects, two of
them correct and one faulty, and then completes the write
operation, since she perceives the fourth base object as
faulty. Alice’s machine then crashes, before ensuring that
the update reaches the fourth base object. If the base
objects are passive, there is no active process that can
propagate the update to the final base object. If now
Bob initiates a read operation, Bob should return the
new value (to ensure safety), and yet it cannot get more
than 2 = t + 1 confirmations for this value.

In general, algorithms that achieve optimal resilience
with passive base objects and tolerate client failures
must allow read operations to return after obtaining as
few as t + 1 confirmations of the returned value. This



6

is one of the main principles employed by Abraham,
Chockler, Keidar, and Malkhi (ACKM) [2], who present
an optimally resilient single-writer multi-reader algo-
rithm tolerating client failures. Readers are prevented
from modifying the state of base objects, and hence
an unbounded number of arbitrary reader failures are
tolerated. The algorithm stores base objects on passive
disks, which support only basic read and write opera-
tions. Two variants are presented: one that implements
safe storage and ensures wait-freedom, and a second that
implements regular storage with a weaker liveness con-
dition, Finite-Write termination (FW-termination). This
condition slightly weakens wait-freedom in that a read
operation must complete only in executions in which a
finite number of write operations is invoked (hence the
name). All write operations are ensured to complete.

The write operation takes two rounds in ACKM (with
a single writer), and two timestamp-value pairs are stored
in each base object— pw (for pre-write), and w (for
write). In the first write round, the writer pre-writes the
timestamp-value pair, i.e., writes to the base objects’ pw

field. In the second round, it writes the same timestamp-
value pair in the w fields. In each round, the writer awaits
n − t = 2t + 1 acknowledgments from base objects.

To illustrate, consider Alice writing “I love Bob”, and
successfully updating two of the three correct base ob-
jects plus one faulty object. Once the write is complete,
“I love Bob” is stored with some timestamp, e.g., 7,
in the pw and w fields of two correct base objects.
If Bob now invokes a read round that accesses only
n− t = 3 base objects, he may encounter only one base
object holding 〈“I love Bob”,7〉 in both the pw and w

fields, while one correct base object returns an old value
〈“I love cheese”,4〉, and a faulty base object returns a
fallacious value, 〈“I hate Bob”,8〉 in both the pw and w

fields. This is clearly not sufficient for returning “I love
Bob” (at least t + 1 = 2 confirmations are required in
order to prevent faulty base objects from forging values).

On the other hand, Bob cannot wait for the fourth
object to respond, because Bob cannot distinguish this
situation from the case that all responses are from correct
base objects, and Alice has begun writing “I hate Bob”
with timestamp 8 after the first base object has already
responded to Bob, but before the third did. Since Bob can
neither return a value nor wait for more values, it must
invoke another read round to gather more information.
This is exactly what ACKM does in such situations to
ensure regular semantics. If “I hate Bob” was indeed
written by Alice, then in the new read round, two correct
base objects should already hold 〈“I hate Bob”,8〉 at least
in their pw fields, since otherwise Alice would not have
updated the w field of the third object. If an additional

base object reports this value (within its pw or w field),
then Bob regrettably returns “I hate Bob”. On the other
hand, if the first two base objects continue to return
values with smaller timestamps than 8 (as in the first
round), then Bob can know that the third object is lying,
and may safely return “I love Bob”.

Unfortunately, Bob cannot always return after two
rounds, because there is a third possibility: the second
and third base objects can return two different newer
values (with timestamps exceeding 8). In this case, Bob
cannot get the two needed confirmations for any of the
values. This scenario can repeat indefinitely if Alice is
constantly writing new values, much faster than Bob can
read them.

If only safety is required, a read operation can return
in a constant number of rounds, at most t+1. Basically, if
the reader cannot obtain sufficiently many confirmations
for any value within t + 1 rounds, it can detect concur-
rency, in which case it can return any value (by safety).
If regularity is required, then Bob is guaranteed to obtain
sufficiently many confirmations once Alice stops writing,
ensuring FW-termination.

OPTIMIZING LATENCY

Precluding readers from writing allows ACKM to
support an unbounded (and unknown) number of readers
and tolerate their arbitrary failures. ACKM pays however
a price for this: read operations (of the safe storage)
require t + 1 rounds in the worst-case. It is thus natural
question to ask if this latency can be improved if readers
are allowed to write. Guerraoui and Vukolić [5] address
this question by presenting an optimally resilient regular
storage algorithm, GV, in which both reads and writes
complete in at most two rounds.

At the heart of GV lies the idea of a high resolution
timestamp. This is essentially a two-dimensional matrix
of timestamps, with an entry for every reader and base
object. While reading the latest values from base objects,
readers (e.g., Bob and Carol) write their own read-
timestamps (incremented once per every read round) to
base objects. Writers (e.g., Alice) uses the local copies
of Bob’s and Carol’s timestamps, stored within base
objects, to provide their write timestamp with a much
higher resolution. In the first round of a write, Alice (1)
stores the value v along with her own (low resolution)
timestamp in the base objects, and (2) gathers copies
of Bob and Carol’s timestamps from base objects and
concatenates these to her own timestamp, which results
in a final high-resolution timestamp, HRts. Then, in the
second round of the write, Alice writes v along with
HRts. However, to achieve two round read latency, GV



7

trades in storage complexity, by requiring base objects
to store an entire history of the shared variable.

