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Abstract 

This study focuses on improving structural control through reinforcement learning. For the 

purposes of this study, structural control involves controlling the shape of an active tensegrity 

structure. Although the learning methodology employs case-based reasoning which is often 

classified as supervised learning, it has evolved into reinforcement learning, since it learns from 

errors. Simple retrieval and adaptation functions are proposed. The retrieval function compares 

the response of the structure subjected to current loading event and the attributes of cases. When 

the response of the structure and the case attributes are similar, this case is retrieved and adapted 

to the current control task. The adaptation function takes into account the control quality that has 

been achieved by the retrieved command in order to improve subsequent commands. The 

algorithm provides two types of learning: reduction of control command computation time and 

increase of control command quality over retrieved cases. Results from experimental testing on a 

full-scale active tensegrity structure are presented to validate performance. 
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Introduction 

Tensegrities are spatial, reticulated and lightweight structures that are composed of struts and 

tendons. Stability is provided by the self-stress state between tension and compression elements. 

Although there is no universal definition, a recent proposal by Motro (2003) is as follows: “A 

tensegrity system is a system in a stable self-equilibrated state comprising a discontinuous set of 

compressed components within a continuum of tensioned components.” Active tensegrity 

structures are feasible for structures such as temporary roofs, footbridges and radio telescopes. 

Control of tensegrity structures has been a topic of research since the middle of the 1990s. 

Kawaguchi et al. (1996) studied shape and stress control of pre-stressed truss structures. 

However, difficulties were identified in validating numerical results through experimental 

testing. Djouadi et al. (1998) described a theoretical scheme to control vibrations of tensegrity 

systems. Sultan (1999) presented a formulation of tensegrity active control and illustrated it with 

the example of an aircraft motion simulator. Skelton et al. (2000) concluded that since only small 

amounts of energy are needed to change the shape of tensegrity structures, they are advantageous 

for active control. Kanchanasaratool and Williamson (2002) proposed a dynamic model to study 

tensegrity feedback shape control. Averseng and Crosnier (2004) studied experimentally the 

control of a tensegrity grid in which the actuation system is connected to the supports. Van de 

Wijdeven and de Jager (2005) studied an example of 2D tensegrity vibration and shape control. 

Few experimental studies have been designed to provide practical results. Proposals are mainly 

tested numerically on small, simple and symmetric tensegrity models.  

 
The field of machine learning is divided into three sub-domains: supervised learning, 

unsupervised learning and reinforcement learning. The term supervised originates from the fact 

that desired outputs are provided by an external teacher (Abraham 2005). Case-based reasoning 
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is a method that belongs to supervised learning. Case-based reasoning systems build on findings 

that previous experience is useful. Humans resolve new challenges by first searching in their 

memory for similar tasks that they have successfully carried out in the past. Retrieved solutions 

are adapted to the current task (Kolodner 1993, Leak 1996). Unsupervised learning employs 

learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is 

to extract an efficient internal representation of the statistical structure implicit in the inputs 

(Hilton and Sejnowski 1999). Reinforcement learning is based on interacting with the 

environment. Trial-and-error search and delayed reward are the two most important 

distinguishing features of reinforcement learning (Sutton and Barto, 1998; Csáji et al, 2006). Put 

simply, this approach involves learning from errors. Studies involving reinforcement learning for 

control tasks are found in the electrical and transportation engineering. For example, 

reinforcement learning was used for reactive power control (Vlachogiannis and Hatziargyriou 

2004). Abdulhai and Kattan (2003) describe tasks such as traffic management, infrastructure 

management and traffic control that were supported by reinforcement learning. In structural 

engineering, few examples of control procedure supported by supervised and unsupervised 

learning algorithms were found in the literature. Ghaboussi and Joghataie (1995) and Chen et al. 

(1995) proposed a supervised learning strategy to control vibrations in multi-storey buildings 

subjected to ground motion. The need to train this artificial neural network by an external teacher 

was observed to be the key drawback. Although the case-based reasoning method is widely used 

for tasks such as structural design, (Bailey and Smith 1994; Waheed and Adeli 2005), few 

studies focus on the application of case-based reasoning for structural control. An exception is 

Domer and Smith (2005). Madan (2005) described an unsupervised approach for training 

artificial neural network in active control of earthquake vibrations in building structures. 
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However, no studies of structural control have used the potential of reinforcement learning to 

improve control performance. 

 

This paper addresses improvement of structural control through reinforcement learning. For the 

purposes of this study, structural control involves controlling the shape of an active tensegrity 

structure. The proposed learning algorithm decreases control command computation time and 

improves control command quality over retrieved cases. When a case is retrieved, adaptation is 

direct. The adaptation function is based on a local linear-elastic assumption. Moreover, quality of 

retrieved control commands is involved in adaptation to improve control quality over time. 

