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ABSTRACT 

This paper builds upon previous work by providing a statistical basis for multiple-
model system identification. Multiple model system identification is useful because 
many models representing different sets of modeling assumptions may fit the 
measurements. The presence of errors in modeling and measurement increases the 
number of possible models. Modeling error depends on inaccuracies in (i) the 
numerical model, (ii) parameter values (constants) and (iii) boundary conditions. On-
site measurement errors are dependent on the sensor type and installation conditions. 
Understanding errors is essential for generating the set of candidate models that 
predict measurement data. Previous work assumed an upper bound for absolute 
values of composite errors. In this paper, both modeling and measurement errors are 
characterized as random variables that follow probability distributions. Given error 
distributions, a new method to evaluate the reliability of identification is proposed. 
The new method defines thresholds at each measurement location. The threshold 
value pairs at measurement locations are dependent on the required reliability, 
characteristics of sensors used and modeling errors. A model is classified as a 
candidate model if the difference between prediction and measurement at each 
location is between the designated threshold values. A timber beam simulation is used 
as example to illustrate the new methodology. Generation of candidate models using 
the new objective function is demonstrated. Results show that the proposed 
methodology allows engineers to statistically evaluate the performance of system 
identification. 
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1 INTRODUCTION 

System identification involves determining the state of a system and values of system 
parameters through comparisons of predictions with observed responses (Ljung, 
1999). When applied to structural engineering, this is equivalent to finding the 
parameter values for models that may represent the behavior of a given structure.  

Conventional system identification strategies, such as model updating, use 
optimization methods with measured data to calibrate a mathematical model of a 
structure that is often based on the model used for design. Model updating in 
structural engineering may be performed using vibration measurements or using static 
responses. Friswell and Mottershead (1995) provide a survey of model updating 
procedures using vibration measurements. Recent papers published in this area 
include Jaishi and Ren (2005), Xia and Brownjohn (2004), Brownjohn et al (2003) 
and Koh et al (2003). Compared with the amount of research in dynamic systems, 
only a few workers have focused on static systems. Research into model updating 
using static measurements include work by Sanayei et al (2005), Banan et al. (2004a, 
2004b) and Sanayei et al. (1999). 

Although conservative design models result in safe and serviceable structures, they 
are usually not appropriate for interpreting measurements from structures in service 
(Smith et al., 2006). Moreover, since system identification is an intrinsically 
abductive task, there may be many models that fit observed measurements (Robert-
Nicoud et al., 2005a, 2005c). A multiple model approach to system identification in 
which each model represents different sets of assumptions is capable of incorporating 
large numbers of modeling possibilities.  

Errors play a major role in the system identification process. Errors from different 
sources may compensate each other such that predictions of bad models match 
measurements (Robert-Nicoud et al., 2005a; Mahadevan and Rebba, 2006). Modeling 
and measurement errors have been investigated in previous research. Banan et al. 
(1994b) stated that the selection of an appropriate model is difficult; it is problem-
dependent, and usually requires the intuition and judgment of an expert in modeling. 
For example, mathematical models may not be able to exactly capture variations in 
cross-sectional properties, existing deformations, residual stresses, stress 
concentrations and variations in connection stiffness. Sanayei et al. (1997) and Arya 
and Sanayei (1999) emphasized that errors in parameter estimates may arise from 
many sources, the most significant of which are measurement errors and modeling 
errors. Measurement errors can result from equipment as well as on-site installation 
faults (Sanayei et al., 1997). A statistical evaluation of the performance of a system 
identification methodology must account for modeling and measurement errors.  

Raphael and Smith (1998) introduced the strategy of generation and iterative filtering 
of candidate multiple models. Robert-Nicoud et al. (2005a) adopted this strategy and 
proposed a multiple-model identification methodology based on compositional 
modeling and stochastic global search. Stochastic search was used to generate a set of 
candidate models. The objective function for the search was defined to be the root-
mean-square of the difference between measured values and model predictions 

Accepted for the 14th EG-ICE workshop in Maribor, Slovenia (2007)



3 
 

(RMSE). When the RMSE value was less than a certain threshold value, the model 
was classified as a candidate model. The threshold was evaluated by assuming 
reasonable values for modeling and measurement errors through reference to previous 
studies in finite element analysis and sensor precision. A model involving the right 
set of assumptions and correct values of parameters has a cost function value that is 
less than or equal to this threshold when errors due to mathematical modeling and 
measurement are equal to estimated maximum values. A limitation of this study is 
that the threshold value is not qualitatively associated with the reliability of 
identification.  