The read latency optimization of GV is visible in the
corner-case where the system experiences arbitrary fail-
ures, asynchrony and read/write concurrency. In a more
common case, where the system behaves synchronously
and there is no read/write concurrency, ACKM provides
optimal latency of a single round.

To extend this desirable performance in the common
case from regular (ACKM) to atomic storage, the gen-
eral refined quorum system (RQS) [6] framework of
Guerraoui and Vukolić can be used. This framework
defines necessary and sufficient intersection properties
of quorums that need to be accessed in atomic storage
implementations in order to achieve optimal best-case
latencies of read/write operations. Given an available
set of base objects and an adversary structure (RQS
distinguishes crash from arbitrary failures and is not
bound to the threshold failure model), RQS outputs the
set of quorums such that, if any such quorum is accessed,
read/write operations can complete in a single round. For
example, in the case with 3t + 1 base objects (optimal
resilience), a single round latency can be achieved only
if all base objects are accessed. This explains why it is
difficult to combine low latency with optimal resilience
in atomic storage implementations (e.g., in SBQ-L),
in contrast to implementations that employ more base
objects (e.g., 4t + 1 or more).

SUMMARY

Building storage systems in a distributed fashion is
very appealing; disks are cheap, and the availability of
data can be significantly increased. Distributed storage
algorithms can be tuned to provide a high degree of
consistency, availability and resilience, while at the same
time inducing a very small overhead compared to a
centralized unreliable solution.

Not surprisingly, and as we emphasized in the paper,
combining desirable storage properties incurs various
tradeoffs. Besides, it is worth mentioning that practical
distributed storage systems face many other challenges,
including survivability, interoperability, load balancing
and scalability (see e.g., [1]).

REFERENCES

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and
J. Wylie. Fault-scalable Byzantine fault-tolerant services. In
Proceedings of the 20th ACM Symposium on Operating systems
principles, pages 59–74, 2005.

[2] I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi. Byzantine
disk Paxos: optimal resilience with Byzantine shared memory.
Distributed Computing, 18(5):387–408, 2006.

[3] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly
in message-passing systems. Journal of the ACM, 42(1):124–
142, 1995.

[4] R. Bazzi and Y. Ding. Non-skipping timestamps for Byzantine
data storage systems. In Proceedings of the 18th International
Symposium on Distributed Computing, volume 3274/2004 of
Lecture Notes in Computer Science, pages 405–419, Oct 2004.

[5] Rachid Guerraoui and Marko Vukolić. How fast can a very
robust read be? In Proceedings of the 25th annual ACM
symposium on Principles of distributed computing, pages 248–
257, 2006.

[6] Rachid Guerraoui and Marko Vukolić. Refined quorum sys-
tems. In Proceedings of the 26th annual ACM symposium on
Principles of distributed computing, pages 119–128, 2007.

[7] M. Herlihy and J. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, July 1990.

[8] L. Lamport. On interprocess communication. Distributed
computing, 1(1):77–101, May 1986.

[9] D. Malkhi and M. Reiter. Byzantine quorum systems. Dis-
tributed Computing, 11(4):203–213, 1998.

[10] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine
storage. In Proceedings of the 16th International Symposium
on Distributed Computing, volume 2508/2002 of Lecture Notes
in Computer Science, pages 311–325, Oct 2002.

[11] David A. Patterson, Garth Gibson, and Randy H. Katz. A
case for redundant arrays of inexpensive disks (RAID). ACM
SIGMOD Record, 17(3):109–116, 1988.

Gregory Chockler is a research staff member in
the Distributed Middleware group at the IBM Haifa
Research Laboratory. He holds Ph.D., M.Sc., and B.Sc.
degrees from the Hebrew University of Jerusalem.
He was a postdoctoral associate with the Theory
of Distributed Systems group, MIT/CSAIL and an
adjunct lecturer at Hebrew University. Contact him at
chockler@il.ibm.com.

Rachid Guerraoui is a professor of computer science
at EPFL. He has a Ph.D. in computer science from
the University of Orsay and has been affiliated with
HP Labs and MIT. He is coauthor of Introduction to
Reliable Distributed Programming (Springer-Verlag,
2006). Contact him at rachid.guerraoui@epfl.ch.

Idit Keidar is a professor at the department of
Electrical Engineering at the Technion, and a recipient
of the national Alon Fellowship for new faculty members.
She holds Ph.D., M.Sc., and B.Sc. degrees from the
Hebrew University of Jerusalem. She was a postdoctoral
research associate at MIT’s laboratory for Computer
Science. Contact her at idish@ee.technion.ac.il.

Marko Vukolić is a Ph.D. student in computer science
at EPFL. He received a dipl.ing. degree in electrical
engineering from the University of Belgrade. Contact
him at marko.vukolic@gmail.com.