Previous studies at EPFL are described in the next section. Notations, quantities and learning 

methodology are reviewed in the following section. The results section provides an experimental 

validation of the proposed methodology. The paper ends with a discussion of future work. 

 

Previous studies at EPFL 

Research into active structures has been carried out at EPFL since 1996. Shea and Smith (1998) 

proposed that the ultimate goal of intelligent structures is to maintain and improve structural 

performance by recognizing changes in behaviors and loads, adapting the structure to meet 

performance goals, and using past events to improve future performance. Shea et al. (2002) 

presented a computational framework based on intelligent control methodology that combines 

reasoning from explicit knowledge, search, learning and planning to illustrate a vision of 

intelligently controlled civil structures. Fest (2002) provided a description of an active tensegrity 

structure and control system (Figure 1). It covers a surface area of 15 m2, has a static height of 

1.20 m and withstands a distributed dead load of 300 N/m2. It is composed of 30 struts and 120 
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tendons. Struts are fiber reinforced polymer tubes of 60mm diameter and 703 mm2 cross section. 

Tendons are stainless steel cables of 6 mm in diameter. The structure is equipped with an active 

control system: ten active struts and three displacement sensors. The ten active struts are placed 

in in-line pair in each module. They allow for strut length adjustment. Displacement sensors 

measure vertical displacements at three top surface nodes. Figure 2 provides a view of the 

structure from the top. Support conditions are specified with arrows. Top surface nodes are 

numbered. Active struts are numbered from 1 to 10. The three displacement sensors are placed at 

three nodes of the top surface: 37, 43 and 48. Shape control has involved satisfying a 

serviceability objective: maintaining the slope of the top surface of the structure when the 

structure was subjected to a loading. Top surface slope S is calculated from the vertical 

coordinates of the top surface three nodes, z37, z43 and z48, that are equipped with displacement 

sensors (Figure 2). It is determined as follows: 
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where L is the horizontal distance between nodes 43 and middle of segment 37 – 48. The most 

challenging part of the study was the computation of control commands that modify the self-

stress state in order to satisfy this objective (Fest et al. 2003). Since the structure was equipped 

with three displacement sensors and ten active struts for control flexibility, there was no closed-

form solution for active strut adjustments given a required slope. A stochastic search algorithm 

(Raphael and Smith, 2003) was selected as the best method to accommodate the exponentially 

complex generate-test process that was needed to compute control commands (Domer et al. 

2003, Fest et al. 2004). However, control command computation was time consuming. 

Moreover, in this study, load values and their location were known input values.  
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Domer and Smith (2005) studied the capacity of the structure and its control system to reduce 

control command computation time. Case-based reasoning was used to speed up the process. 

When the structure was subjected to loading, a similar configuration was retrieved from the case 

base and its control command was adapted to the current task. As more cases were added to the 

case-base, the average time necessary to compute control commands decreased. Domer (2003) 

showed that search time can decrease from approximately one hour down to one to two minutes. 

Thus, the structure was observed to learn from its experience. Clustering cases in the case-base 

and maintenance strategies were proposed to achieve retrieval efficiency. In addition, an artificial 

neural network was used to correct for inaccuracies in the structural model such as joint friction 

(Domer and Smith 2005). Through correcting the numerical model with a neural network, 

accuracy of predictions was enhanced. This study concluded that structural performance could be 

improved by judicious combinations of advanced algorithms. Although control command 

computation time decreased, control command quality enhancement was not studied.  

Adam and Smith (2007) proposed a multi-objective approach to support tensegrity shape control. 

Since more robust control commands were computed using this approach than a single objective 

method, the structure was observed to accommodate multiple loading events over its service life 

more robustly than with single objective strategies. However, this methodology was still time 

consuming (computation times of 45min using a personal computer: Pentium 4, 3.08 GHz, 

1.00GB of RAM). Nonlinear effects of control command application were also observed to alter 

control quality in some situations.  

Adam and Smith (2006) described methodologies for self diagnosis in order to control an active 

tensegrity structure in situations of partially defined loading events and damage. Self-diagnosis 

solutions were successfully used to compute control commands for shape control and self repair. 
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Self-repair abilities were demonstrated experimentally. Self-repairing control commands could 

increase stiffness and decrease stresses by modifying the self-stress state of a damaged structure. 

Nevertheless, control command computation was time consuming. Moreover, nonlinear effects 

of control command applications were not overcome and this was observed to alter control 

quality in some situations.  