In this paper, a novel method of evaluating candidate models that accounts for the 
reliability of identification is proposed. Random variables are introduced for the 
errors in modeling and measurements. A new objective function is introduced for the 
stochastic search. The new form of the function uses threshold values at each 
measurement location. These threshold values are determined through reference to 
the required reliability of identification and probability distributions of errors. These 
methods are illustrated for a timber beam. The paper describes the methodology of 
generating candidate models, followed by a section that treats errors in system 
identification and the formulation of a new objective function and concludes with the 
results and suggestions for future work. 

2 METHODOLOGY 

The framework of multiple-model system identification research at EPFL is shown in 
Figure 1. At the beginning, modeling hypotheses lead to a number of possible models 
using measurements from the structure. The model generation module compares 
measurements with predictions to identify a set of candidate models. A stochastic 
global search algorithm called PGSL (Raphael and Smith, 2003b) is used for 
optimization. A feature extraction module extracts characteristics of these models.  

 

Figure 1: Framework of multiple-model system identification research at EPFL 
(ongoing work highlighted) 
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Data mining techniques are used to cluster models (Saitta et al., 2005). Ongoing 
research includes error estimation for better system identification, improving the 
measurement system design and developing appropriate engineer-computer 
interaction. The highlighted areas are focal points of current research. 

The methodology used to generate a set of candidate models is illustrated in Figure 2. 
Users input measurement data and specify a set of modeling assumptions. Model 
parameters and their permitted range of values are set a priori. Structural models are 
generated by stochastic sampling in a model space that consists of all combinations of 
acceptable parameter values. At each instance of model selection from the population 
of models, the structure is modeled as a finite element model, and its predictions are 
obtained. Responses from each model are compared with measurements in order to 
ascertain if the model is a candidate model. A candidate model is one that has 
predictions congruent with measured behavior. PGSL uses an objective function to 
determine if a model is a candidate model. The objective function is the distance 
metric used to differentiate candidate models from other models. Once a sufficient 
number of models have been sampled, a set of candidate models is available for 
subsequent analysis. 

 

Figure 2: Methodology used for generating a set of candidate models  
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This paper examines the reliability of system identification. A reliability of 100% 
requires that the following three conditions are met: all possible models are 
considered in the set of models; there are sufficient measurement data to filter out 
wrong models and; all errors are zero.  

Fulfilling these three conditions completely is never feasible. However, for the 
purposes of this paper, it is assumed that the first two conditions are met. Many 
structures can be evaluated using the assumption that through use of good stochastic 
search algorithms and high tolerance limits all possible models are generated. The 
second condition requires the assumption that enough measurement data is available 
to filter out wrong models. Since a goal of this research is to determine systematically 
the best path to fulfillment of this condition, it is assumed that this goal is reached. 

Estimating the reliability of structural identification, as discussed in this paper, 
involves calculation of a threshold range of errors given a statistical tolerance limit. 
When the assumptions discussed above are not possible, evaluations of reliability that 
are described in this paper provide upper-bound values. In the following section, 
errors that affect the reliability of identification are discussed.  

3 ERRORS IN SYSTEM IDENTIFICATION 

The following discussion is drawn from previous work at EPFL (Robert-Nicoud et 
al., 2000, 2005a, 2005c). Error definitions are used unchanged in this research. 