 

Glossary 

Notations and quantities that are specific to this study are defined in this section. They will be 

used throughout this paper. When subjected to loading, the structure displaces. The vertical 

coordinate of node i in deformed configuration is indicated by zi’. Consequently the top surface 

slope after loading S’ is calculated as follows (Figure 2): 
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Slope unit is mm/100m. The top surface slope deviation TSSD is determined using equations (1) 

and (2) as follows: 

  SSTSSD −′=         (3) 

Evaluation of the response of the structure to a loading event involves active control 

perturbations of the structure through 1mm elongation of active struts. For a 1mm elongation of a 

particular active strut, vertical coordinate of node i is labeled zi’’ and top surface slope after 

perturbation S’’ is expressed as follows: 

  





 ′′+′′

−′′=′′
2

1 4837
43

zz
z

L
S        (4) 

The resulting slope variation ΔS has the following expression using equations (2) and (4). It 

describes the influence of a particular active strut on the top surface slope: 



 - 8 - 

  SSS ′−′′=∆          (5) 

ΔS(j) is a measure of slope variation resulting from a 1mm elongation of active strut j. The 

influence vector ν contains the 10 slope variations ΔS that correspond to the 10 active struts. 

According to equation (5), its expression is: 

  ( ) ( ) ( )[ ] T

SSS 1021 ∆∆∆= v       (6) 

When top surface slope has been corrected through a control command application, the vertical 

coordinate of node i is labeled zi’’’ and corrected top surface slope S’’’ is calculated as follows: 
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The slope compensation SC is defined in order to evaluate top surface slope correction quality 

using equations (1), (2) and (7). Its expression is: 

  
SS
SSSC
−′

′′′−′
=          (8) 

In order to evaluate the transversal behavior of the structure, transversal slope deviation quantity 

TSD is introduced (Figure 2). Its expression is: 

  ( ) ( )[ ]37483748
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where Lt is the horizontal distance between nodes 37 and 48 (Figure 2).  
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Learning methodology 

Although the learning methodology employs case-based reasoning, which is often classified as 

supervised learning, it has evolved into reinforcement learning since it learns from errors in order 

to support incremental improvements of control commands. A case is composed of the following 

components: case attributes, control command, slope compensation (Table 1). Case attributes are 

the response of the structure in terms of top surface slope deviation, influence vector and 

transversal slope deviation. The control command is composed of ten active strut elongations and 

contractions. The last component is the slope compensation that is measured on the structure 

when the control command has been applied.  

Intelligent control methodologies such as self diagnosis, multi-objective control and 

reinforcement learning are presented within the control loop in Figure 3. Retrieval, adaptation 

and memorization are direct. When a case is retrieved, no iteration is needed for adaptation. 

These operations improve control quality and speed up control command computation using 

retrieved cases. 

 

Retrieval 

It was observed in Adam and Smith (2006), that loads of similar magnitudes and in nearby 

locations induce similar responses. The retrieval function is based on this property. The response 

of the structure to the current load is evaluated in terms of top surface slope deviation (3), 

influence vector (6) and transversal slope deviation (9). This response is compared with the 

attributes of the cases. Similarity conditions are defined according to experimental testing results 

of load identification (Adam and Smith, 2006). The thresholds correspond to the accuracy of the 
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active control system. Within these limits the behavior has been observed to be similar. 

Similarity conditions are described below:  

mmmTSSDTSSD mcase 100/2.2≤−       (10) 
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where the subscript case refers to case attributes and the subscript m to measured values. When 

conditions (10), (11) and (12) are true for a particular case, the behavior of the structure 

subjected to the current load is said to be similar to this case. This case is retrieved. In situations 

where similarity conditions are true for more than one single case, the closest case according to 

(12) is retrieved. 

 

Adaptation 

Once a case is retrieved, the control command is adapted for shape control of the structure 

subjected to current loading. For the purpose of this study, a simple adaptation function based on 

a locally elastic-linear assumption is proposed. While this structure behaves in a geometrically 

nonlinear manner, this assumption is tested for a problem specific case using measured values. 

The adaptation function is written as follows: 

( ) case
casemcase

m

SCTSSD
TSSD

x
x

x
⋅

=       (13) 

Control commands are scaled with respect to the ratio TSSDm/TSSDcase and the experimentally 

observed slope compensation SCm(xcase). When control command x is applied, the 
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experimentally observed slope compensation SCm(x) is measured. It is rarely equal to 100%. 

Since the proposed learning algorithm takes into account SCm, this algorithm learns from errors.  

 

Memorization 

In situations where the control command that is adapted from a retrieved case improves slope 

compensation, the current case replaces the retrieved case. This is reinforcement learning. In 

situations where the control command is computed using multi-objective search, a new case is 

memorized. 

 

Experimental results 

The proposed methodology has been tested experimentally; the learning process was observed 

over 80 randomly generated loading and subsequent control events. Single point loads ranging 

from 190N to 1200N were applied to the top surface nodes.  

 

Control improvement over three retrieved cases 

Figure 4 shows how slope compensation improves over 3 of the 80 loading events. Although 

these three loading events A (379N at node 51), B (410N at node 51) and C (444N at node 51) 

are different, they brought about a similar response of the structure. The horizontal axis describes 

steps of 1mm active strut length adjustments and the vertical axis is the normalized top surface 

slope deviation. The zero value on vertical axis is the initial top surface slope. 

Load A is applied to the structure. Since the response of the structure is not similar to attributes 

of any case, load identification is carried out (Adam and Smith, 2006). Control command A is 

computed through multi-objective search (Adam and Smith, 2007) according to the load 
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identification solution. Multi-objective search requires 1500 iterations of ParetoPGSL (45min 

using a personal computer: Pentium 4, 3.08 GHz, 1.00GB of RAM). When control command A 

is applied to the structure, the slope compensation is observed to reach 86%. This control event 

creates a new case which is called case A.  

Load B is applied to the structure. Since the loading event B induces a response of the structure 

that is similar to the attributes of case A, control command B is adapted from control command 

A. Adaptation is direct and no iteration is needed. When control command B is applied to the 

structure, slope compensation is observed to improve with respect to slope compensation of 

control event A. It is equal to 103%. Case B replaces case A.  

Load C is applied to the structure. Loading event C induces a response of the structure that is 

similar to the attributes of case B. Therefore, control command B is adapted in order to control 

the structure subjected to loading event C. Control command adaptation is direct. When control 

command C is applied to the structure, slope compensation is once again observed to improve; it 

is equal to 98%. Case C replaces case B.  

The following observations are of interest: 

• Slope compensation of the current control event generally improves over retrieved cases. 

• While control command computation takes about 45min with multi-objective search, 

retrieval and adaptation takes around 0.5s using a personal computer: Pentium 4, 3.08 

GHz, 1.00GB of RAM. 

• Since new cases replace retrieved cases, case maintenance is assured in the case base. 

• Through these retrieved cases, this methodology can be seen as an iterative method that 

supports a nonlinear task.  
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• While the risk of cycling cases exists, it is not expected to alter learning efficiency since 

cases are replaced by cases that are observed to be of better quality. 

 

Reinforcement learning over 80 loading and control events 

Figure 5 plots the average error between the experimentally observed slope compensation and 

100% (vertical axis) over 80 loading and control events (horizontal axis). The average error is 

calculated over ten control events. A general decrease of the error is observed over 80 loading 

and control events. Learning is not a monotonic process. Control event set 61 to 70 shows a 

notable decrease in control quality. This observation is explained by various effects: 

• In situations where no case is retrieved due to the random nature of learning processes, 

performance momentarily decreases.  

• Since tensegrity structures behave in a geometrically nonlinear manner, the response of 

the structure to the same load at time t and t’ can be different when several loading and 

control events have occurred between time t and t’. Loading and control history induce 

deformations that influence the response of geometrically nonlinear structures. Therefore, 

cases are not retrieved and performance momentarily decreases.  

• In situations where the adapted control command overstresses the structure, self diagnosis 

is performed and a multi-objective control command is computed.  

• When cases are replaced, case attributes are also replaced. This might lead to not 

retrieving cases in situations where a case would have been retrieved prior to 

replacement. 

Figure 6 plots the average number of iterations for ten control command computations (vertical 

axis) versus 80 loading and control events (horizontal axis). A simultaneous effect is that the 
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average number of iterations to compute ten control commands generally decreases over 80 

loading and control events. Once again the observation is made that over 80 random loading 

events, learning is not monotonic. Figure 6 shows that average control command computing time 

increases for loading event sets 31-40, 51-60 and 71-80. The reasons are, again, related to the 

random nature of learning processes and the geometrical nonlinear behavior of tensegrity 

structures, overstressing control commands and loss of information during case replacement. 

 

Number of cases in the case base 

We examine now another aspect of this learning process. The effectiveness of the learning 

algorithm depends on the evolution of the number of cases in the case base. Figure 7 shows in 

black dots this evolution over the 80 loading and control events. Since new cases of better 

quality replace retrieved cases, the derivative of this evolution decreases over 80 control events. 