3.1 MODELING ERRORS 

Modeling error ( mode ) is the difference between the predicted response of a given 
model and that of an ideal model that accurately represents behavior. Modeling error 
propagation is graphically depicted in Figure 3. Modeling error has three constituents 
– 1e ,  2e , and  3e   (Raphael and Smith, 2003a). The component 1e  is the error due to 
discrepancy between the behavior of the mathematical model and that of the real 
structure. Component 2e  is introduced during numerical computation of the solution 
of partial differential equations. Component 3e  is the error arising from inaccurate 
assumptions made during simulation. Such a definition of modeling errors by 
subdividing it into sources is similar to the delineation of errors in physical system 
modeling (Mahadevan and Rebba, 2006). 

Component 3e  is further separated into two parts – 3ae  and 3be . The error part, 3ae , 
arises from assumptions made when using the model (typically assumptions related to 
boundary conditions such as support characteristics and connection stiffness). The 
error part, 3be , arises from errors in values of model parameters such as moment of 
inertia and Young’s modulus. While it might be impossible to separate the 
components in practice, it is still important to distinguish between these errors since 
the only error source that is usually recognized by traditional model calibration 
techniques is 3be . 
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1e : During creation of mathematical models of real structures 

2e : While representing mathematical models using numerical models 

3e : While simulating numerical models on computers 

Figure 3: Errors in computational mechanics simulations 

3.2 MEASUREMENT ERRORS 

Measurement error ( mease ) is the difference between the real and measured quantities 
in a single measurement. Measurement errors result from equipment as well as on-site 
installation faults (Sanayei et al., 1997). In addition to sensor precision values 
reported by manufacturers, the stability and robustness (for example, with respect to 
temperature), and the effects of location characteristics (for example, connection 
losses) also account for measurement error. While it is tempting to quantify 
measurement error as a sum of individual sources, it is more reasonable to quantify 
them probabilistically using sensor precision and on-site information obtained during 
sensor installation. 

3.3 PREVIOUS OBJECTIVE FUNCTION 

The model generation task requires an objective function that accounts for the errors 
to generate a set of candidate models. In Robert-Nicoud et al. (2005a), the objective 
function is formulated as follows. If ax  is the real value of a behavior quantity such 
as deflection, measx  is the measured value and cx  is the value computed using a 
model, the following relationships have been obtained for a single measurement. 

a meas measx x e= +        (1) 

1 2 3a cx x e e e= + + +        (2) 

Model calibration procedures minimize the absolute value of the difference between 
measx  and cx . The difference between measx  and cx  is known as the residue q . 

Rearranging the terms in Equations 1 and 2, 
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1 2 3meas c measq x x e e e e= − = + + −      (3) 

Thus, model calibration techniques minimize the quantity ( 1 2 3 mease e e e+ + − ).This is 
equivalent to inaccurately assuming that this quantity is always zero. The objective 
function that is minimized during the optimization routine is the root-mean-square 
composite error (RMSE) which was calculated as 

RMSE = 
2

iq
n

∑
 

        (4) 

where , ,i i meas i cq x x= −  = difference between the value measured at the ith 
measurement point and the predicted value computed using the model. Any model 
that gives an RMSE value less than a threshold value is considered to be a candidate 
model. The threshold is computed using an approximate estimate of modeling and 
measurement errors. From Eqn. 3, since errors could be positive or negative 

1 2 3c meas measq x x e e e e≤ + ≤ + + +      (5) 

≤q  Threshold = +est est
mod mease e     (6) 

est
mode  and est

mease  are estimates of the upper bound for modeling errors and 
est
mease measurement errors respectively. For quantifying threshold, est

mode  has been 
assumed to have a value of 4% (from finite element simulations) and est

mease  was 
taken to be the precision of the sensor (Robert-Nicoud et al., 2005a). 

4 NEW OBJECTIVE FUNCTION 

The formulation described in the previous section for evaluating candidate models is 
improved by combining errors using statistical methods. Modeling error  is difficult 
to quantify. It is problem dependent and can be minimized using modeling expertise 
(Banan et al., 1994b). Assuming an ideal situation, 1 0e = . The other errors can be 
modeled probabilistically.  