This evolution can be approximated by a second order polynomial function:  

  xxNbcases 40
37

320
1 2 +−=        (14) 

An extrapolation of function (14) beyond observed values is drawn in gray in Figure 7. 

According to this expression, case-base saturation is obtained after about 150 loading and control 

events. The case base is saturated when about 70 cases are memorized. In other words, after 

saturation, cases are retrieved at each loading event. However, more loading and control events 

would be required to fully validate this affirmation. 

 

Observations 

The learning process is observed over 80 random loading and control events. The following 

observations are of interest: 



 - 15 - 

• The methodologies for retrieval and adaptation generally allow for control quality and 

control rapidity improvement over retrieved cases. 

• Since current cases replace retrieved cases when control quality improves, better cases 

are gradually stored and naturally classified in the case base. However, case attributes of 

replaced cases are also replaced. This leads to a loss of information. 

• The reinforcement learning algorithm can be seen as an iterative method over retrieved 

cases that successfully accommodates nonlinear behavior. 

• Geometrically nonlinear behavior of tensegrity structures can momentarily slow down the 

learning process. 

• Control performance may decrease momentarily. Since control is performed over random 

loading events, cases may momentarily not be retrieved. 

• The derivative of the evolution of the number of cases in the case base decreases as 

retrieved cases are replaces by new cases over 80 loading and control events. 

• It is expected that after about 150 random loading events, cases are retrieved for each 

control event. 

 

Future work  

Extension of the reinforcement learning algorithm is needed to be usable in practical situations. 

This algorithm should be useful for scenarios of multiple loading events and damage. Further 

study should look into the growth of the case base to identify a saturation point for more 

complex loading and damage as well as for scenarios of multiple events. Studying the efficiency 

of this learning methodology for more complex structures would also be of interest. 
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Conclusions 

Since the learning algorithm learns from errors, errors decrease as cases are retrieved and 

adapted. The following conclusions are drawn: 

• The learning algorithm allows for two types of learning: decreased time for control 

command computation and increased control command quality as cases are retrieved and 

adapted. 

• Success of these learning types is related to the formulation of case retrieval and 

adaptation, as well as the number of cases in the case base. 

• Since cases are classified and iteratively replaced in the case base, case-base 

management, such as clustering, is not needed. 

• Since the case base is expected to reach a saturation point where a case is retrieved for 

each control event, the need for a very large number of cases for learning algorithm 

efficiency is not expected. 

• Although case-based reasoning is normally classified as supervised learning, the 

proposed learning methodology proposed in this work contributes to reinforcement 

learning. 

• Interaction between learning algorithms and sensor devices is attractive for improving 

control tasks.  

More generally, it is also demonstrated that reinforcement learning has the potential to improve 

active control of tensegrity structures and this could evolve toward more types of adaptive civil 

structures. 
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Notations 

S     Top surface slope of the structure at initial state 

S’    Top surface slope after loading  

S’’    Top surface slope after perturbation  

S’’’    Top surface slope after correction  

SC     Slope compensation  

TSD    Transversal slope deviation  

TSSD     The top surface slope deviation  

ΔS     Slope variation  

ν     Influence vector  

x    Control command 
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Tables 

Table 1. Components of a case 

Response of the structure Control command Slope compensation 

TSSDcase, vcase, TSDcase, xcase SCm(xcase) 
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Figures 

 

Fig. 1. Five module active tensegrity structure: 15 m2 plan area 10 active struts, 3 displacement 

sensors 
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Fig. 2. View of the structure from the top showing slope indicators 
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Fig. 3. Intelligent methodologies within the control loop 
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Fig. 4. Experimentally observed slope compensation improves over three different loading 

events that induce similar responses 
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Fig. 5. Error of slope compensation generally decreases over 80 loading and control events 
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Fig. 6. The average number of iterations for 10 control commands generally decreases over 80 

control events 
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Fig. 7. Evolution of the number of cases over 80 loading and control events (black) and second 

order projection until saturation (gray) 
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Table captions 

Table 1. Components of a case 
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Figure captions 

Fig. 1. Five module active tensegrity structure: 15 m2 plan area 10 active struts, 3 displacement 

sensors 

 

Fig. 2. View of the structure from the top showing slope indicators 

 

Fig. 3. Intelligent methodologies within the control loop 

 

Fig. 4. Experimentally observed slope compensation improves over three different loading 

events that induce similar responses 

 

Fig. 5. Error of slope compensation generally decreases over 80 loading and control events 

 

Fig. 6. The average number of iterations for 10 control commands generally decreases over 80 

control events 

 

Fig. 7. Evolution of the number of cases over 80 loading and control events (black) and second 

order projection until saturation (gray) 

 