Consider i
measx  as the measured value at the ith measurement location and i

mease  as the 
measurement error at that location. Similarly, i

predx  is the predicted value at the ith 

measurement location and ( 1 2 3
i
prede e e e= + + ) is the total modeling error. In the 

absence of errors, predictions from a candidate model exactly match the 
measurements. Since errors are present, this is represented in mathematical terms as,  

i i i i
meas meas pred predx e x e+ = +          (7) 

Δ = − = −i i i i i
meas pred pred measx x x e e                                               (8) 
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Modeling error is defined by a variable prede  that follows a probability distribution 
with mean predμ  and standard deviation predσ  and measurement error is defined by a 
variable mease  that follows a probability distribution with mean measμ  and standard 
deviation measσ . Assume that the probability distribution for prede  remains the same 
for one modeling problem. However, this may depend on element types and in 
reality, for a complex structure with different element types, the distribution for mease  
could be different at each location. Since values of measurement error depend on 
sensor type and location characteristics, the distribution for mease  changes for each 
measurement location. Many quantities of engineering interest that are not extreme 
loads generally follow the normal distribution (Jordan, 2005). Assuming both 
probability distributions to be Gaussian distributions, the combined error is defined 
by a variable Z  with mean zμ  and standard deviation zσ , such that  

z pred measμ μ μ= −           (9) 

22
measpredz σσσ +=    (10) 

Following from Eqn. (9), the threshold values for a certain reliability of identification 
( ) are given by 

( )1 2
i i i i

meas predr x x r≤ − ≤            (11) 

such that         ( )1 2
i i

reqdP r Z r p≤ ≤ =                          (12) 

1 zr cμ= −   and 2 zr cμ= +                (13) 

where c is the value that is determined from the required statistical tolerance limit, 
reqdp . 

The function, if , is defined as 

( )
( )

1 2
2

1 1

2

2 2

0 i i i

i i i i
i

i i i i

if r x r

f x r if x r

x r if x r

⎧ ≤ Δ ≤⎪
⎪= Δ − Δ <⎨
⎪
⎪ Δ − Δ >⎩  

   (14) 

where superscript i refers to the ith measurement location.  

The significance of if  is that the difference between measurement and prediction at 
each measurement location is compared with the corresponding threshold value. A 
model is a candidate model only if it satisfies condition 0if =  at each measurement 
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location, i.e., the difference is within the specified threshold for every single 
measurement location. This requirement is encapsulated in a new objective function 
as follows   

1
0

n
ifE

n
= =∑                            (15) 

The new objective function E in Equation 15 is employed for the case study in the 
next section. Equation 15 could be considered to be a form of the classical error 
function that is employed for curve fitting since it includes values of errors at each 
measurement location and provides a probabilistic basis for the reliability of 
candidate models. 

5 ILLUSTRATION 

Timber Beam Case Study 

Robert-Nicoud et al. (2005a) tested a timber beam in the laboratory using a multiple 
model approach (Figure 4). The same case study is simulated in this paper. A 
mathematical model of the timber beam is created by discretizing it into 33 elements 
each of length 0.1 m. The spring support is modeled using two elements. Position and 
magnitude of the load and the elastic constant of the spring are treated as unknown 
variables. Minimum and maximum values for these variables are provided as input to 
system identification. Three sensors measurements are simulated. Models are 
randomly generated such that each model parameter has values within bounds 
specified by engineers. Each model in the set of candidate models has an equal 
probability of representing true structural behavior. The methodology for generating 
candidate models is as outlined in Section 2.  

 

 

Figure 4: Schema of experimental timber beam (used in the case study) 

The input values and input ranges of unknown variables are shown in Table 1. 
Results are also analyzed using Principal Component Analysis (PCA). Three model 
parameters are used as data for PCA. These are transformed to the space defined by 
two principal components and the results are then clustered following Saitta et al. 
(2005). 
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Table 1: Material properties of case study structure and ranges of variables used in 

system identification 

Material properties (N, cm) 

Beam E = 6.93 x106 Ix = 4.26x10-7 A = 0.0032   

Spring 
l

E = 0.418 x105 Ix = 1.58x10-7 A = 0.001856   

Force –25 @ Node 11 of 36 (X = 100cm) 

Ranges of variables  

Point load position (X) 20 cm to 250cm (10(n-1) where n = [2, 25] 
(discrete node values) 

Load magnitude (F) –30 N  to 0 N 

Elastic constant of spring (E) 0.30 x105 N/cm2 to 0.50 x105 N/cm2 

6 RESULTS 

In this study, 24000 models are randomly sampled. In keeping with the requirements 
stated earlier, it is assumed that all possible models are generated and that there are 
enough measurement data to filter out wrong models. One type of sensor is used. The 
values that are used to characterize random variables pertaining to modeling error and 
measurement error are given in Table 2. Two cases of composite error having a 
tolerance limit of 50% and 95% are used. The number of models generated in each 
case is listed in Table 3. 

Table 2: Characterization of error variables used 

Variable Mean (μ ) Standard Deviation (σ )

prede  predμ = 0 predσ = 0.1 

mease  measμ  = 0 measσ = 0.001 
 

Table 3: Number of candidate models obtained 

Tolerance Limits 50% 95% 

No. of candidate models (out of 24000) 7938 15785 
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It can be seen that higher tolerance limits have greater numbers of candidate models. 
Data mining is performed to extract information from the set of candidate models in 
both the cases (Saitta et al., 2005). Principal components are plotted in Figures 5(a) 
and 5(b). Figure 5(a) shows, in PCA space, the candidate models obtained in the case 
with 50% tolerance limits and Figure 5(b) shows that there are a greater number of 
candidate models discovered in the case with 95% tolerance limits. These plots 
support the postulate that insufficient tolerance limits may result in potentially 
important candidate models not being identified. The parallel line type clusters with 
free space between groups misleadingly point to a correlation between certain 
variables. This is due to the fact that the variable X takes discrete values only. 

 

Figure 5a: Clusters visualized using Principal Component Analysis (at tolerance limit 
of 50%) 

 

Figure 5b: Clusters visualized using Principal Component Analysis (at tolerance limit 
of 95%) 

The additional candidate models in the second case (tolerance limit 95%) are those 
that are not identified when the tolerance limit is 50%). Results show that it is useful 
to include error characterization in the objective function in order to identify 
candidate models within model generation module (Figure 2). 
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The previous objective function (Section 3.3) did not include statistical reasoning for 
choosing threshold values. Therefore, a threshold value is chosen without estimating 
the risk of losing potential candidate models. To illustrate this, consider Table 4, 
which gives the parameter values for the case study model and four of the candidate 
models obtained. Model 1 is a candidate model that is identified when the statistical 
tolerance limit is set to 95%. However, it was ignored when the statistical tolerance 
limit is 50%. The proposed method enables the selection of a error threshold 
according to the level of confidence required in the identification process. 

Table 4: Description of four candidate models 

Model X (cm ) F (N) E (N/cm2) 

Case study structure 100 –25 41800 

Model 1 100 –24.93 41915 

Model 2 150 –22.55 33515 

Model 3 150 –22.49 36107 

Model 4 130 –21.75 42901 
 

Table 4 also illustrates that errors from different sources may compensate each other 
such that predictions of bad models match measurements. Model 1 is the right 
candidate model since it is very close to the case study structure. However, models 3 
and 4 are among other candidate models that are identified. Depending upon the error 
values, either one of these models could have been adopted as the right model if one 
was to simply minimize the error difference. While the candidate model set includes 
bad models these can be filtered through further measurements.   

CONCLUSIONS 

Conclusions of this research are: 

 An explicit statistical formulation of the objective function provides a useful 
basis for identifying candidate model sets. 

 Since various types of errors may compensate one another, it is risky to accept 
model predictions based on comparisons that assume no errors. When error 
characteristics are known, including high tolerance limits expands the set of 
candidate models. Probabilistic characterizations of errors ensure an estimate 
of the reliability that the candidate model set includes the correct model.  

Future work involves experimental error quantification using full scale studies. 
Experiments in controlled environments are required to estimate probability density 
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functions for measurement and modeling errors. Subsequent tasks in multiple-model 
system identification include data mining in order to classify them into clusters and 
engineer-computer interaction for improved knowledge visualization. 
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